首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The type II restriction endonucleases are indispensible tools for molecular biology. Although enzymes recognizing nearly 300 unique sequences are known, the ability to engineer enzymes to recognize any sequence of choice would be valuable. However, previous attempts to engineer new recognition specificity have met limited success. Here we report the rational engineering of multiple new type II specificities. We recently identified a family of MmeI-like type II endonucleases that have highly similar protein sequences but different recognition specificity. We identified the amino-acid positions within these enzymes that determine position specific DNA base recognition at three positions within their recognition sequences through correlations between their aligned amino-acid residues and aligned recognition sequences. We then altered the amino acids at the identified positions to those correlated with recognition of a desired new base to create enzymes that recognize and cut at predictable new DNA sequences. The enzymes so altered have similar levels of endonuclease activity compared to the wild-type enzymes. Using simple and predictable mutagenesis in this family it is now possible to create hundreds of unique new type II restriction endonuclease specificities. The findings suggest a simple mechanism for the evolution of new DNA specificity in Nature.  相似文献   

2.
Restriction endonucleases are deoxyribonucleases which cleave double-stranded DNA into fragments. With only one exception, all restriction endonucleases recognize short, non-methylated DNA sequences. Restriction endonucleases can be divided into two groups based on the position of the cleavage site relative to the recognition sequence. Class I restriction endonucleases cleave double-stranded DNA at positions outside the recognition sequence and generate fragments of random size. The cleavage sites of Class II restriction endonucleases are located, in most cases, within the recognition sequence. Most of the Class II restriction endonucleases recognize 4, 5, or 6 base pair palindromes and generate fragments with either flush ends or staggered ends. DNA fragments with staggered ends contain 3, 4, or 5 nucleotide single-stranded tails called ‘sticky ends’. DNA fragments produced by Class II restriction endonuclease cleavage can be separated on gels according to their molecular weight. The fragments can be isolated from the gel and used for sequence analysis to elucidate genetic information stored in DNA. Further, an isolated fragment can be inserted into a small extrachromosomal DNA, e.g. plasmid, phage or viral DNA, and its replication and expression can be studied in clones of prokaryotic or eukaryotic cells. Restriction endonucleases and cloning technology are powerful modern tools for attacking genetic problems in medicine, agriculture and industrial microbiology.  相似文献   

3.
Genomic DNA size was measured in clinical isolates of Haemophilus influenzae by Pulsed-Field Gel Electrophoresis of DNA restriction fragments. Because of the high (64%) A+T content of H. influenzae DNA, restriction enzymes that recognize sequences with at least four GC base pairs were expected to be rare cutters. Five enzymes that produced fragments greater than 200 kb in size were used to digest intact chromosomes and fragments resolved by TAFE and/or FIGE: ApaI (GGGCCC), EagI (CGGCCG), NotI (GCGGCCGC), RsrI (CGGA/TCCG), and SmaI (CCCGGG). All five had recognition sequences with at least six GC base pairs. The genomic DNA size of H. influenzae serotype b, estimated with ApaI, EagI, NotI, RsrII, and SmaI, is 1,950 kb.  相似文献   

4.
Homing endonucleases are highly specific catalysts of DNA strand breaks that induce the transposition of mobile intervening sequences containing the endonuclease open reading frame. These enzymes recognize long DNA targets while tolerating individual sequence polymorphisms within those sites. Sequences of the homing endonucleases themselves diversify to a great extent after founding intron invasion events, generating highly divergent enzymes that recognize similar target sequences. Here, we visualize the mechanism of flexible DNA recognition and the pattern of structural divergence displayed by two homing endonuclease isoschizomers. We determined structures of I-CreI bound to two DNA target sites that differ at eight of 22 base-pairs, and the structure of an isoschizomer, I-MsoI, bound to a nearly identical DNA target site. This study illustrates several principles governing promiscuous base-pair recognition by DNA-binding proteins, and demonstrates that the isoschizomers display strikingly different protein/DNA contacts. The structures allow us to determine the information content at individual positions in the binding site as a function of the distribution of direct and water-mediated contacts to nucleotide bases, and provide an evolutionary snapshot of endonucleases at an early stage of divergence in their target specificity.  相似文献   

