首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nitric oxide (NO) and reactive oxygen species (ROS) play important roles in blood pressure regulation via the modulation of the autonomic nervous system, particularly in the central nervous system (CNS). In general, accumulating evidence suggests that NO inhibits, but ROS activates, the sympathetic nervous system. NO and ROS, however, interact with each other. Our consecutive studies and those of others strongly indicate that an imbalance between NO bioavailability and ROS generation in the CNS, including the brain stem, activates the sympathetic nervous system, and this mechanism is involved in the pathogenesis of neurogenic aspects of hypertension. In this review, we focus on the role of NO and ROS in the regulation of the sympathetic nervous system within the brain stem and subsequent cardiovascular control. Multiple mechanisms are proposed, including modulation of neurotransmitter release, inhibition of receptors, and alterations of intracellular signaling pathways. Together, the evidence indicates that an imbalance of NO and ROS in the CNS plays a pivotal role in the pathogenesis of hypertension.  相似文献   

2.
In hyperbaric oxygen (HBO(2)) at or above 3 atmospheres absolute (ATA), autonomic pathways link central nervous system (CNS) oxygen toxicity to pulmonary damage, possibly through a paradoxical and poorly characterized relationship between central nitric oxide production and sympathetic outflow. To investigate this possibility, we assessed sympathetic discharges, catecholamine release, cardiopulmonary hemodynamics, and lung damage in rats exposed to oxygen at 5 or 6 ATA. Before HBO(2) exposure, either a selective inhibitor of neuronal nitric oxide synthase (NOS) or a nonselective NOS inhibitor was injected directly into the cerebral ventricles to minimize effects on the lung, heart, and peripheral circulation. Experiments were performed on both anesthetized and conscious rats to differentiate responses to HBO(2) from the effects of anesthesia. EEG spikes, markers of CNS toxicity in anesthetized animals, were approximately four times as likely to develop in control rats than in animals with central NOS inhibition. In inhibitor-treated animals, autonomic discharges, cardiovascular pressures, catecholamine release, and cerebral blood flow all remained below baseline throughout exposure to HBO(2). In control animals, however, initial declines in these parameters were followed by significant increases above their baselines. In awake animals, central NOS inhibition significantly decreased the incidence of clonic-tonic convulsions or delayed their onset, compared with controls. The novel findings of this study are that NO produced by nNOS in the periventricular regions of the brain plays a critical role in the events leading to both CNS toxicity in HBO(2) and to the associated sympathetic hyperactivation involved in pulmonary injury.  相似文献   

3.
The paraventricular nucleus (PVN) of the hypothalamus is known to be an important site of integration in the central nervous system for sympathetic outflow. ANG II and nitric oxide (NO) play an important role in regulation of sympathetic nerve activity. The purpose of the present study was to examine how the interaction between NO and ANG II within the PVN affects sympathetic outflow in rats. Renal sympathetic nerve discharge (RSND), arterial blood pressure (AP), and heart rate (HR) were measured in response to administration of ANG II and N(G)-monomethyl-l-arginine (L-NMMA) into the PVN. Microinjection of ANG II (0.05, 0.5, and 1.0 nmol) into the PVN increased RSND, AP, and HR in a dose-dependent manner, resulting in increases of 53 +/- 9%, 19 +/- 3 mmHg, and 32 +/- 12 beats/min from baseline, respectively, at the highest dose. These responses were significantly enhanced by prior microinjection of L-NMMA and were blocked by losartan, an ANG II type 1 receptor antagonist. Similarly, administration of antisense to neuronal NO synthase within the PVN also potentiated the ANG II responses. Conversely, overexpression of neuronal NOS within the PVN with adenoviral gene transfer significantly attenuated ANG II responses. Push-pull administration of ANG II (1 nmol) into the PVN induced an increase in NO release. Our data indicate that ANG II type 1 receptors within the PVN mediate an excitatory effect on RSND, AP, and HR. NO in the PVN, which can be induced by ANG II stimulation, in turn inhibits the ANG II-mediated increase in sympathetic nerve activity. This negative-feedback mechanism within the PVN may play an important role in maintaining the overall balance and tone of sympathetic outflow.  相似文献   

