首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Binding of Zn(II) to the carbon monoxide complex of human hemoglobin was shown by equilibrium sedimentation and sedimentation velocity experiments at pH 7.0 to induce the dissociation of liganded tetramers to dimers but not to monomers. These results provide direct confirmation of previous kinetic and gel filtration experiments (R. D. Gray, (1980) J. Biol. Chem.255, 1812–1818) that Zn(II) binding to liganded hemoglobin produces a change in aggregation state of liganded hemoglobin.  相似文献   

2.
An actively and passively mode-locked Nd:YAG laser, producing 30-ps pulses of 1-mJ energy at 532 nm, has been used to photolyze (carbonmonoxy)myoglobin (MbCO) and generate its resonance Raman spectrum, which was recorded with a vidicon multichannel analyzer. The photoproduct spectrum was obtained by subtraction of the MbCO spectrum, obtained at lower incident power levels. Comparison with the spectrum of deoxyMb, obtained with the same apparatus, revealed frequency downshifts of approximately 4 cm-1, for bands at 1604, 1554, and 1542 cm-1, which are identified with porphyrin skeletal modes v10, v19, and v11. These frequencies are known to correlate inversely with the core size of the porphyrin ring, and the shifts imply a larger core size for the photoproduct than for deoxyMb. Similar shifts have been observed for the (carbonmonoxy)hemoglobin (HbCO) photoproduct; in that case, the shifts persist for longer than 20 ns, whereas they are absent in the MbCO photoproduct spectrum within 7 ns of photolysis. The unrelaxed state of the heme group region is therefore suggested to be maintained by protein forces, which relax more rapidly for Mb than Hb. This may reflect a tighter coupling in Hb of the out-of-plane movement of the Fe atom with the proximal histidine-containing F helix.  相似文献   

3.
4.
The heme-pocket dynamics subsequent to carbon monoxide photolysis from human hemoglobin have been monitored as a function of glycerol-water solvent composition with time-resolved resonance Raman spectroscopy. Prompt (geminate) ligand recombination rates and the transient heme-pocket geometry established within 10 ns after photolysis appear to be largely independent of solvent composition. The rate of relaxation of the transient geometry to an equilibrium deoxy configuration is, however, quite sensitive to solvent composition. These observations suggest that the former processes result from local, internal motions of the protein, while the relaxation dynamics of the proximal heme pocket are predicated upon more global protein motions that are dependent upon solvent viscosity.  相似文献   

5.
S Dasgupta  T G Spiro 《Biochemistry》1986,25(20):5941-5948
Resonance Raman spectra are reported for deoxyhemoglobin (deoxyHb) and the (carbonmonoxy)hemoglobin (HbCO) photoproduct Hb by use of 7-ns YAG laser pulses at wavelengths of 416 and 532 nm, where enhancement is observed for totally symmetric and nontotally symmetric modes, respectively. The frequencies of the porphyrin skeletal modes v10, v2, v19, v11, and v3 have been determined to be 1602, 1559, 1553, 1542, and 1466 cm-1 in Hb. These frequencies are 2-3 cm-1 lower than the corresponding frequencies for deoxyHb. The v19 and v11 frequencies are at the expected values for a Ct-N distance of 2.057 A, the known core size for a 6-coordinate high-spin FeII-porphyrin complex. The remaining frequencies, however, deviate from the core size correlations for these modes in the same direction as do those of deoxyHb, suggesting that the porphyrin ring is domed in both species. Thus, the heme structure is similar for deoxyHb and Hb but is slightly expanded in the latter. The expanded heme in Hb implies a restraint on the full out-of-plane displacement of the Fe atom, by an estimated approximately 0.1 A relative to deoxyHb. This could result from a residual interaction with the CO molecule if the latter remains held by the protein against the Fe atom, in a high-spin 6-coordinate complex. The available spectroscopic evidence suggests that such a complex may be stabilized at 4 K but is unlikely to persist at room temperature beyond the electronic relaxation (0.35 ps) of the electronically excited heme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
We present a geometric analysis of the allosteric interface in the new Y state quaternary structure observed in liganded mutant hemoglobin Ypsilanti (β99 Asp → Tyr) by Smith, F.R., Lattman, E.E., Carter, C.W., Jr. (Proteins 10:81–91, 1991). The classical T to R quaternary structure change being a rotation of αβ dimers about an axis which is approximately parallel to the dimer axis of pseudosym-metry, the new quaternary structure is obtained by applying to R an additional rotation about an axis orthogonal to the first. This suggests that Y is a modified R state rather than an intermediate on the T to R pathway. Computer docking experiments designed to simulate the quaternary structure change support this suggestion. © 1993 Wiley-Liss, Inc.  相似文献   

