首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In clinical trials, the comparison of two different populations is a common problem. Nonlinear (parametric) regression models are commonly used to describe the relationship between covariates, such as concentration or dose, and a response variable in the two groups. In some situations, it is reasonable to assume some model parameters to be the same, for instance, the placebo effect or the maximum treatment effect. In this paper, we develop a (parametric) bootstrap test to establish the similarity of two regression curves sharing some common parameters. We show by theoretical arguments and by means of a simulation study that the new test controls its significance level and achieves a reasonable power. Moreover, it is demonstrated that under the assumption of common parameters, a considerably more powerful test can be constructed compared with the test that does not use this assumption. Finally, we illustrate the potential applications of the new methodology by a clinical trial example.  相似文献   

2.
BackgroundIntravoxel incoherent motion (IVIM) plays an important role in predicting treatment responses in patient with nasopharyngeal carcinoma (NPC). The goal of this study was to develop and validate a radiomics nomogram based on IVIM parametric maps and clinical data for the prediction of treatment responses in NPC patients.MethodsEighty patients with biopsy-proven NPC were enrolled in this study. Sixty-two patients had complete responses and 18 patients had incomplete responses to treatment. Each patient received a multiple b-value diffusion-weighted imaging (DWI) examination before treatment. Radiomics features were extracted from IVIM parametric maps derived from DWI image. Feature selection was performed by the least absolute shrinkage and selection operator method. Radiomics signature was generated by support vector machine based on the selected features. Receiver operating characteristic (ROC) curves and area under the ROC curve (AUC) values were used to evaluate the diagnostic performance of radiomics signature. A radiomics nomogram was established by integrating the radiomics signature and clinical data.ResultsThe radiomics signature showed good prognostic performance to predict treatment response in both training (AUC = 0.906, P<0.001) and testing (AUC = 0.850, P<0.001) cohorts. The radiomic nomogram established by integrating the radiomic signature with clinical data significantly outperformed clinical data alone (C-index, 0.929 vs 0.724; P<0.0001).ConclusionsThe IVIM-based radiomics nomogram provided high prognostic ability to treatment responses in patients with NPC. The IVIM-based radiomics signature has the potential to be a new biomarker in prediction of the treatment responses and may affect treatment strategies in patients with NPC.  相似文献   

3.
A stepped-wedge cluster randomized trial (CRT) is a unidirectional crossover study in which timings of treatment initiation for clusters are randomized. Because the timing of treatment initiation is different for each cluster, an emerging question is whether the treatment effect depends on the exposure time, namely, the time duration since the initiation of treatment. Existing approaches for assessing exposure-time treatment effect heterogeneity either assume a parametric functional form of exposure time or model the exposure time as a categorical variable, in which case the number of parameters increases with the number of exposure-time periods, leading to a potential loss in efficiency. In this article, we propose a new model formulation for assessing treatment effect heterogeneity over exposure time. Rather than a categorical term for each level of exposure time, the proposed model includes a random effect to represent varying treatment effects by exposure time. This allows for pooling information across exposure-time periods and may result in more precise average and exposure-time-specific treatment effect estimates. In addition, we develop an accompanying permutation test for the variance component of the heterogeneous treatment effect parameters. We conduct simulation studies to compare the proposed model and permutation test to alternative methods to elucidate their finite-sample operating characteristics, and to generate practical guidance on model choices for assessing exposure-time treatment effect heterogeneity in stepped-wedge CRTs.  相似文献   

4.
Treatment selection markers are generally sought for when the benefit of an innovative treatment in comparison with a reference treatment is considered, and this benefit is suspected to vary according to the characteristics of the patients. Classically, such quantitative markers are detected through testing a marker-by-treatment interaction in a parametric regression model. Most alternative methods rely on modeling the risk of event occurrence in each treatment arm or the benefit of the innovative treatment over the marker values, but with assumptions that may be difficult to verify. Herein, a simple non-parametric approach is proposed to detect and assess the general capacity of a quantitative marker for treatment selection when no overall difference in efficacy could be demonstrated between two treatments in a clinical trial. This graphical method relies on the area between treatment-arm-specific receiver operating characteristic curves (ABC), which reflects the treatment selection capacity of the marker. A simulation study assessed the inference properties of the ABC estimator and compared them with other parametric and non-parametric indicators. The simulations showed that the estimate of the ABC had low bias, power comparable to parametric indicators, and that its confidence interval had a good coverage probability (better than the other non-parametric indicator in some cases). Thus, the ABC is a good alternative to parametric indicators. The ABC method was applied to data of the PETACC-8 trial that investigated FOLFOX4 versus FOLFOX4 + cetuximab in stage III colon adenocarcinoma. It enabled the detection of a treatment selection marker: the DDR2 gene.  相似文献   