4.
Hill C  Dunbar JC 《Peptides》2002,23(9):1625-1630
Alpha melanocyte stimulating hormone (alphaMSH) has been demonstrated to have regulatory functions in the periphery and central nervous system (CNS). alphaMSH plays a central role in the regulation of metabolic balance such as decreasing food intake, increasing sympathetic outflow and hypothalamic/pituitary function. Our laboratory has investigated the actions of alphaMSH on sympathetic and cardiovascular dynamics using anesthetized animals. In this study we determined both the acute and chronic effects of alphaMSH on cardiovascular and metabolic dynamics in conscious unrestrained rats. Animals were each implanted with a radio-telemetry transmitter for recording of cardiovascular parameters and subsequently instrumented with intracerebroventricular (ICV) cannulas. The acute ICV administration of alphaMSH significantly increased the mean arterial pressure (MAP) and heart rate (HR) when compared to artificial cerebrospinal fluid (ACSF) controls. On the other hand chronic alphaMSH infusion resulted in an initial increase in MAP and HR lasting for 2 days followed by a decrease in MAP. Chronic alphaMSH administration decreased physical activity and food intake but not weight gain. We conclude that in the conscious unrestrained animal the acute administration of alphaMSH increased MAP and HR, however, chronic infusion is associated with decreased MAP, physical activity and food intake.  相似文献   

5.
Arginine vasopressin (AVP) containing neurones and pathways have been localized in various cardiovascular control centers of the central nervous system in rats. AVP influences cardiovascular regulation when injected into various areas of the central nervous system. The blood pressure increases in response to central AVP injections were shown to be initiated by stimulation of central V1-AVP receptors and mediated by stimulation of sympathetic outflow to the periphery. On the other hand, AVP has also been shown to attenuate the pressor responses to electrical stimulation of the mesencephalic reticular formation when injected into the brain ventricular system. In addition, AVP can participate in cardiovascular regulation by modulating baroreceptor reflex sensitivity. We have shown that in rats peripheral (hormonal) AVP can sensitize the heart rate component of the baroreceptor reflex by acting on V2-AVP receptors accessible from the blood, while at the same time central (neuronal) AVP can attenuate the baroreceptor reflex through brain V1-AVP receptors that cannot be reached from the blood. Binding and functional studies favour the existence of V1-AVP receptors in the central nervous system, whereas evidence for central V2-AVP receptors is still scarce. The role of AVP in hypertension remains controversial, but recent evidence suggests that a discordance between the various central and peripheral cardiovascular actions of AVP, rather than its hormonal vasopressor effects, may contribute to the pathogenesis of hypertension.  相似文献   

6.
Psychological distress can trigger acute coronary syndromes and sudden cardiac death in vulnerable patients. The primary pathophysiological mechanism that plays a role in stress-induced cardiac events involves the autonomic nervous system, particularly disproportional sympathetic activation and parasympathetic withdrawal. This article describes the relation between psychological distress and autonomic nervous system function, with a focus on subsequent adverse cardiovascular outcomes. The role of the central nervous system in these associations is addressed, and a systematic review is presented of studies examining the association between stress-induced central nervous system responses measured by neuroimaging techniques and autonomic nervous system activation. Results of the systematic review indicate that the primary brain areas involved in the autonomic component of the brain-heart association are the insula, medial prefrontal cortex, and cerebellum (based on 121 participants across three studies that fitted the inclusion criteria). Other areas involved in stress-induced autonomic modulation are the (anterior) cingulate cortex, parietal cortex, somatomotor cortex/precentral gyrus, and temporal cortex. The interaction between central and autonomic nervous system responses may have implications for further investigations of the brain-heart associations and mechanisms by which acute and chronic psychological distress increase the risk of myocardial infarction, cardiac arrhythmias, and sudden cardiac death.  相似文献   

