首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When fed to starved adults of Anthonomus grandis, several pentoses and hexoses were metabolized to the corresponding polyols (sugar alcohols). Xylitol, galactitol, arabitol, ribitol, rhamnitol, mannitol, and sorbitol were metabolites of d-xylose, d-galactose and lactose, d-arabinose, d-ribose, l-rhamnose, d-mannose, and d-glucose and d-fructose, respectively. l-Sorbose was not metabolized to a polyol. Large quantities of xylitol and galactitol and intermediate amounts of arabitol, ribitol, and rhamnitol accumulated while only small amounts or traces of mannitol and sorbitol were detected. The limited accumulation of sorbitol in the glucose- and fructose-fed weevils probably was caused by the rapid metabolism of sorbitol to glucose, fructose, trehalose, and glycogen. Each of the ingested sugars, the corresponding polyols, and trehalose were present in the weevil haemolymph. Most of the polyols had never before been detected as metabolites in an insect.  相似文献   

2.
In Rhizobium trifolii 7000, the polyols myo-inositol, xylitol, ribitol, D-arabitol, D-mannitol, D-sorbital, and dulcitol are metabolized by inducible nicotinamide adenine dinucleotide-dependent polyol dehydrogenases. Five different polyol dehydrogenases were recognized: inositol dehydrogenase, specific for inositil; ribitol dehydrogenase, specific for ribitol; D-arabitol dehydrogenase, which oxidized D-arabitol, D-mannitol, and D-sorbitol; xylitol dehydrogenase, which oxidized xylitol and D-sorbitol; and dulcitol dehydrogenase, which oxidized dulcitol, ribitol, xylitol, and sorbitol. Apart from inositil and xylitol, all of the polyols induced more than one polyol dehydrogenase and polyol transport system, but the heterologous polyol dehydrogenases and polyol transport systems were not coordinately induced by a particular polyol. With the exception of xylitol, all of the polyols tested served as growth substrates. A mutant of trifolii 7000, which was constitutive for dulcitol dehydrogenase, could also grow on xylitol.  相似文献   

3.
Overwintering adults of the spruce bark beetle, Ips typographus (L.) showed an unusually complex sugar/polyol cryoprotectant system. The major components of the multiple system were: glucose (177.6 mmolL(-1), March); trehalose (175.0 mmolL(-1), December); sorbitol (147.9 mmolL(-1), January); mannitol (81.2 mmolL(-1), March); and erythritol (40.7mmolL(-1), March) (in the parentheses, the maximum concentrations are shown and the month when they were reached). Other minor components were glycerol, fructose, threitol, myo-inositol, arabinitol and ribitol. Distinct seasonal patterns of accumulation/depletion in various components were found. Glycerol, trehalose and glucose started to accumulate first, during early autumn, when the air temperatures fluctuated between 20 and 0 degrees C, and diapause beetles continued in feeding. Glycerol was depleted, glucose remained stable and trehalose continued in accumulation during late autumn when the temperatures oscillated around 0 degrees C. During early winter severe frosts reaching -20 degrees C came, the beetles terminated their diapause and trehalose was partially depleted, while mannitol, sorbitol, fructose, threitol and erythritol started to accumulate. Cold weather continued also during late winter when the beetles remained quiescent. During this period, trehalose was re-accumulated, threitol and erythritol continued to increase, mannitol remained stable and sorbitol, fructose decreased. All cryoprotectans were finally cleared in the beetles which were spontaneously leaving bark during early spring. The seasonal maximum of total concentration of all cryoprotectants (578.2 mOsmol L(-1)) was reached in March. Such a concentration results in colligative depression of melting point of body fluids down by 1.08 degrees C only. It suggests that the potential cryoprotective effect of accumulated sugars and polyols was related rather to their non-colligative functions.  相似文献   

