首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Health care-associated methicillin-resistant Staphylococcus aureus (HA-MRSA) forms biofilm in vitro that is dependent on the surface-located fibronectin binding proteins A and B (FnBPA, FnBPB). Here we provide new insights into the requirements for FnBP-dependent biofilm formation by MRSA. We show that expression of FnBPs is sustained at high levels throughout the growth cycle in the HA-MRSA strain BH1CC in contrast to laboratory strain SH1000, where expression could be detected only in exponential phase. We found that FnBP-mediated biofilm accumulation required Zn2+, while the removal of Zn2+ had no effect on the ability of FnBPA to mediate bacterial adherence to fibrinogen. We also investigated the role of FnBPA expressed on the surface of S. aureus in promoting biofilm formation and bacterial adhesion to fibrinogen. The minimum part of FnBPA required for ligand binding has so far been defined only with recombinant proteins. Here we found that the N1 subdomain was not required for biofilm formation or for FnBPA to promote bacterial adherence to fibrinogen. Residues at the C terminus of subdomain N3 required for FnBPA to bind to ligands using the “dock, lock, and latch” mechanism were necessary for FnBPA to promote bacterial adherence to fibrinogen. However, these residues were not necessary to form biofilm, allowing us to localize the region of FnBPA required for biofilm accumulation to residues 166 to 498. Thus, FnBPA mediates biofilm formation and bacterial adhesion to fibrinogen using two distinct mechanisms. Finally, we identified a hitherto-unrecognized thrombin cleavage site close to the boundary between subdomains N1 and N2 of FnBPA.  相似文献   

2.
The primary habitat of Staphylococcus aureus in humans is the moist squamous epithelium of the anterior nares. We showed previously that S. aureus adheres to desquamated epithelial cells and that clumping factor B (ClfB), a surface-located MSCRAMM (microbial surface components recognizing adhesive matrix molecules) known for its ability to bind to the alpha-chain of fibrinogen, is partly responsible (O'Brien, L. M., Walsh, E. J., Massey, R. C., Peacock, S. J., and Foster, T. J. (2002) Cell. Microbiol. 4, 759-770). We identified cytokeratin 10 (K10) as the ligand recognized by ClfB. Here we have shown that purified recombinant human and murine K10 immobilized on a plastic surface supports adherence of S. aureus in a ClfB-dependent manner. Furthermore, the recombinant A domain of ClfB (rClfB 45-542) bound to immobilized K10 dose-dependently and saturably. Subdomains of human and murine K10 were expressed and purified. The N-terminal head domain (residues 1-145) did not support the binding of rClfB or adherence of S. aureus ClfB+. In contrast, the C-terminal tail domains (human rHK10 452-593, mouse rMK10 454-570) promoted avid binding and adherence. Isothermal titration microcalorimetry and intrinsic tryptophan fluorescence experiments gave dissociation constants for rClfB 45-542 binding to rMK10 454-570 of 1.4 and 1.7 microM, respectively. The tail region of K10 is composed largely of quasi-repeats of Tyr-(Gly/Ser)n. A synthetic peptide corresponding to a typical glycine loop (YGGGSSGGGSSGGY; Y-Y loop peptide) inhibited the adherence of S. aureus ClfB+ to immobilized MK10 to a level of 80%, whereas control peptides had no effect. The KD of rClfB 45-542 for the Y-Y loop peptide was 5.3 microm by intrinsic tryptophan fluorescence. Thus ClfB binds to the glycine loop region of the tail domain of keratin 10 where there are probably multiple binding sites. Binding is discussed in the context of the dock-lock-latch model for MSCRAMM-ligand interactions. We provide an explanation for the molecular basis for S. aureus adherence to the squamous epithelium and suggest that nasal colonization might be prevented by reagents that inhibit this interaction.  相似文献   