5.
Performing causal inference in observational studies requires we assume confounding variables are correctly adjusted for. In settings with few discrete-valued confounders, standard models can be employed. However, as the number of confounders increases these models become less feasible as there are fewer observations available for each unique combination of confounding variables. In this paper, we propose a new model for estimating treatment effects in observational studies that incorporates both parametric and nonparametric outcome models. By conceptually splitting the data, we can combine these models while maintaining a conjugate framework, allowing us to avoid the use of Markov chain Monte Carlo (MCMC) methods. Approximations using the central limit theorem and random sampling allow our method to be scaled to high-dimensional confounders. Through simulation studies we show our method can be competitive with benchmark models while maintaining efficient computation, and illustrate the method on a large epidemiological health survey.  相似文献   

6.
Studies of evolutionary correlations commonly use phylogenetic regression (i.e., independent contrasts and phylogenetic generalized least squares) to assess trait covariation in a phylogenetic context. However, while this approach is appropriate for evaluating trends in one or a few traits, it is incapable of assessing patterns in highly multivariate data, as the large number of variables relative to sample size prohibits parametric test statistics from being computed. This poses serious limitations for comparative biologists, who must either simplify how they quantify phenotypic traits, or alter the biological hypotheses they wish to examine. In this article, I propose a new statistical procedure for performing ANOVA and regression models in a phylogenetic context that can accommodate high‐dimensional datasets. The approach is derived from the statistical equivalency between parametric methods using covariance matrices and methods based on distance matrices. Using simulations under Brownian motion, I show that the method displays appropriate Type I error rates and statistical power, whereas standard parametric procedures have decreasing power as data dimensionality increases. As such, the new procedure provides a useful means of assessing trait covariation across a set of taxa related by a phylogeny, enabling macroevolutionary biologists to test hypotheses of adaptation, and phenotypic change in high‐dimensional datasets.  相似文献   

7.
Several investigators have recently constructed survival curves adjusted for imbalances in prognostic factors by a method which we call direct adjustment. We present methods for calculating variances of these direct adjusted survival curves and their differences. Estimates of the adjusted curves, their variances, and the variances of their differences are compared for non-parametric (Kaplan-Meier), semi-parametric (Cox) and parametric (Weibull) models applied to censored exponential data. Semi-parametric proportional hazards models were nearly fully efficient for estimating differences in adjusted curves, but parametric estimates of individual adjusted curves may be substantially more precise. Standardized differences between direct adjusted survival curves may be used to test the null hypothesis of no treatment effect. This procedure may prove especially useful when the proportional hazards assumption is questionable.  相似文献   

8.
秩和检验法在动物生态学研究中的应用   总被引:1,自引:0,他引:1  
秩和检验法是非参数统计法中的一种重要方法,是对成组数据t—检验的一个补充。在动物生态学领域的实验设计以及数据统计分析中有一定的实用价值,本文简要介绍这一方法的使用。  相似文献   

9.
León LF  Tsai CL 《Biometrics》2004,60(1):75-84
We propose a new type of residual and an easily computed functional form test for the Cox proportional hazards model. The proposed test is a modification of the omnibus test for testing the overall fit of a parametric regression model, developed by Stute, González Manteiga, and Presedo Quindimil (1998, Journal of the American Statistical Association93, 141-149), and is based on what we call censoring consistent residuals. In addition, we develop residual plots that can be used to identify the correct functional forms of covariates. We compare our test with the functional form test of Lin, Wei, and Ying (1993, Biometrika80, 557-572) in a simulation study. The practical application of the proposed residuals and functional form test is illustrated using both a simulated data set and a real data set.  相似文献   

10.
Wang L  Zhou XH 《Biometrics》2007,63(4):1218-1225
Heteroscedastic data arise in many applications. In heteroscedastic regression analysis, the variance is often modeled as a parametric function of the covariates or the regression mean. We propose a kernel-smoothing type nonparametric test for checking the adequacy of a given parametric variance structure. The test does not need to specify a parametric distribution for the random errors. It is shown that the test statistic has an asymptotical normal distribution under the null hypothesis and is powerful against a large class of alternatives. We suggest a simple bootstrap algorithm to approximate the distribution of the test statistic in finite sample size. Numerical simulations demonstrate the satisfactory performance of the proposed test. We also illustrate the application by the analysis of a radioimmunoassay data set.  相似文献   