4.
Block W  Worland MR 《Cryobiology》2001,42(3):170-181
Ice nucleation was studied in field-fresh and acclimated (4 degrees C without food for 11-20 days) samples of the springtail Cryptopygus antarcticus Willem (Collembola, Isotomidae) at Rothera Research Station, Adelaide Island on the Antarctic Peninsula. Ice nucleator activity (INA) was measured by a freezing droplet technique in addition to supercooling point (SCP) profiles and polyol, sugar, and water contents. Field and acclimated samples showed bimodal SCP distributions with a distinct high group (HG; mean SCP -8 to -10 degrees C) and low group (LG: mean SCP -23 to -25 degrees C), which were significantly different. Acclimation at 4 degrees C increased the proportion of individuals in the LG relative to that in the HG without significant effects on the mean SCP of both groups. INA of the HG was significantly greater than that of the LG, and acclimation further reduced the INA of the LG. The number of active ice nucleator agents (INAs) calculated for the HG of field samples increased by 23-100 times over the temperature range -5 to -8 degrees C compared to only 7 times for the LG over the same range. These differences were accentuated in the acclimation experiments. Glucose and galactose were the main carbohydrates in both field and acclimated springtails, with the latter compound occurring in almost twice the concentration in the LG compared with that in the HG. Acclimation reduced the concentration of both compounds (glucose by 77% and galactose by 54%), whereas water content increased significantly. Digestion of food may have continued during acclimation at 4 degrees C, which could reduce the LG INA. Lowering of temperature over time is more likely to elicit a cold hardening response than constant temperature acclimation. INA numbers calculated at the nucleation temperatures for C. antarcticus samples were higher in the LG than in the HG. However, inactivation of INAs may be a key mechanism underlying cold hardening in this species, either by sequestration within the cellular matrix or by being only seasonally active.  相似文献   

5.
The capacity to accumulate winter polyols (mainly ribitol and sorbitol) during cold-acclimation in Pyrrhocoris apterus is restricted only to the adults that have previously entered diapause. The enzymatic complement involved in polyol biosynthesis was found to differ in a complex manner between diapause and non-diapause adults. Nearly 100% of glycogen phosphorylase (GPase) was present in its active form in non-diapause adults irrespective of their acclimation status. In contrast, less than 40% of GPase was present in its active form in diapause adults prior to cold-acclimation and the inactive form was rapidly activated upon transition from 5 to 0 degrees C, concomitantly with the start of rapid polyol accumulation. The flow of carbon released by activation of glycogen degradation might be routed to the pentose cycle because the activity of glucose-6-P dehydrogenase (G(6)P-DH) was significantly higher and it increased with cold-acclimation in diapause adults while it was relatively low and it decreased with cold-acclimation in non-diapause adults. Reducing equivalents in the form of NADPH, which were generated in the pentose cycle, might require re-oxidation. Such re-oxidation might be achieved during reduction of sugars to polyols. The activity of NADP(H)-dependent aldose reductase (AR) was about 20-fold higher in diapause than in non-diapause adults. Similarly, the activity of NAD(H)-dependent polyol dehydrogenase (PDH) was higher in diapause adults. In addition, we found a very high activity of an unusual enzyme, NADP(H)-dependent ketose reductase (KR), exclusively in diapause adults. KR might be involved in reduction of fructose to sorbitol. Although its affinity for fructose as a substrate was low (K(M)=0.64M), its activity was about 10-fold higher than that of PDH with fructose. Moreover, the activity of KR significantly increased with cold-acclimation while that of PDH remained unchanged. Different electrophoretic mobilities in PAGE gel suggested that KR and PDH are two different enzymes with specific requirement for NADP(H) or NAD(H), respectively, as co-factors.  相似文献   

6.
Seasonal dynamics of ecophysiological parameters are described which are relevant to overwintering in field-collected adults of a Czech population of the red firebug, Pyrrhocoris apterus. Five life-cycle phases were distinguished using the duration of pre-oviposition period as a criterion: reproductive activity (spring-early summer), intensification of reproductive diapause (RD) (peak of summer), maintenance of RD (late summer-early autumn), termination of RD (late autumn-early winter), and low temperature quiescence (LTQ) (winter). The supercooling capacity and chill tolerance (c.t.) increased simultaneously with the termination of RD and all three processes were triggered/conditioned by autumnal decrease in ambient temperatures. Maximum supercooling capacity and c.t. 'outlived' the end of diapause and persisted throughout the LTQ state. The limits of c.t. were estimated as -15 degrees C/1-2 weeks for 50% survival. Ribitol, sorbitol, arabinitol, and mannitol were accumulated in the winter-sampled insects. Relatively low concentrations of polyols (dominating ribitol reached ca. 1% FW) indicate that they do not function as colligative cryoprotectants. However, because their seasonal occurrence coincided with the highest c.t., their non-colligative cryoprotectant effects would merit further study. Although the overwintering microhabitat of P. apterus is buffered, the temperatures may fall to -13 degrees C during exceptionally cold winters and thus, the parameters of c.t. seem to be just appropriately tuned to the local overwintering conditions.  相似文献   