3.
The folding of large, multidomain proteins involves the hierarchical assembly of individual domains. It remains unclear whether the stability and folding of small, single-domain proteins occurs through a comparable assembly of small, autonomous folding units. We have investigated the relationship between two subdomains of the protein T4 lysozyme. Thermodynamically, T4 lysozyme behaves as a cooperative unit and the unfolding transition fits a two-state model. The structure of the protein, however, resembles a dumbbell with two potential subdomains: an N-terminal subdomain (residues 13-75), and a C-terminal subdomain (residues 76-164 and 1-12). To investigate the effect of uncoupling these two subdomains within the context of the native protein, we created two circular permutations, both at the subdomain interface (residues 13 and 75). Both variants adopt an active wild-type T4 lysozyme fold. The protein starting with residue 13 is 3 kcal/mol less stable than wild type, whereas the protein beginning at residue 75 is 9 kcal/mol less stable, suggesting that the placement of the termini has a major effect on protein stability while minimally affecting the fold. When isolated as protein fragments, the C-terminal subdomain folds into a marginally stable helical structure, whereas the N-terminal subdomain is predominantly unfolded. ANS fluorescence studies indicate that, at low pH, the C-terminal subdomain adopts a loosely packed acid state. An acid state intermediate is also seen for all of the full-length variants. We propose that this acid state is comprised of an unfolded N-terminal subdomain and a loosely folded C-terminal subdomain.  相似文献   

4.
The fibronectin binding protein, FnBPA, is a multifunctional microbial surface component recognizing adhesive matrix molecule (MSCRAMM) that promotes bacterial adherence to immobilized fibrinogen and elastin via the N-terminal A domain. The binding site for fibrinogen and elastin was localized to subdomains N2N3. A three-dimensional structural model of FnBPA was created based on the known crystal structure of the domains N2N3 of clumping factor A (ClfA). The role of individual residues in the putative ligand binding trench was examined by testing the affinity of mutants for fibrinogen and elastin. Two residues (N304 and F306) were crucial for binding both ligands and are in the equivalent positions to residues known to be important for fibrinogen binding by ClfA. A peptide comprising the C-terminus of the gamma-chain of fibrinogen and a monoclonal anti-rAFnBPA antibody were potent inhibitors of the FnBPA-elastin interaction. This suggests that FnBPA binds to fibrinogen and elastin in a similar manner. Amino acid sequence divergence of 26.5% occurred between the A domains of FnBPA from strains 8325-4 and P1. Most variant residues were predicted to be located on the surface of domains N2N3 while few occurred in the putative ligand binding trench and the latching peptide explaining limited immunocross reactivity while ligand binding activity is conserved.  相似文献   

5.
The surface-located fibrinogen-binding protein (clumping factor; ClfA) of Staphylococcus aureus has an unusual dipeptide repeat linking the ligand binding domain to the wall-anchored region. Southern blotting experiments revealed several other loci in the S. aureus Newman genome that hybridized to a probe comprising DNA encoding the dipeptide repeat. One of these loci is analysed here. It also encodes a fibrinogen-binding protein, which we have called ClfB. The overall organization of ClfB is very similar to that of ClfA, and the proteins have considerable sequence identity in the signal sequence and wall attachment domains. However, the A regions are only 26% identical. Recombinant biotinylated ClfB protein bound to fibrinogen in Western ligand blots. ClfB reacted with the α- and β-chains of fibrinogen in the ligand blots in contrast to ClfA, which binds exclusively to the γ-chain. Analysis of proteins released from the cell wall of S. aureus Newman by Western immunoblotting using antibody raised against the recombinant A region of ClfB identified a 124 kDa protein as the clfB gene product. This protein was detectable only on cells that were grown to the early exponential phase. It was absent from cells from late exponential phase or stationary phase cultures. Using a clfB mutant isolated by allelic replacement alone and in combination with a clfA mutation, the ClfB protein was shown to promote (i) clumping of exponential-phase cells in a solution of fibrinogen, (ii) adherence of exponential-phase bacteria to immobilized fibrinogen in vitro, and (iii) bacterial adherence to ex vivo human haemodialysis tubing, suggesting that it could contribute to the pathogenicity of biomaterial-related infections. However, in wild-type exponential-phase S. aureus Newman cultures, ClfB activity was masked by the ClfA protein, and it did not contribute at all to interactions of cells from stationary-phase cultures with fibrinogen. ClfB-dependent bacterial adherence to immobilized fibrinogen was inhibited by millimolar concentrations of Ca2+ and Mn2+, which indicates that, like ClfA, ligand binding by ClfB is regulated by a low-affinity inhibitory cation binding site.  相似文献   

