首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The segregation pattern and chromosomal location of a slender glume mutation, induced by gamma-ray irradiation, was investigated. The mutation is genetically unstable: in the selfed progenies of slender glumed plants, not only plants with normal glumes but also plants that are chimeric for glume shape almost always appear at low frequency. The results showed that the mutation is controlled by a single recessive, mutable mutant gene slg. The frequency of reversion of slg to its wild-type state was little affected by crossing, backcrossing, genetic background or cytoplasmic factors. Conventional trisomic and linkage analyses revealed that the slg locus was located close to the rfs (rolled fine stripe leaf) locus on chromosome 7. In a subsequent RFLP analysis, slg was found to be located between the two RFLP loci XNpb20 and XNpb33, with recombination values of 3.0 and 3.2%, respectively. Southern analysis indicated that the mutability of slg is caused by none of the known transposable elements in rice. From these results, we infer that slg has a novel transposable DNA insert in its vicinity, which was possibly activated by gamma-ray irradiation.  相似文献   

2.
A mutable slender glume gene slg, which often reverts to the wild-type state, was induced by gamma-ray irradiation of seeds of the japonica rice cultivar 'Gimbozu'. The final goal was to understand whether the slender glume mutation was associated with the insertion of a transposable element, utilizing map-based cloning techniques. The RFLP (restriction fragment length polymorphism) analysis revealed that the slg locus was located between two RFLP loci, XNpb33 and R1440, on chromosome 7 with recombination values of 3.1% and 1.0%, respectively. Using these two RFLP loci as probes, five YAC (yeast artificial chromosome) clones containing either of these two loci were selected from a YAC library. Subsequently, both end fragments of these YAC clones, amplified by the inverse PCR (IPCR) method, were used to select new YAC clones more closely located to the slg locus. After repeating such a procedure, we successfully constructed a 6-cM YAC contig, and identified four overlapping YAC clones, Y1774, Y3356, Y5124, and Y5762, covering the slg locus. The chromosomal location of the slg was narrowed down to the region with a physical distance of less than 280 kb between the right-end fragments of Y1774 and Y3356.  相似文献   

3.
 We used graphical genotyping and linkage analyses with molecular markers to determine the chromosomal location of the rice stripe disease resistance gene, Stv-b i . The stripe resistance gene from the indica rice (Oryza sativa) cv ‘Modan’ was introgressed into several Japanese rice varieties. We found 4 RFLP markers in ‘Modan’, five susceptible parental rice varieties (‘Norin No. 8’, ‘Sachihikari’, ‘Kanto No. 98’, ‘Hokuriku No.103’ and ‘Koganebare’) and four resistant progeny varieties (‘St. No. 1’, ‘Aichi No. 6’, ‘Aoisora’ and ‘Asanohikari’). Graphical genotyping of the resistant progeny revealed a chromosomal segment ascribable to ‘Modan’ and associated with stripe resistance. The chromosomal segment from ‘Modan’ was located at 35.85 cM on chromosome 11. Linkage analysis using 120 F2 individuals from a cross between ‘Koshihikari’ (susceptible) and ‘Asanohikari’ (resistant) revealed another 8 RFLP markers in the same chromosome. We performed a bioassay for rice stripe resistance in F3 lines of the F2 individuals using infective small brown planthoppers and identified an 1.8-cM segment harboring the rice stripe disease resistance gene, Stv-b i , between XNpb220 and XNpb257/ XNpb254. Furthermore, Stv-b i was linked by 0.0 cM to a RFLP marker, ST10, which was developed on the basis of the results of RAPD analysis. These DNA markers near the Stv-b i locus may be useful in marker-assisted selection and map-based cloning of the Stv-b i gene. Received: 26 September 1997 / Accepted: 4 November 1997  相似文献   

4.
Construction of a BAC contig containing the xa5 locus in rice   总被引:9,自引:0,他引:9  
 The recessive gene xa5 confers resistance to bacterial blight in rice. To generate a physical map of the xa5 locus, three RFLP markers RG556, RG207 and RZ390, closely linked to xa5, were used to screen a rice bacterial artificial chromosome (BAC) library. The identified overlapping BAC clones formed two small contigs which were extended to both sides by chromosome walking. The final physical map consisted of 14 BAC clones and covered 550 kb. Genetic analysis with an F2 population showed that two RFLP markers 28N22R and 40F20R, derived from the BAC clones in the contig, flanked the xa5 locus. To further delimit the location of the xa5 locus, RFLP markers RG556 and RG207 were converted to sequence tagged sites and used to perform genetic analysis. The results indicated that the xa5 locus was most likely located between RG207 and RG556. Among the BAC clones in the contig, one clone, 44B4, hybridized to both RG207 and RG556. This suggests that BAC clone 44B4 carried the xa5 locus. Received: 12 January 1998 / Accepted: 27 May 1998  相似文献   