7.
Polyols are sugar alcohols largely used as sweeteners and they are claimed to have several health-promoting effects (low-caloric, low-glycemic, low-insulinemic, anticariogenic, and prebiotic). While at present chemical synthesis is the only strategy able to assure the polyol market demand, the biotechnological production of polyols has been implemented in yeasts, fungi, and bacteria. Lactic acid bacteria (LAB) are a group of microorganisms particularly suited for polyol production as they display a fermentative metabolism associated with an important redox modulation and a limited biosynthetic capacity. In addition, LAB participate in food fermentation processes, where in situ production of polyols during fermentation may be useful in the development of novel functional foods. Here, we review the polyol production by LAB, focusing on metabolic engineering strategies aimed to redirect sugar fermentation pathways towards the synthesis of biotechnologically important sugar alcohols such as sorbitol, mannitol, and xylitol. Furthermore, possible approaches are presented for engineering new fermentation routes in LAB for production of arabitol, ribitol, and erythritol.  相似文献   

8.
Increased thermal stability of proteins in the presence of sugars and polyols.   总被引:25,自引:0,他引:25  
J F Back  D Oakenfull  M B Smith 《Biochemistry》1979,18(23):5191-5196
Sugars and polyols stablize proteins against heat denaturation. Scanning calorimetry was used to obtain a quantitative estimate of the degree of stabilization. Solutions of ovalbumin, lysozyme, conalbumin, and alpha-chymotrypsinogen were heated at a constant rate, and the temperature of the maximum rate of denaturation was estimated (Tm). Addition of a sugar or polyol raised Tm. The magnitude of the stabilizing effect (delta Tm) depended on both the nature of the protein and the nature of the sugar or polyol, ranging from 18.5 degrees C for lysozyme at pH 3 in the presence of 50% (w/w) sorbitol to 0 degrees C for conalbumin at pH 7 in 50% glycerol solution. It is argued that this stablization is due to the effects of sugars and polyols on hydrophobic interactions. The strength of the hydrophobic interaction was measured in model systems in sucrose and glycerol solutions. Sucrose and glycerol strengthened the pairwise hydrophobic interaction between hydrophobic groups; however, they reduced the tendency for complete transfer of hydrophobic groups from an aqueous to a nonpolar environment. The extent of stabliziation by different sugars and polyols is explained by their different influences on the structure of water. The difference between the partial molar volume of the sugar or polyol and its van der Waals volume was used as a rough quantitative measure of the structure-making or structure-breaking effect. There was a linear relationship between this quantity and delta Tm.  相似文献   

9.
Larvae of Syrphus ribesii collected from overwintering sites in the U.K. are strongly freeze tolerant with 70% survival at -35 degrees C. The cold tolerance of laboratory reared insects increased with increasing periods of acclimation at 0 degrees C, with a concurrent rise in the supercooling point (SCP) from -6.8+/-0.1 to -5.1+/-0.3 degrees C. There was 50% survival in the most cold-hardy group 72h after brief exposures to -30 degrees C. The retention of gut contents caused a decrease in cold hardiness, with only 13% of larvae surviving 72h after exposure to -15 degrees C, with no subsequent pupation or emergence. Wet larvae had a significantly higher SCP (-5.0+/-0.2 degrees C) compared to dry larvae (-7.8+/-0.4 degrees C), although survival of larvae was similar in both groups. There was no nucleator activity in the haemolymph of field collected larvae. The importance of these findings are discussed in relation to the freeze tolerance strategy of S. ribesii.  相似文献   

10.
Prepupae of the arctiid moth Cymbalophora pudica spend spring and summer months in a summer diapause (aestivation), the duration of which is photoperiodically controlled. Cold hardiness, drought tolerance and some physiological and biochemical parameters were measured in aestivating prepupae. Large amounts of metabolic reserves, in the form of lipids and glycogen, accumulated prior to aestivation. Glycogen served as the main metabolic fuel for aestivating prepupae. Metabolic rate decreased rapidly after the onset of the inactive prepupal stage and remained low (5-15% of the level in active larva) during aestivation. A spontaneous increase of the respiration rate occurred before pupation. Neither low mol. wt sugars or alcohols (polyols) accumulated nor the haemolymph osmotic pressure changed during aestivation. Drought tolerance of aestivating prepupae was high (no decrease in survival after exposure to r.h.<10% at a temperature of 23 degrees C for a substantial part of diapause) owing to their extensive capacity to stabilize the relative body water content irrespective of the r.h. of surrounding air. Cold hardiness was low (>90% decrease in survival after exposure to -7 degrees C for 24h). Cold and drought acclimations did not lead to significant changes in the measured physiological and biochemical parameters but cold (not drought) acclimation caused a significant increase in cold hardiness. Neither drought tolerance nor the increase in cold hardiness after cold acclimation appear to be related to presence/accumulation of polyols in aestivating C. pudica prepupae.  相似文献   