6.
Small proteins are generally observed to fold in an apparent two-state manner. Recently, however, more sensitive techniques have demonstrated that even seemingly single-domain proteins are actually made up of smaller subdomains. T4 lysozyme is one such protein. We explored the relative autonomy of its two individual subdomains and their contribution to the overall stability of T4 lysozyme by examining a circular permutation (CP13*) that relocates the N-terminal A-helix, creating subdomains that are contiguous in sequence. By determining the high-resolution structure of CP13* and characterizing its energy landscape using native state hydrogen exchange (NSHX), we show that connectivity between the subdomains is an important determinant of the energetic cooperativity but not structural integrity of the protein. The circular permutation results in a protein more easily able to populate a partially unfolded form in which the C-terminal subdomain is folded and the N-terminal subdomain is unfolded. We also created a fragment model of this intermediate and demonstrate using X-ray crystallography that its structure is identical to the corresponding residues in the full-length protein with the exception of a small network of hydrophobic interactions. In sum, we conclude that the C-terminal subdomain dominates the energetics of T4 lysozyme folding, and the A-helix serves an important role in coupling the two subdomains.  相似文献   

7.
The phytochromes (phyA to phyE) are a major plant photoreceptor family that regulate a diversity of developmental processes in response to light. The N-terminal 651-amino acid domain of phyB (N651), which binds an open tetrapyrrole chromophore, acts to perceive and transduce regulatory light signals in the cell nucleus. The N651 domain comprises several subdomains: the N-terminal extension, the Per/Arnt/Sim (PAS)-like subdomain (PLD), the cGMP phosphodiesterase/adenyl cyclase/FhlA (GAF) subdomain, and the phytochrome (PHY) subdomain. To define functional roles for these subdomains, we mutagenized an Arabidopsis thaliana line expressing N651 fused in tandem to green fluorescent protein, beta-glucuronidase, and a nuclear localization signal. A large-scale screen for long hypocotyl mutants identified 14 novel intragenic missense mutations in the N651 moiety. These new mutations, along with eight previously identified mutations, were distributed throughout N651, indicating that each subdomain has an important function. In vitro analysis of the spectral properties of these mutants enabled them to be classified into two principal classes: light-signal perception mutants (those with defective spectral activity), and signaling mutants (those normal in light perception but defective in intracellular signal transfer). Most spectral mutants were found in the GAF and PHY subdomains. On the other hand, the signaling mutants tend to be located in the N-terminal extension and PLD. These observations indicate that the N-terminal extension and PLD are mainly involved in signal transfer, but that the C-terminal GAF and PHY subdomains are responsible for light perception. Among the signaling mutants, R110Q, G111D, G112D, and R325K were particularly interesting. Alignment with the recently described three-dimensional structure of the PAS-GAF domain of a bacterial phytochrome suggests that these four mutations reside in the vicinity of the phytochrome light-sensing knot.  相似文献   

8.
In bacteria, threonine dehydratases could convert L-threonine to 2-ketobutyrate. Some threonine dehydratases contain only a catalytic domain, while others contain an N-terminal catalytic domain and a C-terminal regulatory domain composed of one or two ACT-like subdomains. However, the role of the ACT-like subdomain in threonine dehydratases is not clear. Here, nine different bacterial threonine dehydratases were studied. Three of the nine contain no ACT-like subdomain, four of them contain a single ACT-like subdomain, and two of them contain two ACT-like subdomains. The nine genes encoding these threonine dehydratases were individually overexpressed in E. coli BL21(DE3), and the enzymes were purified to homogeneity. Activities of the purified enzymes were analyzed after incubation at different temperatures and different pHs. The results showed that threonine dehydratases with a single ACT-like subdomain are more stable at higher temperatures and a broad range of pH than those without ACT-like subdomain or with two ACT-like subdomains. Furthermore, the specific activity of threonine dehydratases increases with the increase of the number of ACT-like subdomains they contain. The results suggest that the ACT-like subdomain plays an important role in bacterial threonine dehydratases.  相似文献   