5.
 A genetic map of the long arm of chromosome 6R of rye was constructed using eight homoeologous group-6 RFLP clones and five PCR markers derived from the rye-specific dispersed repetitive DNA family, R173. The map was developed using a novel test-cross F1 (TC-F1) population segregating for resistance to the cereal cyst nematode. Comparisons were made between the map generated with other rye and wheat group-6 chromosome maps by the inclusion of RFLP clones previously mapped in those species. Co-linearity was observed for common loci. This comparison confirmed a dramatic reduction in recombination for chromosome 6R in the TC-F1 population. The CreR locus was included in the linkage map via progeny testing of informative TC-F1 individuals. CreR mapped 3.7 cM distal from the RFLP locus, XksuF37. Comparative mapping should allow the identification of additional RFLP markers more closely linked to the CreR locus. Received: 14 April 1998 / Accepted: 29 April 1998  相似文献   

6.
Map-based cloning methods have been applied for isolation of Xa-1, one of the bacterial blight resistance genes in rice.Xa-1 was previously mapped on chromosome 4 using molecular markers. For positional cloning of Xa-1, a high-resolution genetic map was made for theXa-1 region using an F2 population of 402 plants and additional molecular markers. Three restriction fragment length polymorphism (RFLP) markers, XNpb235, XNpb264 and C600 were found to be linked tightly to Xa-1, with no recombinants, and U08 750 was mapped 1.5 cM from Xa-1. The screening of a yeast artificial chromosome (YAC) library using theseXa-1-linked RFLP markers resulted in the identification of ten contiguous YAC clones. Among these, one YAC clone, designated Y5212, with an insert of 340 kb, hybridized with all three tightly linked markers. This YAC was confirmed to possess the Xa-1 allele by mapping the Xa-1 gene between both end clones of this YAC (Y5212R and Y5212L).  相似文献   

7.
The rice disease resistance gene Xa21, which encodes a receptor-like kinase, is a member of a multigene family. Based on comparisons of genomic␣sequences of seven family members, seventeen transposon-like elements were identified in the 5′ and 3′ flanking regions and introns of these genes. Sequence characterization revealed that these elements are diverse, showing similarity to maize Ds, CACTA and miniature inverted repeat-like elements, as well as novel elements. Only two elements were located in presumed coding regions, indicating that integration of transposable elements at the Xa21 disease resistance locus occurred preferentially in noncoding regions. Received: 17 October 1997 / Accepted: 3 February 1998  相似文献   

8.
PvuII restriction fragment length polymorphism (RFLP) was found at the growth hormone locus in sheep carrying the GH2 allele where the gene is duplicated. By restriction analysis and using the polymerase chain reactibn we demonstrated that this RFLP is due to a mutation at the Pvu II site located in the second intron of the 3′ copy of the GH2 allele.  相似文献   

9.
 Chromosome counts and RFLP markers mapped to Arabidopsis thaliana were used to determine the proportion of eliminated chromosomes and retained A. thaliana DNA in the back-crossed (BC) progeny derived from symmetric and asymmetric somatic hybrids between Brassica napus and A. thaliana. All plants were analysed for the presence of two RFLP markers per chromosome, preferably with one located on each chromosome arm. A reduction in both A. thaliana RFLP markers and chromosome numbers was found in the BC1 and BC2 generations of the symmetric hybrids as well as in the BC1 generation of the asymmetric hybrids. In the symmetric hybrids, two back-crosses to B. napus were required to reduce the frequency of retained A. thaliana loci to 42.4% and mean chromosome number to 39.4. In comparison, the BC1 progeny of the asymmetric hybrids had 16% of the analysed A. thaliana loci present and an average of 38.4 chromosomes maintained. When the frequency of A. thaliana chromosomes with both analysed loci maintained was compared with the frequency of chromosomes with one locus lost and one kept, a reduction in the number of complete chromosomes between BC1 and BC2 derived from the symmetric hybrids was observed. Among the BC1 plants in the asymmetric group the situation was different, with higher amounts of incomplete donor chromosomes compared to whole chromosomes. The results indicate that A. thaliana chromosome fragments are more often found in the progeny of irradiated hybrids, while back-crossed symmetric hybrids have more complete chromosomes. Received: 2 April 1998 / Accepted: 14 July 1998  相似文献   