7.
C Dalvit  C Ho 《Biochemistry》1985,24(14):3398-3407
Proton nuclear Overhauser effect (NOE) measurements have been used extensively to investigate the detailed conformations of peptides, proteins, and nucleic acids in the solution state. However, much of the published work has dealth with molecules of molecular weight less than 15 000. It is generally thought that specific NOEs cannot be observed in larger molecules (due to spin diffusion), so that NOE is of little use in conformational studies of such systems. By use of truncated-driven NOE with an irradiation time of 100 ms, specific NOEs are observed in a protein of the size of human normal adult hemoglobin (Hb A, 65 000 daltons). This technique has permitted us to assign several proton proton resonances arising from heme groups and from amino acid residues situated in the vicinity of the ligand binding site (such as E7 histidine and E11 valine) of the alpha and beta chains of Hb A. In addition, two-dimensional 1H[1H] J-correlated spectroscopy (COSY) experiments as well as theoretical ring-current calculations have confirmed the spectral assignments obtained by the one-dimensional NOE experiments. These new results not only have permitted us to map the heme pockets and to investigate the conformational differences in the heme pockets between oxy and carbonmonoxy forms of Hb A but also have demonstrated that the technique of truncated-driven NOE can be used to investigate the detailed conformations of selected regions in larger macromolecules in a way heretofore thought not to be feasible.  相似文献   

8.
Heme pocket dynamics of human carbonmonoxy hemoglobin (HbCO) is studied by Fourier transform infrared spectroscopy. The CO stretching band at various temperatures in the interval 300-10 K is analyzed in terms of three taxonomic A substates; however, in HbCO the band attributed to the A(1) taxonomic substate accounts for approximately 90% of the total intensity in the pH range 8.8-4.5. Two different regimes as a function of temperature are observed: below 160 K, the peak frequency and the bandwidth of the A(1) band have constant values whereas, above this temperature, a linear temperature dependence is observed, suggesting the occurrence of transitions between statistical substates within the A(1) taxonomic substate in this protein. The relationship between the heme pocket dynamics (as monitored by the thermal behavior of the CO stretching band), the overall dynamic properties of the protein matrix (as monitored by the thermal behavior of Amide II and Amide I' bands) and the glass transition of the solvent (as monitored by the thermal behavior of the bending band of water) is also investigated. From this analysis, we derive the picture of a very soft heme pocket of hemoglobin characterized by rather large anharmonic terms and strongly coupled to the dynamic properties of the solvent.  相似文献   

9.
We report the ligand dependence of the conformer distribution in the distal heme pocket of Ascaris suum hemoglobin (Hb) studied by resonance Raman spectroscopy. The heme-bound CO is used as a spectroscopic antenna to probe the original distribution of conformers in the dioxygen derivative of Ascaris Hb, by utilizing sol-gel encapsulation. The first step is to encapsulate the dioxygen derivative in the porous sol-gel and let the gel age, thus trapping the equilibrium conformational distribution of Ascaris dioxygen Hb. In the second step, the dioxygen ligand is replaced by CO. The sol-gel environment impedes any large scale movements, drastically slowing down the conformational relaxation triggered by the ligation change, essentially "locking in" the initial quaternary and even tertiary structure of the protein. Studying the Fe-CO frequencies of the latter sample allows evaluation of the distribution of the distal heme pocket conformers that was originally associated with the dioxygen derivative. Extending the study to the Ascaris mutants allows for examination of the effect of specific residues in the distal pocket on the conformational distribution. The choice of mutants was largely based on the anticipated variation in hydrogen bonding patterns. The results show that the sol-gel encapsulation can slow or prevent re-equilibration within the distal heme pocket of Ascaris Hb and that the distribution of distal heme pocket conformers for the CO derivative of Ascaris Hb in the sol-gel is highly dependent on the history of the sample. Additionally, we report a detailed study of the CO complex of the mutants in solution for assignment of the various heme pocket conformers, and we present a comparison of the sol-gel data with solution data. The results support a picture in which the dioxygen derivative biases the population strongly toward a tightly packed configuration that favors the network of strong hydrogen bonding interactions, and suggest that Ascaris Hb is uniquely designed for dioxygen capture.  相似文献   