9.
Prokaryotic protein S4 initiates assembly of the small ribosomal subunit by binding to 16 S rRNA. Residues 43-200 of S4 from Bacillus stearothermophilus (S4 Delta41) bind to both 16 S rRNA and to a mRNA pseudoknot. In order to obtain structure-based insights regarding RNA binding, we previously determined the solution structure of S4 Delta41 using NOE, hydrogen bond, and torsion angle restraints. S4 Delta41 is elongated, with two distinct subdomains, one all helical, the other including a beta-sheet. In contrast to the high resolution structures obtained for each individual subdomain, their relative orientation was not precisely defined because only 17 intersubdomain NOE restraints were determined. Compared to the 1.7 A crystal structure, when the sheet-containing subdomains are superimposed, the helical subdomain is twisted by almost 45 degrees about the long axis of the molecule in the solution structure. Because variations in subdomain orientation may explain how the protein recognizes multiple RNA targets, our current goal is to determine the orientation of the subdomains in solution with high precision. To this end, NOE assignments were re-examined. NOESY experiments on a specifically labeled sample revealed that one of the intersubdomain restraints had been misassigned. However, the revised set of NOE restraints produces solution structures that still have imprecisely defined subdomain orientations and that lie between the original NMR structure and the crystal structure. In contrast, augmenting the NOE restraints with N-H dipolar couplings, measured in uniaxial liquid crystalline phases, clearly establishes the relative orientation of the subdomains. Data obtained from two independent liquid crystalline milieux, DMPC/DHPC bicelles and the filamentous bacteriophage Pf1, show that the relative orientation of the subdomains in solution is quite similar to the subdomain orientation in the crystal structure. The solution structure, refined with dipolar data, is presented and its implications for S4's RNA binding activity are discussed.  相似文献   

10.
We recently reported the isolation and sequencing of human cDNA clones corresponding to the alpha 3 chain of type VI collagen (Chu, M.-L., Zhang, R.-Z., Pan, T.-c., Stokes, D., Conway, D., Kuo, H.-J., Glanville, R., Mayer, U., Mann, K., Deutzmann, R., and Timpl, R. (1990) EMBO J. 9, 385-393). The study indicates that the amino-terminal globular domain of the alpha 3(VI) chain consists of nine repetitive subdomains of approximately 200 amino acid residues (N1-N9) and the gene appeared to undergo alternative splicing since some clones lacked regions encoding the N9 and part of the N3 subdomains. In the present study, we report the exon structure for the region encoding the amino-terminal globular domain of the human alpha 3(VI) chain. The nine repetitive subdomains are encoded by 10 exons spanning 26 kilobase pairs of genomic DNA. Eight of the repetitive subdomains (N2-N9) were found to be encoded by separate exons of approximately 600 base pairs each. The only exception is the N1 subdomain which is encoded by two exons of 417 and 146 base pairs. Characterization of the exon/intron structure showed that the cDNA variants were the result of splicing out of exon 9 (encoding the N9 subdomain) and part of exon 3 (encoding the N3 subdomain). Nuclease S1 analysis and the polymerase chain reaction demonstrated that exon 7 (N7 subdomain) was also subject to alternative splicing in normal skin fibroblasts. Examination of these splicing events by nuclease S1 analysis in normal fibroblasts, three different human tumor cell lines, and several human tissues showed that splicing out of exon 9 is much more efficient in normal as compared to tumor cells.  相似文献   