11.
Song X  Pepe MS 《Biometrics》2004,60(4):874-883
Selecting the best treatment for a patient's disease may be facilitated by evaluating clinical characteristics or biomarker measurements at diagnosis. We consider how to evaluate the potential impact of such measurements on treatment selection algorithms. For example, magnetic resonance neurographic imaging is potentially useful for deciding whether a patient should be treated surgically for Carpal Tunnel Syndrome or should receive less-invasive conservative therapy. We propose a graphical display, the selection impact (SI) curve that shows the population response rate as a function of treatment selection criteria based on the marker. The curve can be useful for choosing a treatment policy that incorporates information on the patient's marker value exceeding a threshold. The SI curve can be estimated using data from a comparative randomized trial conducted in the population as long as treatment assignment in the trial is independent of the predictive marker. Estimating the SI curve is therefore part of a post hoc analysis to determine whether the marker identifies patients that are more likely to benefit from one treatment over another. Nonparametric and parametric estimates of the SI curve are proposed in this article. Asymptotic distribution theory is used to evaluate the relative efficiencies of the estimators. Simulation studies show that inference is straightforward with realistic sample sizes. We illustrate the SI curve and statistical inference for it with data motivated by an ongoing trial of surgery versus conservative therapy for Carpal Tunnel Syndrome.  相似文献   

12.
Testing for differentially expressed genes with microarray data   总被引:1,自引:1,他引:0       下载免费PDF全文
This paper compares the type I error and power of the one- and two-sample t-tests, and the one- and two-sample permutation tests for detecting differences in gene expression between two microarray samples with replicates using Monte Carlo simulations. When data are generated from a normal distribution, type I errors and powers of the one-sample parametric t-test and one-sample permutation test are very close, as are the two-sample t-test and two-sample permutation test, provided that the number of replicates is adequate. When data are generated from a t-distribution, the permutation tests outperform the corresponding parametric tests if the number of replicates is at least five. For data from a two-color dye swap experiment, the one-sample test appears to perform better than the two-sample test since expression measurements for control and treatment samples from the same spot are correlated. For data from independent samples, such as the one-channel array or two-channel array experiment using reference design, the two-sample t-tests appear more powerful than the one-sample t-tests.  相似文献   

13.
For nonnormal data we suggest a test of location based on a broader family of distributions than normality. Such a test will in a sense fall between the standard parametric and non parametric tests. We see that the Wald tests based on this family of distributions have some advantages over the score tests and that they perform well in comparison to standard parametric and nonparametric tests in a variety of situations. We also consider when and how to apply such tests in practice.  相似文献   

14.
The objective of this study was to develop methods to estimate the optimal threshold of a longitudinal biomarker and its credible interval when the diagnostic test is based on a criterion that reflects a dynamic progression of that biomarker. Two methods are proposed: one parametric and one non‐parametric. In both the cases, the Bayesian inference was used to derive the posterior distribution of the optimal threshold from which an estimate and a credible interval could be obtained. A numerical study shows that the bias of the parametric method is low and the coverage probability of the credible interval close to the nominal value, with a small coverage asymmetry in some cases. This is also true for the non‐parametric method in case of large sample sizes. Both the methods were applied to estimate the optimal prostate‐specific antigen nadir value to diagnose prostate cancer recurrence after a high‐intensity focused ultrasound treatment. The parametric method can also be applied to non‐longitudinal biomarkers.  相似文献   

15.
Two related procedures for estimating the parameters of steady-state evoked potentials (SSEPs) are introduced. The first procedure involves an initial stage of digital bandpass filtering followed by a Discrete Fourier Transform analysis. In the second method, a high resolution method based on parametric modelling is applied to the filtered data. The digital pre-filter consists of a non-phase shifting Chebychev bandpass filter. The parametric modelling method considers the evoked-response-plus-noise distribution to consist of a set of exponentially damped sinusoids. The frequency, amplitude, phase and damping factors of these components are estimated by calculating the mean of the forward and backward prediction filters and linear regression.We compared the signal-to-noise ratio (SNR) of the new procedures to the conventional Discrete Fourier Transform method for Monte Carlo simulations utilizing known sinusoids buried in white noise, known sinusoids buried in human EEG noise and for a sample of visual evoked potential data. Both of the new methods produce substantially more accurate and less variable estimates of test sinusoid amplitude. For VEP recording, the EEG background noise level is reduced by 5–6 dB over that obtained with the DFT. The new methods also provide approximately 5 dB better SNR than the DFT for detection of sinusoids based on the Rayleigh statistic. The parametric modelling approach is particularly suited for the analysis of very short data records including cycle-by-cycle analysis of the SSEP.  相似文献   