10.
Pathogenic bacteria require iron to replicate inside mammalian hosts. Recent studies indicate that heme acquisition in Gram-positive bacteria is mediated by proteins containing one or more near-iron transporter (NEAT) domains. Bacillus anthracis is a spore-forming, Gram-positive pathogen and the causative agent of anthrax disease. The rapid, extensive, and efficient replication of B. anthracis in host tissues makes this pathogen an excellent model organism for the study of bacterial heme acquisition. B. anthracis secretes two NEAT hemophores, IsdX1 and IsdX2. IsdX1 contains a single NEAT domain, whereas IsdX2 has five, a novel property among hemophores. To understand the functional significance of harboring multiple, non-identical NEAT domains, we purified each individual NEAT domain of IsdX2 as a GST fusion and analyzed the specific function of each domain as it relates to heme acquisition and transport. NEAT domains 1, 3, 4, and 5 all bind heme, with domain 5 having the highest affinity. All NEATs associate with hemoglobin, but only NEAT1 and -5 can extract heme from hemoglobin, seemingly by a specific and active process. NEAT1, -3, and -4 transfer heme to IsdC, a cell wall-anchored anthrax NEAT protein. These results indicate that IsdX2 has all the features required to acquire heme from the host and transport heme to the bacterial cell wall. Additionally, these results suggest that IsdX2 may accelerate iron import rates by acting as a "heme sponge" that enhances B. anthracis replication in iron-starved environments.  相似文献   

11.
The heme-AB binding energies (AB = CO, O2) in a wild-type myoglobin (Mb) and two mutants (H64L, V68N) of Mb have been investigated in detail with both DFT and dispersion-corrected DFT methods, where H64L and V68N represent two different, opposite situations. Several dispersion correction approaches were tested in the calculations. The effects of the local protein environment were accounted for by including the five nearest surrounding residues in the calculated systems. The specific role of histidine-64 in the distal pocket was examined in more detail in this study than in other studies in the literature. Although the present calculated results do not change the previous conclusion that the hydrogen bonding by the distal histidine-64 residue plays a major role in the O2/CO discrimination by Mb, more details about the interaction between the protein environment and the bound ligand have been revealed in this study by comparing the binding energies of AB to a porphyrin and the various myoglobins. The changes in the experimental binding energies from one system to another are well reproduced by the calculations. Without constraints on the residues in geometry optimization, the dispersion correction is necessary, since it improves the calculated structures and energetic results significantly.  相似文献   

12.
We have studied the unusual heme ligand structure of the ferric forms of a recombinant Chlamydomonas chloroplast hemoglobin and its several single-amino acid mutants by EPR, optical absorbance, and resonance Raman spectroscopy. The helical positions of glutamine-84, tyrosine-63, and lysine-87 are suggested to correspond to E7, B10, and E10, respectively, in the distal heme pocket on the basis of amino acid sequence comparison of mammalian globins. The protein undergoes a transition with a pK of 6.3 from a six-coordinate high-spin aquomet form at acidic pH to a six-coordinate low-spin form. The EPR signal of the low-spin form for the wild-type protein is absent for the Tyr63Leu mutant, suggesting that the B10 tyrosine in the wild-type protein ligates to the heme as tyrosinate. For the Tyr63Leu mutant, a new low-spin signal resembling that of alkaline cytochrome c (a His-heme-Lys species) is resolved, suggesting that the E10 lysine now coordinates to the heme. In the wild-type protein, the oxygen of the tyrosine-63 side chain is likely to share a proton with the side chain of lysine-87, suggested by the observation of a H/D sensitive resonance Raman line at 502 cm(-)(1) that is tentatively assigned as a vibrational mode of the Fe-O bond between the iron and the tyrosinate. We propose that the transition from the high-spin to the low-spin form of the protein occurs by deprotonation and ligation to the heme of the B10 tyrosine oxygen, facilitated by strong interaction with the E10 lysine side chain.  相似文献   