11.
Staphylococcus aureus is an important cause of sepsis in both community and hospital settings, a major risk factor for which is nasal carriage of the bacterium. Eradication of carriage by topical antibiotics reduces sepsis rates in high-risk individuals, an important strategy for the reduction of nosocomial infection in targeted patient populations. Understanding the mechanisms by which S. aureus adheres to nasal epithelial cells in vivo may lead to alternative methods of decolonization that do not rely on sustained antimicrobial susceptibility. Here, we demonstrate for the first time that the S. aureus surface-expressed protein, clumping factor B (ClfB), promotes adherence to immobilized epidermal cytokeratins in vitro . By expressing a range of S. aureus adhesins on the surface of the heterologous host Lactococcus lactis , we demonstrated that adherence to epidermal cytokeratins was conferred by ClfB. Adherence of wild-type S. aureus was inhibited by recombinant ClfB protein or anti-ClfB antibodies, and S. aureus mutants defective in ClfB adhered poorly to epidermal cytokeratins. Expression of ClfB promoted adherence of L. lactis to human desquamated nasal epithelial cells, and a mutant of S. aureus defective in ClfB had reduced adherence compared with wild type. ClfB also promoted adherence of L. lactis cells to a human keratinocyte cell line. Cytokeratin 10 molecules were shown by flow cytometry to be exposed on the surface of both desquamated nasal epithelial cells and keratinocytes. Cytokeratin 10 was also detected on the surface of desquamated human nasal cells using immunofluorescence, and recombinant ClfB protein was shown to bind to cytokeratin K10 extracted from these cells. We also showed that ClfB is transcribed by S. aureus in the human nares. We propose that ClfB is a major determinant in S. aureus nasal colonization.  相似文献   

12.
Our previous studies revealed that the fibrinogen αC-domains undergo conformational changes and adopt a physiologically active conformation upon their self-association into αC polymers in fibrin. In the present study, we analyzed the mechanism of αC polymer formation and tested our hypothesis that self-association of the αC-domains occurs through the interaction between their N-terminal subdomains and may include β-hairpin swapping. Our binding experiments performed by size-exclusion chromatography and optical trap-based force spectroscopy revealed that the αC-domains self-associate exclusively through their N-terminal subdomains, while their C-terminal subdomains were found to interact with the αC-connectors that tether the αC-domains to the bulk of the molecule. This interaction should reinforce the structure of αC polymers and provide the proper orientation of their reactive residues for efficient cross-linking by factor XIIIa. Molecular modeling of self-association of the N-terminal subdomains confirmed that the hypothesized β-hairpin swapping does not impose any steric hindrance. To "freeze" the conformation of the N-terminal subdomain and prevent the hypothesized β-hairpin swapping, we introduced by site-directed mutagenesis an extra disulfide bond between two β-hairpins of the bovine Aα406-483 fragment corresponding to this subdomain. The experiments performed by circular dichroism revealed that Aα406-483 mutant containing Lys429Cys/Thr463Cys mutations preserved its β-sheet structure. However, in contrast to wild-type Aα406-483, this mutant had lower tendency for oligomerization, and its structure was not stabilized upon oligomerization, in agreement with the above hypothesis. On the basis of the results obtained and our previous findings, we propose a model of fibrin αC polymer structure and molecular mechanism of assembly.  相似文献   

13.
Muscle and yeast actins display distinct behavioral characteristics. To better understand the allosteric interactions that regulate actin function, we created a muscle/yeast hybrid actin containing a muscle-specific outer domain (subdomains 1 and 2) and a yeast inner domain (subdomains 3 and 4). Actin with muscle subdomain 1 and the two yeast N-terminal negative charges supported viability. The four negative charge muscle N terminus in a muscle subdomain 1 background caused death, but in the same background actin with three N-terminal acidic residues (3Ac/Sub1) led to sick but viable cells. Addition of three muscle subdomain 2 residues (3Ac/Sub12) produced no further deleterious effects. These hybrid actins caused depolarized cytoskeletons, abnormal vacuoles, and mitochondrial and endocytosis defects. 3Ac/Sub1 G-actin exchanged bound epsilonATP more slowly than wild type actin, and the exchange rate for 3Ac/Sub12 was even slower, similar to that for muscle actin. The mutant actins polymerized faster and produced less stable and shorter filaments than yeast actin, the opposite of that expected for muscle actin. Unlike wild type actin, in the absence of unbound ATP, polymerization led to ADP-F-actin, which rapidly depolymerized. Like yeast actin, the hybrid actins activated muscle myosin S1 ATPase activity only about one-eighth as well as muscle actin, despite having essentially a muscle actin-specific myosin-binding site. Finally, the hybrid actins behaved abnormally in a yeast Arp2/3-dependent polymerization assay. Our results demonstrate a unique sensitivity of yeast to actin N-terminal negative charge density. They also provide insight into the role of each domain in the control of the various functions of actin.  相似文献   