7.
Like virtually all other physiological control systems, the sympathetic nervous system controlling cardiovascular function is characterized by the presence of rhythmic activity. These include slow rhythms with frequencies at or below that of the respiration and rapid rhythms with frequencies at or above that of the heart beat. The rapid rhythms are the subject of this review. The specific questions entertained are as follows: (1) Are the rapid cardiac-related and 10-Hz rhythms inherent to central sympathetic networks, or are they imposed on sympathetic nerve discharge (SND) by extrinsic periodic inputs? (2) Does basal SND arise from an anatomically circumscribed "vasomotor center" composed of pacemaker neurons in the rostral ventrolateral medulla or from an anatomically distributed network oscillator composed of different types of brainstem neurons, none of which necessarily have intrinsic pacemaker properties? (3) Are the rapid rhythms generated by single circuits or by systems of coupled oscillators, each with a separate target? (4) Are the rapid rhythms in SND simply by-products of the sympathetic generating mechanisms, or do they subserve selective and special functions, such as the formulation of differential patterns of spinal sympathetic outflow that support particular behaviors? The controversial aspects of these issues and the state-of-the-art analytical methods used to study them are stressed in this review.  相似文献   

8.
心血管变异性的中枢调节数学模型   总被引:3,自引:0,他引:3  
通过建立心血管变异性的数学模型,讨论心血管中枢对心血管调节的作用,血液血动力学公式、心交感和心迷走对心率的控制,压力感受器反射以及心血管中枢的活动性构成闭环的拍-拍心血管变异性数学模型。获得如下结果;模型仿真了,1)心血管变异性的三个主要的频率成分;2)传出神经活动也具有与心血管变异性相同的频谱特性;3)压力反射的S形曲线及其受心血管中枢的影响;4)心血管变异的昼夜节律现象。本模型成功地仿真了心血管变异性的主要特征,尤其提示了心血管中枢的活动对心血管变异性和压力反射敏感性有极大的影响。  相似文献   

9.
Bacillus anthracis infection is a pathophysiological condition that is complicated by progressive decreases in mean arterial pressure (MAP). Lethal toxin (LeTx) is central to the pathogenesis of B. anthracis infection, and the sympathetic nervous system plays a critical role in physiological regulation of acute stressors. However, the effect of LeTx on sympathetic nerve discharge (SND), a critical link between central sympathetic neural circuits and MAP regulation, remains unknown. We determined visceral (renal, splenic, and adrenal) SND responses to continuous infusion of LeTx [lethal factor (100 μg/kg) + protective antigen (200 μg/kg) infused at 0.5 ml/h for ≤6 h] and vehicle (infused at 0.5 ml/h) in anesthetized, baroreceptor-intact and baroreceptor (sinoaortic)-denervated (SAD) Sprague-Dawley rats. LeTx infusions produced an initial state of cardiovascular and sympathetic nervous system activation in intact and SAD rats. Subsequent to peak LeTx-induced increases in arterial blood pressure, intact rats demonstrated a marked hypotension that was accompanied by significant reductions in SND (renal and splenic) and heart rate (HR) from peak levels. After peak LeTx-induced pressor and sympathoexcitatory responses in SAD rats, MAP, SND (renal, splenic, and adrenal), and HR were progressively and significantly reduced, supporting the hypothesis that LeTx alters the central regulation of sympathetic nerve outflow. These findings demonstrate that the regulation of visceral SND is altered in a complex manner during continuous anthrax LeTx infusions and suggest that sympathetic nervous system dysregulation may contribute to the marked hypotension accompanying B. anthracis infection.  相似文献   