11.
Overwintering larvae of the Shonai ecotype of the rice stem borer, Chilo suppressalis, enter diapause in early September and terminate diapause at the end of October. Cold acclimation at 0°C did not influence glycerol, trehalose or glycogen content in larvae collected on 22 September. Acclimation at 0°C increased the glycerol content and reduced the glycogen content significantly in larvae collected on 2 October and 22 November compared with acclimation at 15°C. These results indicate that overwintering larvae at different phases of diapause development respond differently to the low temperature stimulus for glycerol synthesis. Thus, we evaluated the metabolic rearrangements associated with glycerol synthesis during diapause development and after temperature acclimation. Larvae collected on 2 October were acclimated at 15°C for 15 and 60 days. Some of those acclimated at 15°C were then moved to 0°C for 15 days. The larvae acclimated at 15°C for 15 days were in deep diapause and accumulated little glycerol, while larvae acclimated at 15°C for 60 days were nearly ready to emerge from diapause and accumulated glycerol at 155.5 μmol/g. When larvae acclimated to 15°C for 15 days were transferred to 0°C, glycerol accumulation was stimulated to the same extent (ca 140 μmol/g) as it was in larvae that were acclimated to 15°C for 60 days and then transferred to 0°C. These results indicate that low temperature has a cumulative effect on glycerol production in larvae at different phases of diapause development. Glycerol accumulation was accomplished by activation of glycogen phosphorylase and inhibition of fructose-1,6-bisphosphatase, and activation of enzymes associated with glycerol synthesis, mainly glyceraldehyde-3-phosphatase and polyol dehydrogenase with glyceraldehyde activity.  相似文献   

12.
A lens epithelial cell line established from a transgenic mouse synthesizes high levels of the enzyme aldose reductase which converts sugars to polyols. This enzyme has been implicated in the formation of sugar cataracts in animals and with diabetic complications in man. The mouse aldose reductase has been characterized and by sodium dodecyl sulfate-polyacrylamide gel electrophoresis has an apparent molecular mass of 38,000, similar to the enzyme in rat and man. The cellular enzyme is inhibited by two aldose reductase inhibitors: Sorbinil (IC50 = 1.8 X 10(-7) M) and Alcon 1576 (IC50 = 7.8 X 10(-8) M). The amount and the specific activity of the aldose reductase can be further increased in the cells by raising the osmolarity of the medium to 500 mOSM. Although the amount of aldose reductase is increased approximately sevenfold under these conditions, alpha-crystallin, one of the main lens specific proteins, remained at about the same concentration. No detectable increase in sorbitol was found within the cells, in contrast to published reports on renal cells in which this polyol increases under similar hyperosmotic conditions; however, in the lens cells there was a five-fold increase in the inositol content, suggesting that this polyol rather than sorbitol may be used to compensate for some of the changes in the osmolarity. The induction of the enzyme aldose reductase without the apparent accumulation of its product suggests a complex mechanism for osmoregulation in the lens cells.  相似文献   

13.
Cells of Escherichia coli ML308-225, harvested from the exponential phase, were heated in 50 mM potassium phosphate, and the loss in viability and inability to transport lactose, proline, and alpha-methylglucoside was compared. After cells were heated at 48 degrees C for 15 min, there was a 16% loss in viability and a similarly small reduction in the steady-state accumulation of lactose at 25 degrees C. The initial rates of lactose and proline transport were severely inhibited by heating at either 48 or 50 degrees C, but substantial recovery occurred within 5 to 7 min at 25 degrees C. Heating at 50 degrees C for 15 min caused an 86% loss in viability, but only a 53% decrease in the steady-state accumulation of lactose and only a 24% reduction in the initial rate of alpha-methylglucoside uptake. Twice as much alpha-methylglucoside was accumulated at 50 degrees C as at 25 degrees C. Although alpha-methylglucoside phosphate leaked from the cells at 50 degrees C, the concentration retained within the cells was about 500 times that externally, when only about 14% of the cells were viable. Overall, these results indicate that cells made nonviable by heating at 50 degrees C still have significant membrane integrity.  相似文献   