10.
Seven pairs of oat near-isogenic lines (NILs) (Kibite in Crop Sci 41:277–278, 2001) contrasting for the Dw6 dwarfing gene were used to test for correlation between tall/dwarf phenotype and polymorphic genotype using restriction fragment length polymorphism (RFLP) and other molecular markers selected from the Kanota × Ogle (K×O) (Wight et al. in Genome 46:28–47, 2003) and Terra × Marion (De Koeyer et al. in Theor Appl Genet 108:1285–1298, 2004) recombination maps. This strategy located the Dw6/dw6 locus to a small chromosomal region on K×O linkage group (LG) KO33, near or at a putative RFLP locus aco245z. Aco245z and other tightly linked flanking markers have potential for use in marker-assisted selection (MAS), and PCR-based markers were developed from several of these. RFLP genotyping of the Dw6 NILs indicated that 13 of the 14 individual lines were homogeneously maternal or paternal for a large genomic region near Dw6/dw6, an unexpected result for NILs. The cDNA clone aco245 codes for a vacuolar proton ATPase subunit H, a potential candidate gene for Dw6. Vacuolar proton ATPase enzymes have a central role in plant growth and development and a mutation in subunit C is responsible for the det3 dwarfing mutation in Arabidopsis thaliana (Schumacher et al. in Genes Dev 13:3259–3270, 1999). Aco245 affords the potential of designing highly precise diagnostic markers for MAS for Dw6. The Dw6 NILs have potential utility to investigate the role of vacuolar proton ATPases in growth and development in plants.  相似文献   

11.
 The present study shows that the recently described mitochondrial H haplotype is associated with cytoplasmic male-sterility (CMS). This new source of CMS appears to be different from the mitotype E-associated CMS most frequently found in natural populations. A mitotype H progeny with a sexual phenotype segregation was used to identify a gene restoring male fertility (R1H ). Using bulk segregant analysis (BSA), nine RAPD markers linked to this restorer locus were detected and mapped. The comparison with other Beta genetic maps shows that the closest RAPD marker, distant from R1H by 5.2 cM, belongs to the same linkage group as the monogermy locus. In order to determine the position of R1H more precisely, four RFLP loci within this linkage group were mapped in the segregating progeny. It thus became possible to construct a linkage map of the region containing the RFLP, RAPD and R1H loci. The closest RFLP marker was located 1.7 cM away from R1H. However, a nuclear gene restoring the ‘Owen’ CMS which is currently used in sugar beet breeding is reportedly linked to the monogermy locus, raising the question of a possible identity between the new CMS system and the ‘Owen’ CMS. Received: 15 September 1997 / Accepted: 1 December 1997  相似文献   

12.
 The Arabidopsis tornado1 (trn1) mutation causes severe dwarfism combined with twisted growth of all organs. We present a chromosome landing strategy, using amplified restriction fragment length polymorphism (AFLP) marker technology, for the isolation of the TRN1 gene. The recessive trn1 mutation was identified in a C24 transgenic line and is located 5 cM from a T-DNA insertion. We mapped the TRN1 locus to the bottom half of chromosome 5 relative to visible and restriction fragment length polymorphism (RFLP) markers. Recombinant classes within a 3-cM region around TRN1 were used to build a high-resolution map in this region, using the AFLP technique. Approximately 300 primer combinations have been used to test about 26 000 fragments for polymorphisms. Seventeen of these AFLP markers were identified in the 3-cM region around TRN1. These markers were mapped within this region using individual recombinants. Four of these AFLP markers co-segregate with TRN1 whereas one maps at one recombinant below TRN1. We isolated and cloned three of these AFLP markers. These markers identified two yeast artificial chromosome (YAC) clones, containing the RFLP marker above and the AFLP marker below TRN1, demonstrating that these YACs span the TRN1 locus and that chromosome landing has been achieved, using an AFLP-based strategy. Received: 25 April 1996 / Accepted: 26 June 1996  相似文献   