10.
The central nervous system plays an important role in the regulation of blood pressure via the sympathetic nervous system. Abnormal regulation of the sympathetic nerve activity is involved in the pathophysiology of hypertension. In particular, the brain stem, including the nucleus tractus solitarii (NTS) and the rostral ventrolateral medulla (RVLM), is a key site that controls and maintains blood pressure via the sympathetic nervous system. Nitric oxide (NO) is a unique molecule that influences sympathetic nerve activity. Rho-kinase is a downstream effector of the small GTPase, Rho, and is implicated in various cellular functions. We developed a technique to transfer adenovirus vectors encoding endothelial nitric oxide synthase and dominant-negative Rho-kinase into the NTS or the RVLM of rats in vivo. We applied this technique to hypertensive rats to explore the physiological significance of NO and Rho-kinase.  相似文献   

11.
Angiotensin (ANG)-converting enzyme (ACE)2 in brain regions such as the paraventricular nucleus (PVN) controlling cardiovascular function may be involved in the regulation of sympathetic outflow in chronic heart failure (CHF). The purpose of this study was to determine if ACE2 plays a role in the central regulation of sympathetic outflow by regulating neuronal nitric oxide (NO) synthase (nNOS) in the PVN. We investigated ACE2 and nNOS expression within the PVN of rats with CHF. We then determined the effects of ACE2 gene transfer in the PVN on the contribution of NO-mediated sympathoinhibition in rats with CHF. The results showed that there were decreased expressions for ACE2, the ANG-(1-7) receptor, and nNOS within the PVN of rats with CHF. After the application of adenovirus vectors encoding ACE2 (AdACE2) into the PVN, the increased expression of ACE2 in the PVN was confirmed by Western blot analysis. AdACE2 transfection significantly increased nNOS protein levels (change of 50 ± 5%) in the PVN of CHF rats. In anesthetized rats, AdACE2 treatment attenuated the responses of renal sympathetic nerve activity (RSNA), mean arterial pressure, and heart rate to the NOS inhibitor N-monomethyl-L-arginine in rats with CHF (RSNA: 28 ± 3% vs. 16 ± 3%, P < 0.05) compared with CHF + AdEGFP group. Furthermore, neuronal NG-108 cells incubated with increasing doses of AdACE2 showed a dose-dependent increase in nNOS protein expression (60% at the highest dose). Taken together, our data highlight the importance of increased expression and subsequent interaction of ACE2 and nNOS within the PVN, leading to a reduction in sympathetic outflow in the CHF condition.  相似文献   

12.
心力衰竭状态下的动脉压力感受器反射   总被引:3,自引:0,他引:3  
Wang W  Zhu GQ  Gao L  Tan W  Qian ZM 《生理学报》2004,56(3):269-281
心力衰竭是以心脏泵血功能降低(心输出量减少)为始动因素的临床综合征。心输出量降低首先引起动脉压力感受性反射失负荷,进而通过迷走-交感机制加快心率;同时,支配血管床的交感传出活动增强,进而增加总外周阻力。本文主要论述在心力衰竭状态下压力感受性反射在循环功能异常调控中的作用机制。本综述及我们近年的研究表明:(1)在心力衰竭状态下压力感受性反射功能明显减弱;(2)中枢血管紧张素Ⅱ和活性氧在压力感受性反射功能失调中发挥关键作用;(3)心交感传入刺激和化学感受性反射能抑制压力感受性反射;(4)适当的运动可以部分纠正异常的心血管反射活动。  相似文献   