5.
Type II restriction endonuclease Mva1269I recognizes an asymmetric DNA sequence 5'-GAATGCN / -3'/5'-NG / CATTC-3' and cuts top and bottom DNA strands at positions, indicated by the "/" symbol. Most restriction endonucleases require dimerization to cleave both strands of DNA. We found that Mva1269I is a monomer both in solution and upon binding of cognate DNA. Protein fold-recognition analysis revealed that Mva1269I comprises two "PD-(D/E)XK" domains. The N-terminal domain is related to the 5'-GAATTC-3'-specific restriction endonuclease EcoRI, whereas the C-terminal one resembles the nonspecific nuclease domain of restriction endonuclease FokI. Inactivation of the C-terminal catalytic site transformed Mva1269I into a very active bottom strand-nicking enzyme, whereas mutants in the N-terminal domain nicked the top strand, but only at elevated enzyme concentrations. We found that the cleavage of the bottom strand is a prerequisite for the cleavage of the top strand. We suggest that Mva1269I evolved the ability to recognize and to cleave its asymmetrical target by a fusion of an EcoRI-like domain, which incises the bottom strand within the target, and a FokI-like domain that completes the cleavage within the nonspecific region outside the target sequence. Our results have implications for the molecular evolution of restriction endonucleases, as well as for perspectives of engineering new restriction and nicking enzymes with asymmetric target sites.  相似文献   

6.
Type II restriction enzymes generally recognize continuous sequences of 4-8 consecutive base pairs on DNA, but some recognize discontinuous sites where the specified sequence is interrupted by a defined length of nonspecific DNA. To date, a mechanism has been established for only one type II endonuclease with a discontinuous site, SfiI at GGCCNNNNNGGCC (where N is any base). In contrast to orthodox enzymes such as EcoRV, dimeric proteins that act at a single site, SfiI is a tetramer that interacts with two sites before cleaving DNA. BglI has a similar recognition sequence (GCCNNNNNGGC) to SfiI but a crystal structure like EcoRV. BglI and several other endonucleases with discontinuous sites were examined to see if they need two sites for their DNA cleavage reactions. The enzymes included some with sites containing lengthy segments of nonspecific DNA, such as XcmI (CCANNNNNNNNNTGG). In all cases, they acted at individual sites. Elongated recognition sites do not necessitate unusual reaction mechanisms. Other experiments on BglI showed that it bound to and cleaved DNA in the same manner as EcoRV, thus further delineating a distinct group of restriction enzymes with similar structures and a common reaction mechanism.  相似文献   

7.
PsiI, a novel restriction endonuclease produced by the bacterial strain Pseudomonas sp. SE-G49, has been isolated and characterized. The enzyme cleaves DNA in the middle of its palindromic recognition sequence 5'-TTA downward arrow TAA-3'. Thus, PsiI belongs to a rare group of type II restriction endonucleases whose recognition sites consist of AT base pairs only.  相似文献   

8.
We report the properties of the new BseMII restriction and modification enzymes from Bacillus stearothermophilus Isl 15-111, which recognize the 5'-CTCAG sequence, and the nucleotide sequence of the genes encoding them. The restriction endonuclease R.BseMII makes a staggered cut at the tenth base pair downstream of the recognition sequence on the upper strand, producing a two base 3'-protruding end. Magnesium ions and S:-adenosyl-L-methionine (AdoMet) are required for cleavage. S:-adenosylhomocysteine and sinefungin can replace AdoMet in the cleavage reaction. The BseMII methyltransferase modifies unique adenine residues in both strands of the target sequence 5'-CTCAG-3'/5'-CTGAG-3'. Monomeric R.BseMII in addition to endonucleolytic activity also possesses methyltransferase activity that modifies the A base only within the 5'-CTCAG strand of the target duplex. The deduced amino acid sequence of the restriction endonuclease contains conserved motifs of DNA N6-adenine methylases involved in S-adenosyl-L-methionine binding and catalysis. According to its structure and enzymatic properties, R.BseMII may be regarded as a representative of the type IV restriction endonucleases.  相似文献   

9.
Restriction endonucleases are remarkably resilient to alterations in their DNA binding specificity. To understand the basis of this immutability, we have determined the crystal structure of endonuclease BglII bound to its recognition sequence (AGATCT), at 1. 5 A resolution. We compare the structure of BglII to endonuclease BamHI, which recognizes a closely related DNA site (GGATCC). We show that both enzymes share a similar alpha/beta core, but in BglII, the core is augmented by a beta-sandwich domain that encircles the DNA to provide extra specificity. Remarkably, the DNA is contorted differently in the two structures, leading to different protein-DNA contacts for even the common base pairs. Furthermore, the BglII active site contains a glutamine in place of the glutamate at the general base position in BamHI, and only a single metal is found coordinated to the putative nucleophilic water and the phosphate oxygens. This surprising diversity in structures shows that different strategies can be successful in achieving site-specific recognition and catalysis in restriction endonucleases.  相似文献   