14.
15.
Staphylococcus aureus is an important pathogen capable of causing a wide spectrum of diseases in humans and animals. This bacterium expresses a variety of virulence factors that participate in the process of infection. These include MSCRAMMs (microbial surface components recognizing adhesive matrix molecules) that mediate the adherence of the bacteria to host extracellular matrix components, such as collagen, fibronectin (Fn), and fibrinogen (Fg). Two Fn-binding MSCRAMMs, FnbpA and FnbpB, have been previously identified. The Fn binding activity has been localized to the approximately 40-amino acid residue D repeats in the C-terminal part of these proteins. However, no biological activity has yet been attributed to the N-terminal A regions of these proteins. These regions exhibit substantial amino acid sequence identity to the A regions of other staphylococcal MSCRAMMs, including ClfA, ClfB, and SdrG (Fbe), all of which bind Fg. This raises the question of whether the Fn-binding MSCRAMMs can also bind specifically to Fg. In this report, we show that a recombinant form of the A region of FnbpA does specifically recognize Fg. We localize the binding site in Fg for recombinant FnbpA to the gamma-chain, in particular to the C-terminal residues of this polypeptide, the site also recognized by ClfA. In addition, we demonstrate that recombinant FnbpA can compete with ClfA for binding to both immobilized and soluble Fg. By the use of surface plasmon resonance spectroscopy and fluorescence polarization, we determine the dissociation equilibrium constant for the interaction of recombinant FnbpA with intact immobilized Fg and with a synthetic C-terminal gamma-chain peptide, respectively. Finally, by overexpressing FnbpA in a mutant strain of S. aureus that lacks the expression of both ClfA and ClfB, we show that native FnbpA can mediate the interaction of S. aureus with soluble Fg.  相似文献   

16.
The fibronectin-binding proteins FnBPA and FnBPB are multifunctional adhesins than can also bind to fibrinogen and elastin. In this study, the N2N3 subdomains of region A of FnBPB were shown to bind fibrinogen with a similar affinity to those of FnBPA (2 μM). The binding site for FnBPB in fibrinogen was localized to the C-terminus of the γ-chain. Like clumping factor A, region A of FnBPB bound to the γ-chain of fibrinogen in a Ca(2+)-inhibitable manner. The deletion of 17 residues from the C-terminus of domain N3 and the substitution of two residues in equivalent positions for crucial residues for fibrinogen binding in clumping factor A and FnBPA eliminated fibrinogen binding by FnBPB. This indicates that FnBPB binds fibrinogen by the dock-lock-latch mechanism. In contrast, the A domain of FnBPB bound fibronectin with K(D) = 2.5 μM despite lacking any of the known fibronectin-binding tandem repeats. A truncate lacking the C-terminal 17 residues (latching peptide) bound fibronectin with the same affinity, suggesting that the FnBPB A domain binds fibronectin by a novel mechanism. The substitution of the two residues required for fibrinogen binding also resulted in a loss of fibronectin binding. This, combined with the observation that purified subdomain N3 bound fibronectin with a measurable, but reduced, K(D) of 20 μM, indicates that the type I modules of fibronectin bind to both the N2 and N3 subdomains. The fibronectin-binding ability of the FnBPB A domain was also functional when the protein was expressed on and anchored to the surface of staphylococcal cells, showing that it is not an artifact of recombinant protein expression.  相似文献   

17.
Pilin proteins assemble into Type IV pili (T4P), surface-displayed bacterial filaments with virulence functions including motility, attachment, transformation, immune escape, and colony formation. However, challenges in crystallizing full-length fiber-forming and membrane protein pilins leave unanswered questions regarding pilin structures, assembly, functions, and vaccine potential. Here we report pilin structures of full-length DnFimA from the sheep pathogen Dichelobacter nodosus and FtPilE from the human pathogen Francisella tularensis at 2.3 and 1 ? resolution, respectively. The DnFimA structure reveals an extended kinked N-terminal α-helix, an unusual centrally located disulfide, conserved subdomains, and assembled epitopes informing serogroup vaccines. An interaction between the conserved Glu-5 carboxyl oxygen and the N-terminal amine of an adjacent subunit in the crystallographic dimer is consistent with the hypothesis of a salt bridge between these groups driving T4P assembly. The FtPilE structure identifies an authentic Type IV pilin and provides a framework for understanding the role of T4P in F. tularensis virulence. Combined results define a unified pilin architecture, specialized subdomain roles in pilus assembly and function, and potential therapeutic targets.  相似文献   