13.
Typical characteristics of chronic congestive heart failure (HF) are increased sympathetic drive, altered autonomic reflexes, and altered body fluid regulation. These abnormalities lead to an increased risk of mortality, particularly in the late stage of chronic HF. Recent evidence suggests that central nervous system (CNS) mechanisms may be important in these abnormalities during HF. Exercise training (ExT) has emerged as a nonpharmacological therapeutic strategy substitute with significant benefit to patients with HF. Regular ExT improves functional capacity as well as quality of life and perhaps prognosis in chronic HF patients. The mechanism(s) by which ExT improves the clinical status of HF patients is not fully known. Recent studies have provided convincing evidence that ExT significantly alleviates the increased sympathetic drive, altered autonomic reflexes, and altered body fluid regulation in HF. This review describes and highlights the studies that examine various central pathways involved in autonomic outflow that are altered in HF and are improved following ExT. The increased sympathoexcitation is due to an imbalance between inhibitory and excitatory mechanisms within specific areas in the CNS such as the paraventricular nucleus (PVN) of the hypothalamus. Studies summarized here have revealed that ExT improves the altered inhibitory pathway utilizing nitric oxide and GABA mechanisms within the PVN in HF. ExT alleviates elevated sympathetic outflow in HF through normalization of excitatory glutamatergic and angiotensinergic mechanisms within the PVN. ExT also improves volume reflex function and thus fluid balance in HF. Preliminary observations also suggest that ExT induces structural neuroplasticity in the brain of rats with HF. We conclude that improvement of the enhanced CNS-mediated increase in sympathetic outflow, specifically to the kidneys related to fluid balance, contributes to the beneficial effects of ExT in HF.  相似文献   

14.
Extensive studies in the adult have demonstrated that the sympathetic nervous system plays a central role in cardiovascular control. The maturation of the sympathetic nervous system before birth is poorly understood. In the present study, we directly recorded renal sympathetic nerve activity (renal SNA) in five preterm fetal sheep (99 +/- 1 days gestation; term is 147 days). Recordings were performed in utero using a telemetry-based technique to alleviate movement artifact without anesthesia or paralysis. The preterm fetuses exhibited a coordinated discharge pattern in renal SNA, indicating many individual neurons active at approximately the same time. This is consistent with that observed previously in adult animals, although the frequency of the bursts was relatively low (0.5 +/- 0.1 Hz). The discharges in renal SNA were entrained to the cardiac cycle (average delay between diastolic pressure and maximum renal SNA 319 +/- 1 ms). The entrainment of the sympathetic discharges to the cardiac cycle indicates phasic baroreceptor input and that the underlying circuits controlling SNA within the central nervous system are active in premature fetuses.  相似文献   

15.
Brain iNOS: current understanding and clinical implications.   总被引:5,自引:0,他引:5  
Nitric oxide (NO) is a unique informational substance first identified as the endothelium-derived relaxing factor. It is generated by NO synthases and plays a prominent role in controlling a variety of organ functions in the cardiovascular, immune, reproductive and nervous systems. Inducible nitric oxide synthase (iNOS) is not normally present in the brain in youth but it can be detected in the brain after inflammatory, infectious or ischemic damage, as well as in the normal, aging brain. Brain iNOS seems to contribute to the pathophysiology of many diseases that involve the central nervous system, but the role of iNOS appears to go beyond tissue damage. Brain iNOS might be required for adequate repair following injury or damage. The effects of brain iNOS on the balance between damage and repair make this enzyme a promising therapeutic target in human disease.  相似文献   

16.
The efferent mechanisms by which central administration of corticotropin-releasing factor (CRF) elevates mean arterial pressure and heart rate were assessed in unanesthetized, unrestrained rats. CRF increased blood pressure and heart rate by stimulating noradrenergic sympathetic nervous outflow. CRF-induced cardiovascular changes were not dependent on anterior pituitary hormone release, adrenomedullary epinephrine secretion, the renin-angiotensin system or circulating vasopressin.  相似文献   

17.
Investigations have demonstrated that the pressor effects of low-dose intravertebral angiotensin II (Ang II) in the dog are mediated by the area postrema (AP). Chronic ablation of the AP has been shown to produce both mild hypotension and blunting of the pressor effects of peripherally administered Ang II, which suggests a tonic influence by this structure on the regulation of blood pressure. These findings motivated a correlated series of neurophysiological and anatomical studies to characterize further the AP pressor pathway. The pressor response to electrical stimulation of the AP was shown to be mediated by increased central sympathetic outflow, as shown previously for the response to intravertebral Ang II, and unopposed by the central nervous system baroreflex pathways. Neuroanatomical investigations demonstrated a three-layer structure in the dog's AP, with efferent projections into the medial nucleus tractus solitarii bilaterally. These studies have provided new evidence about the functional and structural mechanisms by which the AP participates in cardiovascular regulation.  相似文献   