13.
Proton-nuclear-magnetic-resonance spectroscopy is a powerful tool for investigating the solution structure of biopolymers provided that a substantial number of proton resonances are assigned in the spectrum. For large proteins the assignments have usually been made by the comparative one-dimensional NMR investigations of the parent and derivative proteins in different physicochemical conditions. In this paper, we show that the more powerful two-dimensional methods could be successfully applide to proteins of the size of human adult hemoglobin (Mr = 64,500). J-Correlated and NOE-correlated spectroscopy, together with topological relationships in the known crystalline structure, enabled us to assign a large number of resonances. The majority of the assigned resonances correspond to the heme substituents and to amino acids in the heme pockets of the two subunits. These results thus provide an extensive set of intrinsic probes for mapping the conformation of the ligand-binding site and its functional changes. Comparison of the observed ring-current shifts of the assigned resonances with those calculated from the known crystallographic coordinates suggests a close similarity between the heme-pocket tertiary conformation in solution and in the crystalline state. A significant difference was noted for Leu141 in beta subunits which, in solution, appears to have stronger contacts with the heme groups than in the crystalline form. The present results also demonstrate that two-dimensional-NMR methods could be successfully applied to the investigation of the structure of large biomolecules in solution (Mr less than or equal to 65,000).  相似文献   

14.
15.
Safo MK  Abraham DJ 《Biochemistry》2005,44(23):8347-8359
The liganded hemoglobin (Hb) high-salt crystallization condition described by Max Perutz has generated three different crystals of human adult carbonmonoxy hemoglobin (COHbA). The first crystal is isomorphous with the "classical" liganded or R Hb structure. The second crystal reveals a new liganded Hb quaternary structure, RR2, that assumes an intermediate conformation between the R form and another liganded Hb quaternary structure, R2, which was discovered more than a decade ago. Like the R2 structure, the diagnostic R state hydrogen bond between beta2His97 and alpha1Thr38 is missing in the RR2 structure. The third crystal adopts a novel liganded Hb conformation, which we have termed R3, and it shows substantial quaternary structural differences from the R, RR2, and R2 structures. The quaternary structure differences between T and R3 are as large as those between T and R2; however, the T --> R3 and T --> R2 transitions are in different directions as defined by rigid-body screw rotation. Moreover, R3 represents an end state. Compared to all known liganded Hb structures, R3 shows remarkably reduced strain at the alpha-heme, reduced steric contact between the beta-heme ligand and the distal residues, smaller alpha- and beta-clefts, and reduced alpha1-alpha2 and beta1-beta2 iron-iron distances. Together, these unique structural features in R3 should make it the most relaxed and/or greatly enhance its affinity for oxygen compared to the other liganded Hbs. The current Hb structure-function relationships that are now based on T --> R, T -->R --> R2, or T --> R2 --> R transitions may have to be reexamined to take into account the RR2 and R3 liganded structures.  相似文献   