10.
Type IIS restriction endonucleases cleave DNA outside their recognition sequences, and are therefore particularly useful in the assembly of DNA from smaller fragments. A limitation of type IIS restriction endonucleases in assembly of long DNA sequences is the relative abundance of their target sites. To facilitate ligation-based assembly of extremely long pieces of DNA, we have engineered a new type IIS restriction endonuclease that combines the specificity of the homing endonuclease I-SceI with the type IIS cleavage pattern of FokI. We linked a non-cleaving mutant of I-SceI, which conveys to the chimeric enzyme its specificity for an 18-bp DNA sequence, to the catalytic domain of FokI, which cuts DNA at a defined site outside the target site. Whereas previously described chimeric endonucleases do not produce type IIS-like precise DNA overhangs suitable for ligation, our chimeric endonuclease cleaves double-stranded DNA exactly 2 and 6nt from the target site to generate homogeneous, 5′, four-base overhangs, which can be ligated with 90% fidelity. We anticipate that these enzymes will be particularly useful in manipulation of DNA fragments larger than a thousand bases, which are very likely to contain target sites for all natural type IIS restriction endonucleases.  相似文献   

11.
MOTIVATION: Restriction endonucleases (REases) and homing endonucleases (HEases) are biotechnologically important enzymes. Nearly all structurally characterized REases belong to the PD-(D/E)XK superfamily of nucleases, while most HEases belong to an unrelated LAGLIDADG superfamily. These two protein folds are typically associated with very different modes of protein-DNA recognition, consistent with the different mechanisms of action required to achieve high specificity. REases recognize short DNA sequences using multiple contacts per base pair, while HEases recognize very long sites using a few contacts per base pair, thereby allowing for partial degeneracy of the target sequence. Thus far, neither REases with the LAGLIDADG fold, nor HEases with the PD-(D/E)XK fold, have been found. RESULTS: Using protein fold recognition, we have identified the first member of the PD-(D/E)XK superfamily among homing endonucleases, a cyanobacterial enzyme I-Ssp6803I. We present a model of the I-Ssp6803I-DNA complex based on the structure of Type II restriction endonuclease R.BglI and predict the active site and residues involved in specific DNA sequence recognition by I-Ssp6803I. Our finding reveals a new unexpected evolutionary link between HEases and REases and suggests how PD-(D/E)XK nucleases may develop a 'HEase-like' way of interacting with the extended DNA sequence. This in turn may be exploited to study the evolution of DNA sequence specificity and to engineer nucleases with new substrate specificities.  相似文献   

12.
Numerous antitumor and carcinogenic compounds and free radicals are able to modify DNA by forming covalent bonds, mainly with nucleophilic centers in nucleobases. Such a binding is usually of utmost importance for the biological outcome. The level of DNA adducts formed by a given agent is in most cases extremely low; hence their detection is very difficult. Here we propose a simple approach, exploiting techniques widely used in genetic engineering, to demonstrate and characterize the covalent modification of a DNA fragment by any low-molecular-weight compound of interest in a cell-free system. The specifically designed, several-hundred-base-pairs-long double-stranded deoxyoligonucleotide (PCR amplified)--subject to modification--includes two restriction sites: one containing only GC base pairs recognized by restriction endonuclease MspI and the other including only AT base pairs recognized by restriction endonuclease Tru1I. The covalent modification of the restriction sites abolishes their recognition and thus cleavage by the endonucleases applied. The formation of DNA adducts is induced by incubating the oligonucleotide with increasing concentrations of a studied compound, in the appropriate activating system if required. Then, the modified oligonucleotide is submitted to digestion by the above-mentioned restriction endonucleases and the DNA fragments are separated by polyacrylamide gel electrophoresis. The inhibition of cleavage indicates the occurrence of covalent modification of the restriction site(s) while simultaneously pointing at the kind of base pairs involved in DNA adduct formation. The validation of the method was performed for two DNA binding antitumor compounds, cisplatin and CC-1065, which form adducts preferentially with guanine and adenine, respectively.  相似文献   

13.
Type IIS restriction endonucleases recognize asymmetric DNA sequences and cleave both DNA strands at fixed positions downstream of the recognition site. The restriction endonuclease BpuJI recognizes the asymmetric sequence 5′-CCCGT; however, it cuts at multiple sites in the vicinity of the target sequence. BpuJI consists of two physically separate domains, with catalytic and dimerization functions in the C-terminal domain and DNA recognition functions in the N-terminal domain. Here we report the crystal structure of the BpuJI recognition domain bound to cognate DNA at 1.3-Å resolution. This region folds into two winged-helix subdomains, D1 and D2, interspaced by the DL subdomain. The D1 and D2 subdomains of BpuJI share structural similarity with the similar subdomains of the FokI DNA-binding domain; however, their orientations in protein-DNA complexes are different. Recognition of the 5′-CCCGT target sequence is achieved by BpuJI through the major groove contacts of amino acid residues located on both the helix-turn-helix motifs and the N-terminal arm. The role of these interactions in DNA recognition is also corroborated by mutational analysis.  相似文献   