18.
The present review analyzes the role nitric oxide (NO) plays in the homeostasis of the cardiovascular system. By regulating vascular smooth muscle cell and myocyte contractility, myocardial oxygen consumption and renal tubular transport, this simple molecule plays a central role in the control of vascular tone, cardiac contractility and short and long term regulation of arterial pressure. Fifteen years ago, all we knew about NO is that it had very similar properties as those of endothelium-derived relaxing factor and that its action was probably mediated by cGMP. An enormous amount of knowledge has since been amassed on the biochemical pathways that NO follows from the moment it is synthesized from L-arginine until the physiological or pathological actions take place in the effector cells. This review intends to organize this knowledge in a fashion that is easy to understand. We will dissect the NO pathway in different steps, focusing on the physiological and pathophysiological actions of the isoenzymes which synthesize NO, the molecules involved in this synthesis such as caveolins, protein kinases and cofactors, the situations in which endogenous inhibitors of NO synthase are formed from L-arginine instead of NO, the way in which NO exerts its physiological actions through cGMP-dependent protein kinases and finally, the pathological routes NO may follow when the oxidative status of the cell is high.  相似文献   

19.
Nitric oxide (NO) is involved in cardiovascular regulation and sympathetic nerve activity of the central nervous system (CNS). The nucleus tractus solitarius (NTS) is important to cardiovascular regulation. However, the physiological role of NO in cardiovascular regulation effecting through the NTS remains unclear. The purpose of this study is to investigate the effect of NO measured by in vivo voltammetry on the cardiovascular responses in NTS induced by N-methyl-D-aspartate (NMDA) in anesthetized cats. Extracellular NO concentration was monitored through a Nafion- and porphyrin-coated carbon fiber electrode, which has previously been demonstrated sensitive and selective to NO responses. Microinjection of NMDA into NTS elicited a dose-dependent decrease in cardiovascular responses associated with NO release. Following the dose-response curve, a dose of 3 nmol of NMDA was selected. Microinjection of NMDA into NTS produced depressor responses and NO release. These responses in NTS to NMDA were attenuated by pretreatment with a competitive antagonist, 2-amino-5-phosphonopentanoat (AP-5, 1 nmol), and methylene blue (MB, 1 nmol), an inhibitor of guanylate cyclase. These results suggest that NO is formed from NMDA activation in NTS and that NO diffuses out of neurons into the nearby target neurons to produce depressor response and NO release through cyclic guanosine monophosphate (cGMP) formation. In conclusion, NO mediates depressor response consequent to activation of NMDA receptors in neurons of NTS.  相似文献   

20.
Important players in triglyceride (TG) metabolism include the liver (production), white adipose tissue (WAT) (storage), heart and skeletal muscle (combustion to generate ATP), and brown adipose tissue (BAT) (combustion toward heat), the collective action of which determine plasma TG levels. Interestingly, recent evidence points to a prominent role of the hypothalamus in TG metabolism through innervating the liver, WAT, and BAT mainly via sympathetic branches of the autonomic nervous system. Here, we review the recent findings in the area of sympathetic control of TG metabolism. Various neuronal populations, such as neuropeptide Y (NPY)-expressing neurons and melanocortin-expressing neurons, as well as peripherally produced hormones (i.e., GLP-1, leptin, and insulin), modulate sympathetic outflow from the hypothalamus toward target organs and thereby influence peripheral TG metabolism. We conclude that sympathetic stimulation in general increases lipolysis in WAT, enhances VLDL-TG production by the liver, and increases the activity of BAT with respect to lipolysis of TG, followed by combustion of fatty acids toward heat. Moreover, the increased knowledge about the involvement of the neuroendocrine system in TG metabolism presented in this review offers new therapeutic options to fight hypertriglyceridemia by specifically modulating sympathetic nervous system outflow toward liver, BAT, or WAT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号