13.
The Pl1 locus in sunflower, Helianthus annuus L., conferring resistance to downy mildew, Plasmopara halstedii, race 1 has been located in linkage group 1 of the consensus RFLP map of the cultivated sunflower. Bulked segregant analyses were used on 135 plants of an F2 progeny from a cross between a downy mildew susceptible line, GH, and RHA266, a line carrying Pl1. Two RFLP markers and one RAPD marker linked to the Pl1 locus have been identified. The RFLP markers are located at 5.6 cM and 7.1 cM on either side of Pl1. The RAPD marker is situated at 43.7 cM from Pl1. The significance and applications of these markers in sunflower breeding are discussed.  相似文献   

14.
 Complementary recessive genes hwd1 and hwd2 controlling hybrid breakdown (weakness of F2 and later generations) were mapped in rice using RFLP markers. These genes produce a plant that is shorter and has fewer tillers than normal plants when the two loci have only one or no dominant allele at both loci. A cultivar with two dominant alleles at the hwd1 locus and a cultivar with two dominant alleles at the hwd2 locus were crossed with a double recessive tester line. Linkage analysis was carried out for each gene independently in two F2 populations derived from these crosses. hwd1 was mapped on the distal region of rice genetic linkage map for chromosome 10, flanked by RFLP markers C701 and R2309 at a distance of 0.9 centiMorgans (cM) and 0.6 cM, respectively. hwd2 was mapped in the central region of rice genetic linkage map for chromosome 7, tightly linked with 4 RFLP markers without detectable recombination. The usefulness of RFLP mapping and map information for the genes controlling reproductive barriers are discussed in the context of breeding using diverse rice germplasm, especially gene introduction by marker-aided selection.  相似文献   

15.
 The restriction fragment length polymorphism (RFLP) clone pBLT65 is a 450-nt soybean cDNA encoding a portion of the bifunctional enzyme aspartokinase-homoserine dehydrogenase (AK-HSDH). pBLT65 maps within 3.5 cM of the i locus, conferring a pigmented seed coat, on linkage group A; hence, it is closely linked to the Rhg 4 locus conferring resistance to race 3 of the soybean cyst nematode. From this useful RFLP we developed a PCR reaction yielding polymorphic bands for use in marker-assisted breeding programs to select progeny containing the Rhg 4 allele. The polymorphic bands were sequenced to determine the cause of the polymorphisms. Using primers 548 and 563, PCR amplification of DNA from the soybean cultivar Peking (Rhg 4 ) yielded three DNA fragments, 1a (1160 bp), 1b (1146 bp) and 3 (996 bp). Amplification of DNA from the cultivar Kent (rhg 4) yielded DNA fragments 2 (1020 bp), 3 (996 bp) and 4 (960 bp). Fragments 1a, 1b, 2 and 4 were also polymorphic between the soybean lines PI 290136 and BARC-2(Rj 4 ). A segregating population of 80 F2 and F3 plants derived from the cross PI 290136×BARC-2 (Rj 4 ) was used to confirm the map position of the PCR polymorphisms near the i locus, and hence the Rhg 4 locus on linkage group A. The nucleotide sequences of fragments 1b, 3 and 4 were determined. Large and small deletions in the intronic region were responsible for the size differences of the different fragments, whereas the exon was well conserved. Received: 8 January 1998 / Accepted: 15 July 1998  相似文献   

16.
 Ten yeast artificial chromosomes (YACs) spanning the Gm2 locus have been isolated by screening high-density filters containing a total of approximately 7000 YAC (representing six genome equivalents) clones derived from a japonica rice, Nipponbare. The screening was done with five RFLP markers flanking a gall midge resistance gene, Gm2, which was previously mapped onto chromosome 4 of rice. This gene confers resistance to biotype 1 and 2 of gall midge (Orseolia oryzae), a major insect pest of rice in South and Southeast Asia. The RFLP markers RG214, RG329 and F8 hybridized with YAC Y2165. Two overlapping YAC clones (Y5212 and Y2165) were identified by Southern hybridization, with Gm2-flanking RFLP markers, and their inserts isolated. The purified YACs and RFLP markers flanking Gm2 were labeled and physically mapped by the fluorescence in situ hybridization (FISH) technique. All of them mapped to the long arm of chromosome 4 of the resistant variety of rice, ‘Phalguna’, confirming the previous RFLP mapping data. Received: 15 December 1997 / Accepted: 5 March 1998  相似文献   