18.
The ligand-binding domain of Fbl (the fibrinogen binding protein from Staphylococcus lugdunensis) shares 60% sequence identity with ClfA (clumping factor A) of Staphylococcus aureus. Recombinant Fbl corresponding to the minimum fibrinogen-binding region (subdomains N2N3) was compared with ClfA for binding to fibrinogen. Fbl and ClfA had very similar affinities for fibrinogen by surface plasmon resonance. The binding site for Fbl in fibrinogen was localized to the extreme C terminus of the fibrinogen γ-chain at the same site recognized by ClfA. Isothermal titration calorimetry showed that Fbl and ClfA had very similar affinities for a peptide mimicking the C-terminal segment of the fibrinogen γ-chain. The peptide also inhibited binding of Fbl and ClfA to fibrinogen. A series of substituted γ-chain variant peptides behaved very similarly when used to inhibit ClfA and Fbl binding to immobilized fibrinogen. Both ClfA and Fbl bound to bovine fibrinogen with a lower affinity compared with human fibrinogen and did not bind detectably to ovine fibrinogen. The structure of the N2N3 subdomains of Fbl in complex with the fibrinogen γ-chain peptide was modeled based on the crystal structure of the N2N3 subdomains of the ClfA-γ-chain peptide complex. Residues in the putative binding trench likely to be involved in fibrinogen binding were identified. Fbl variant proteins with alanine substitutions in key residues had reduced affinities for fibrinogen. Thus Fbl and ClfA bind the same site in fibrinogen by similar mechanisms.  相似文献   

19.
A growing family of F-actin-bundling proteins harbors a modular F-actin-binding headpiece domain at the C terminus. Headpiece provides one of the two F-actin-binding sites essential for filament bundling. Here, we report the first structure of a functional headpiece domain. The NMR structure of chicken villin headpiece (HP67) reveals two subdomains that share a tightly packed hydrophobic core. The N-terminal subdomain contains bends, turns, and a four-residue alpha-helix as well as a buried histidine residue that imparts a pH-dependent folding. The C-terminal subdomain is composed of three alpha-helices and its folding is pH-independent. Two residues previously implicated in F-actin-binding form a buried salt-bridge between the N and C-terminal subdomains. The rest of the identified actin-binding residues are solvent-exposed and map onto a unique F-actin-binding surface.  相似文献   

20.
Emerging evidence indicates that R4/B subfamily RGS (regulator of G protein signaling) proteins play roles in functional regulation in the cardiovascular system. In this study, we compared effects of three R4/B subfamily proteins, RGS2, RGS4 and RGS5 on angiotensin AT1 receptor signaling, and investigated roles of the N-terminus of RGS2. In HEK293T cells expressing AT1 receptor stably, intracellular Ca2+ responses induced by angiotensin II were much more strongly attenuated by RGS2 than by RGS4 and RGS5. N-terminally deleted RGS2 proteins lost this potent inhibitory effect. Replacement of the N-terminal residues 1-71 of RGS2 with the corresponding residues (1-51) of RGS5 decreased significantly the inhibitory effect. On the other hand, replacement of the residues 1-51 of RGS5 with the residues 1-71 of RGS2 increased the inhibitory effect dramatically. Furthermore, we investigated functional contribution of N-terminal subdomains of RGS2, namely, an N-terminal region (residues 16-55) with an amphipathic α helix domain (the subdomain N1), a probable non-specific membrane-targeting subdomain, and another region (residues 56-71) between the α helix and the RGS box (the subdomain N2), a probable GPCR-recognizing subdomain. RGS2 chimera proteins with the residues 1-33 or 34-52 of RGS5 showed weak inhibitory activity, and either of RGS5 chimera proteins with residues 1-55 or 56-71 of RGS2 showed strong inhibitory effects on AT1 receptor signaling. The present study indicates the essential roles of both N-terminal subdomains for the potent inhibitory activity of RGS2 on AT1 receptor signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号