16.
Macrophage-generated oxygen- and nitrogen-reactive species control the development of Mycobacterium tuberculosis infection in the host. Mycobacterium tuberculosis 'truncated hemoglobin' N (trHbN) has been related to nitric oxide (NO) detoxification, in response to macrophage nitrosative stress, during the bacterium latent infection stage. The three-dimensional structure of oxygenated trHbN, solved at 1.9 A resolution, displays the two-over-two alpha-helical sandwich fold recently characterized in two homologous truncated hemoglobins, featuring an extra N-terminal alpha-helix and homodimeric assembly. In the absence of a polar distal E7 residue, the O2 heme ligand is stabilized by two hydrogen bonds to TyrB10(33). Strikingly, ligand diffusion to the heme in trHbN may occur via an apolar tunnel/cavity system extending for approximately 28 A through the protein matrix, connecting the heme distal cavity to two distinct protein surface sites. This unique structural feature appears to be conserved in several homologous truncated hemoglobins. It is proposed that in trHbN, heme Fe/O2 stereochemistry and the protein matrix tunnel may promote O2/NO chemistry in vivo, as a M.tuberculosis defense mechanism against macrophage nitrosative stress.  相似文献   

17.
With recently developed spin label techniques for monitoring macromolecular rotational motion, heme-liganded sickle cell hemoglobin in the presence of inositol hexaphosphate is shown to exhibit restricted motional freedom as compared to liganded normal adult human hemoglobin. This motional restriction is dependent on both hemoglobin concentration and temperature.  相似文献   

18.
《Biochemical medicine》1976,15(2):115-118
Data for oxygen equilibrium curves for Hb SS erythrocytes, both before and after separation into fractions of varying density by ultracentrifugation technique, were fitted to Hill plots and the ‘n’ values, which is a measure of the heme heme interaction of the Hb molecule, were analyzed. The heme heme interaction for the bottom fractions, which consist mainly of dense deformed cells with a very high MCHC, was found to be smaller than that for the top (undeformed cells) and middle fractions or unfractioned erythrocytes. This finding indicates that the high concentration of Hb S in the dense deformed cells is associated not only with a reduced affinity for oxygen but also a reduced heme heme interaction.  相似文献   

19.
The reaction of apohemoglobin with carbonmonoxy heme and with carbonmonoxy heme dimethyl ester was investigated in the presence and absence of inositol hexaphosphate. The binding stoichiometry of both heme derivatives to apohemoglobin was not affected by the presence of the polyphosphate, while, in both cases, the overall rate of recombination was substantially decreased. The absence of the negatively charged carboxyl groups in the dimethyl ester derivative of the heme indicated that the effect of inositol hexaphosphate on the reaction of apohemoglobin with heme was not due to electrostatic repulsions and resulted from conformational changes occurring upon the interaction of apohemoglobin with inositol hexaphosphate. Qualitative treatment of the kinetic data suggests that these conformational changes destabilize the intermediates of the reaction by increasing their redissociation into the original components. Also, benzenehexacarboxylate produced conformational changes in apohemoglobin and decreased its rate of reaction with carbonmonoxy heme, proving the aspecificity of the interaction of apohemoglobin with polyanions.  相似文献   

20.
The uptake and utilization of heme as an iron source is a receptor-mediated process in bacterial pathogens and involves a number of proteins required for internalization and degradation of heme. In the following report we provide the first in-depth spectroscopic and functional characterization of a cytoplasmic heme-binding protein PhuS from the opportunistic pathogen Pseudomonas aeruginosa. Spectroscopic characterization of the heme-PhuS complex at neutral pH indicates that the heme is predominantly six-coordinate low spin. However, the resonance Raman spectra and global fit analysis of the UV-visible spectra show that at all pH values between 6 and 10 three distinct species are present to varying degrees. The distribution of the heme across multiple spin states and coordination number highlights the flexibility of the heme environment. We provide further evidence that the cytoplasmic heme-binding proteins, contrary to previous reports, are not heme oxygenases. The degradation of the heme-PhuS complex in the presence of a reducing agent is a result of H2O2 formed by direct reduction of molecular oxygen and does not yield biliverdin. In contrast, the heme-PhuS complex is an intracellular heme trafficking protein that specifically transfers heme to the previously characterized iron-regulated heme oxygenase pa-HO. Surface plasmon resonance experiments confirm that the transfer of heme is driven by a specific protein-protein interaction. This data taken together with the spectroscopic characterization is consistent with a protein that functions to shuttle heme within the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号