16.
Wei G  Schaubel DE 《Biometrics》2008,64(3):724-732
Summary .   Often in medical studies of time to an event, the treatment effect is not constant over time. In the context of Cox regression modeling, the most frequent solution is to apply a model that assumes the treatment effect is either piecewise constant or varies smoothly over time, i.e., the Cox nonproportional hazards model. This approach has at least two major limitations. First, it is generally difficult to assess whether the parametric form chosen for the treatment effect is correct. Second, in the presence of nonproportional hazards, investigators are usually more interested in the cumulative than the instantaneous treatment effect (e.g., determining if and when the survival functions cross). Therefore, we propose an estimator for the aggregate treatment effect in the presence of nonproportional hazards. Our estimator is based on the treatment-specific baseline cumulative hazards estimated under a stratified Cox model. No functional form for the nonproportionality need be assumed. Asymptotic properties of the proposed estimators are derived, and the finite-sample properties are assessed in simulation studies. Pointwise and simultaneous confidence bands of the estimator can be computed. The proposed method is applied to data from a national organ failure registry.  相似文献   

17.
Li R  Nie L 《Biometrics》2008,64(3):904-911
Summary .   Motivated by an analysis of a real data set in ecology, we consider a class of partially nonlinear models where both a nonparametric component and a parametric component are present. We develop two new estimation procedures to estimate the parameters in the parametric component. Consistency and asymptotic normality of the resulting estimators are established. We further propose an estimation procedure and a generalized F -test procedure for the nonparametric component in the partially nonlinear models. Asymptotic properties of the newly proposed estimation procedure and the test statistic are derived. Finite sample performance of the proposed inference procedures are assessed by Monte Carlo simulation studies. An application in ecology is used to illustrate the proposed methods.  相似文献   

18.
Nonadherence to assigned treatment is common in randomized controlled trials (RCTs). Recently, there has been increased interest in estimating causal effects of treatment received, for example, the so‐called local average treatment effect (LATE). Instrumental variables (IV) methods can be used for identification, with estimation proceeding either via fully parametric mixture models or two‐stage least squares (TSLS). TSLS is popular but can be problematic for binary outcomes where the estimand of interest is a causal odds ratio. Mixture models are rarely used in practice, perhaps because of their perceived complexity and need for specialist software. Here, we propose using multiple imputation (MI) to impute the latent compliance class appearing in the mixture models. Since such models include an interaction term between the latent compliance class and randomized treatment, we use “substantive model compatible” MI (SMC MIC), which can additionally handle missing data in outcomes and other variables in the model, before fitting the mixture models via maximum likelihood to the MI data sets and combining results via Rubin's rules. We use simulations to compare the performance of SMC MIC to existing approaches and also illustrate the methods by reanalyzing an RCT in UK primary health. We show that SMC MIC can be more efficient than full Bayesian estimation when auxiliary variables are incorporated, and is superior to two‐stage methods, especially for binary outcomes.  相似文献   

19.
20.
MOTIVATION: In analyses of microarray data with a design of different biological conditions, ranking genes by their differential 'importance' is often desired so that biologists can focus research on a small subset of genes that are most likely related to the experiment conditions. Permutation methods are often recommended and used, in place of their parametric counterparts, due to the small sample sizes of microarray experiments and possible non-normality of the data. The recommendations, however, are based on classical knowledge in the hypothesis test setting. RESULTS: We explore the relationship between hypothesis testing and gene ranking. We indicate that the permutation method does not provide a metric for the distance between two underlying distributions. In our simulation studies permutation methods tend to be equally or less accurate than parametric methods in ranking genes. This is partially due to the discreteness of the permutation distributions, as well as the non-metric property. In data analysis the variability in ranking genes can be assessed by bootstrap. It turns out that the variability is much lower for permutation than parametric methods, which agrees with the known robustness of permutation methods to individual outliers in the data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号