14.
Endonucleases in DNA repair must be able to recognize damaged DNA as well as cleave the phosphodiester backbone. These functional prerequisites are manifested in very short patch repair (Vsr) endonuclease through a common endonuclease topology that has been tailored for recognition of TG mismatches. Structural and biochemical comparison with type II restriction enzymes illustrates how Vsr resembles these endonucleases in overall topology but also how Vsr diverges in terms of the detailed catalytic mechanism. A histidine and two metal–water clusters catalyze the phosphodiester cleavage. The mode of DNA damage recognition is also unique to Vsr. All other structurally characterized DNA damage-binding enzymes employ a nucleotide flipping mechanism for substrate recognition and for catalysis. Vsr, on the other hand, recognizes the TG mismatch as a wobble base pair and penetrates the DNA with three aromatic residues on one side of the mismatch. Thus, Vsr endonuclease provides important counterpoints in our understanding of endonucleolytic mechanisms and of damaged DNA recognition.  相似文献   

15.
The recognition sequence and cleavage positions of a new restriction endonuclease BTR:I isolated from Bacillus stearothermophilus SE-U62 have been determined. BTR:I belongs to a rare type IIQ of restriction endonucleases, which recognise non-palindromic nucleotide sequences and cleave DNA symmetrically within them.  相似文献   

16.
Type IIs restriction endonucleases recognize asymmetric DNA sequences and cleave both DNA strands at fixed positions, typically several base pairs away from the recognition site. These enzymes are generally monomers that transiently associate to form dimers to cleave both strands. Their reactions could involve bridging interactions between two copies of their recognition sequence. To examine this possibility, several type IIs enzymes were tested against substrates with either one or two target sites. Some of the enzymes cleaved the DNA with two target sites at the same rate as that with one site, but most cut their two-site substrate more rapidly than the one-site DNA. In some cases, the two sites were cut sequentially, at rates that were equal to each other but that exceeded the rate on the one-site DNA. In another case, the DNA with two sites was cleaved rapidly at one site, but the residual site was cleaved at a much slower rate. In a further example, the two sites were cleaved concertedly to give directly the final products cut at both sites. Many type IIs enzymes thus interact with two copies of their recognition sequence before cleaving DNA, although via several different mechanisms.  相似文献   

17.
The sitespecific restriction endonucleases were found in four strains among the twelve strains of anaerobic bacteria of generum Bifidobacterium. Two of the restriction endonucleases studied, BadI from B. adolescentis LVA1 and BbfI from B. bifidum LVA3, are isoshizomers of XhoI and recognize the nucleotide sequence CTCGAG. The restriction endonucleases Bbf7411I from B. bifidum 7411 and Bla7920I from B. lactentis 7920 recognize and hydrolize the nucleotide sequence TCCGGA having the specifity analogous to the one of restriction endonuclease CauB3I. Like CauB3I, these restriction endonucleases are unable to hydrolyize DNA if the adenine residues in the recognition site are methylated.  相似文献   

18.
Competitive reactions, using defined ratios of DNA restriction methyltransferase to endonuclease, are shown to result in reliable partial restriction digests of DNA. This method is suitable over a wide range of DNA concentrations and works on DNA in liquid or embedded in agarose. Simultaneous methylase/endonuclease reactions using endonucleases that cleave human DNA very infrequently, such as ClaI or NotI, should generate very large discrete partial DNA fragments suitable for physical mapping in the million base-pair range. Another possible application of methylase/endonuclease competitive reactions is the production of defined partial digests for making cosmid, lambda, or other genomic libraries.  相似文献   

19.
The rates of cleavage of DNAs containing substituents at position 5 of thymine or cytosine have been measured for a variety of sequence-specific endonucleases, so as to determine which features in the DNA sequence are being probed. Phage phi e DNA fully substituted with 5-hydroxymethyluracil is cleaved more slowly by enzymes whose recognition sequences contain A-T base pairs than are DNAs containing thymine, but both types of DNA are cleaved at similar rates by enzymes recognizing sequences composed only of G-C base pairs. Phage PBS2 DNA with uracil completely substituted for thymine is cleaved slowly by several enzymes which recognize sequences containing A-T base pairs (endonucleases Hpa I, HindII, and HindIII), while the rates of cleavage by other enzymes (endonucleases EcoRI and BamHI) are not affected. Phage lambda- and P22 DNAs containing 5-bromouracil are cleaved more slowly by several enzymes (endonucleases HindIII, Hpa I, BamHI) than are thymine-containing DNAs. Enzymes that recognize sequence isomers with the composition G:C:2A:2T (endonucleases EcoRI, Hpa I, HindIII) are not equally affected by substitution at position 5 of thymine, suggesting that they differ in their contacts with A-T base pairs. DNA containing glucosylated 5-hydroxymethylcytosine in place of cytosine is resistant to cleavage by all the endonucleases examined.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号