17.
A tomato (Lycopersicon esculentum Mill.) monogenic semidominant mutation, stamenless (sl), which results in homeotic conversions in two adjacent floral whorls, was studied. When grown at standard temperature, flowers of sl/sl plants showed sepaloid petals in the second whorl and strong transformation of stamens to carpels in whorl three. These transformed carpels were fused with each other and with the genuine carpels in the fourth whorl to form a unique gynoecium. The mutation is semidominant since heterozygous plants showed a phenotype intermediate between that of the wild type (WT) and that of homozygous mutant plants, with nearly WT petals but with feminized stamens bearing naked ovules on the base of their adaxial face. The initiation and position of organ primordia in sl/sl flowers were not altered when compared with WT primordia although development of organ primordia in the second and third whorls deviated from WT at an early stage as observed by scanning electron microscopy. The mutant phenotype is temperature sensitive and when sl/sl plants were cultured at low temperature, the morphology of some flowers resembled that of the WT. This reversion of the mutant phenotype is also induced by treatment of young sl/sl plants with gibberellic acid, providing evidence that gibberellin synthesis or sensitivity could mediate the effect of low temperature on the mutant phenotype. Southern blot analyses using a Deficiens-homologous gene from Solanum tuberosum as a probe showed a restriction-fragment-length polymorphism (RFLP) linked to the sl mutation. This result indicates that the mutation affects a Deficiens-like gene that controls the identity of petals and stamens. Received: 10 December 1998 / Accepted: 29 March 1999  相似文献   

18.
The influence of pollen irradiation on the production of in vitro haploid plants from in situ induced haploid embryos was investigated in winter squash (Cucurbita maxima Duchesne ex Lam.). Pollen were irradiated at different gamma-ray doses (50, 100, 200 and 300 Gray) and durations (9, 11, 15, 21, and 28 July). Production of in vitro haploid plantlets was influenced by irradiation dose, irradiation duration, genotype, and embryo type and embryo stage. Embryos were only obtained from lower irradiation doses (50 Gray and 100 Gray) and earlier irradiation durations (9, 11, and 15 July). The greatest embryo number per fruit was procured from “G14” and “55SI06” genotypes at 50 Gray gamma-ray dose. Necrotic embryos were higher than normal embryos at delayed harvest times (5 and 6 weeks after the pollination). The convenient harvest time for embryo rescue was observed about 4 weeks (between 25 and 30 days) after pollination. All cotyledon and amorphous embryos had only diploid plants while late-torpedo, arrow-tip, and pro-cotyledon embryos produced 33.3, 50.0, and 66.7% haploid plant. The frequency of haploid plantlets was 0.11, 1.17, 10.96 and 0.28 per 100 seeds, 100 embryos, 100 plantlets and a fruit at 50 Gray gamma-ray dose, respectively.  相似文献   

19.
Sd 1 is a dominant gene for resistance to biotypes 1 and 2 of the rosy leaf curling aphid, Dysaphis devecta Wlk., which can cause economic damage to apple trees. This report describes the identification of three RFLP and four RAPD markers linked to Sd 1 in a cross between the D. devecta susceptible variety ‘Prima’ (sd 1 sd 1) and the resistant variety ‘Fiesta’ (Sd 1 sd 1). Potted trees were artificially infested in the glasshouse, and the ratio of resistant:susceptible plants supported the hypothesis that the resistance was under the control of a single dominant gene. The position of the gene was mapped to a single locus on a ‘Fiesta’ chromosome, within 2 cM of three tightly linked RFLP markers (MC064a, 2B12a and MC029b); the four RAPD markers were located further away (between 13 and 46 cM). This is the first report of molecular markers for an aphid resistance gene in tree fruit crops. The potential application of these markers in a marker-assisted resistance breeding programme is discussed. Received: 1 July 1996/Accepted: 23 August 1996  相似文献   

20.
 The complex Mla locus of barley determines resistance to the powdery mildew pathogen Erysiphe graminis f. sp. hordei. With a view towards gene isolation, a population consisting of 950 F2 individuals derived from a cross between the near-isogenic lines ‘P01’ (Mla1) and ‘P10’ (Mla12) was used to construct a high-resolution map of the Mla region. A fluorescence-based AFLP technique and bulked segregant analysis were applied to screen for polymorphic, tightly linked AFLP markers. Three AFLP markers were selected as suitable for a chromosome-landing strategy. One of these AFLP markers and a closely linked RFLP marker were converted into sequence-specific PCR markers. PCR-based screening of approximately 70 000 yeast artificial chromosome (YAC) clones revealed three identical YACs harbouring the Mla locus. Terminal insert sequences were obtained using inverse PCR. The derived STS marker from the right YAC end-clone was mapped distal to the Mla locus. Received: 17 July 1998 / Accepted: 9 August 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号