14.
Cells of Escherichia coli ML308-225, harvested from the exponential phase, were heated in 50 mM potassium phosphate, and the loss in viability and inability to transport lactose, proline, and alpha-methylglucoside was compared. After cells were heated at 48 degrees C for 15 min, there was a 16% loss in viability and a similarly small reduction in the steady-state accumulation of lactose at 25 degrees C. The initial rates of lactose and proline transport were severely inhibited by heating at either 48 or 50 degrees C, but substantial recovery occurred within 5 to 7 min at 25 degrees C. Heating at 50 degrees C for 15 min caused an 86% loss in viability, but only a 53% decrease in the steady-state accumulation of lactose and only a 24% reduction in the initial rate of alpha-methylglucoside uptake. Twice as much alpha-methylglucoside was accumulated at 50 degrees C as at 25 degrees C. Although alpha-methylglucoside phosphate leaked from the cells at 50 degrees C, the concentration retained within the cells was about 500 times that externally, when only about 14% of the cells were viable. Overall, these results indicate that cells made nonviable by heating at 50 degrees C still have significant membrane integrity.  相似文献   

15.
The denaturation of lysozyme and ribonuclease A by guanidine hydrochloride was followed in the presence and absence of glycerol and sorbitol by means of circular dichroism measurements at 25 degrees C. The protein-solvent interactions in the presence of these polyols were also studied by means of density measurements, for discussion of the mechanism of protein stabilization by polyols in terms of the multicomponent thermodynamic theory. The free energy of denaturation depends linearly on the molarity of guanidine hydrochloride at a given polyol concentration, without modification of the cooperativity of the transition. The free energy of denaturation at an infinite dilution of guanidine hydrochloride increases in proportion to the polyol concentration. These results indicate the competing solvent effects of polyols and guanidine hydrochloride on the structures of proteins. In water-protein-polyol systems, protein is preferentially hydrated to elevate its chemical potential, predominantly due to the unfavorable interaction of polyols with the exposed nonpolar amino acid residues. By linkage with the free energy of denaturation, it was quantitatively determined that the chemical potential of denatured protein is more extensively elevated by addition of polyols than that of native protein. These results demonstrate that polyols stabilize the protein structure through strengthening of the hydrophobic interaction, competing with the effect of guanidine hydrochloride.  相似文献   

16.
Growth of five aeroterrestrial green algal strains (Trebouxiophyceae) in response to changing water availabilities—caused by osmotic (ionic) and matric (desiccation) stresses—was investigated in comparison with a freshwater and a marine strain. All investigated algae displayed good growth under brackish conditions while four out of the five aeroterrestrial strains even grew well under full marine conditions (28–40 psu). The comparison between growth responses in liquid medium, on solid agarose, and on glass fiber filters at 100% air humidity indicated a broad growth tolerance of aeroterrestrial algae towards diminished water availability. While two aeroterrestrial strains even grew better on solid medium which mimics natural biofilm conditions, the aquatic strains showed significant growth inhibition under matric stress. Except Stichococcus sp., which contained the C6-polyol sorbitol, all other aeroterrestrial green algae investigated synthesized and accumulated the C5-polyol ribitol in response to osmotic stress. Using 13C NMR spectroscopy and HPLC, it could be verified that ribitol functions as an osmotically regulated organic solute. This is the first proof of ribitol in free-living aeroterrestrial green algae. The biochemical capability to synthesize polyols under environmental stress conditions seems to support algal life outside aquatic habitats.  相似文献   

17.
Changes in polyol production and the intracellular amino acid pool were followed during the growth cycle of Debaryomyces hansenii in 4 mM and 2.7 M NaCl media. The intracellular levels of polyols were markedly enhanced by high salinity, the dominant solutes being glycerol in log phase cells and arabinitol in stationary phase cells. At low salinity arabinitol was the most prominent intracellular solute throughout the growth cycle. There were no major changes in the composition of the total amino acid pool with changes in cultural salinity. The amount of total free amino acids related to cell dry weight was 15–50% lower in cells cultured in 2.7 M NaCl as compared to 4 mM NaCl media.After subtraction of contributions from intracellular polyols the calculated cellular C/N ratio was found to be unaffected by cultural age and salinity during the late log and early stationary phase. On prolonged incubation of stationary phase cells, this ratio decreased, particularly at high salinity. The sensitivity of cells towards exposure to high salinity was measured in terms of the length of the lag phase after transference to 2.7 M NaCl media. This lag phase decreased with increasing intracellular polyol concentrations. At a given polyol content, stationary phase cells were considerably less sensitive than were log phase cells.When cultured at high salinity the mutant strain, 26-2b, grew more slowly and retained less of the total polyol produced during the early growth stages than did the wildtype. Exogenously supplied mannitol, arabinitol, and glycerol stimulated the growth of the mutant in saline media. Erythritol was without effect.Abbreviations GLC gas-liquid chromatography - TCA trichloroacetic acid  相似文献   

18.
Thalli of Xanthoparmelia somloensis with natural content of polyols (control) and polyol-free thalli (acetone-rinsed) were used to study ribitol effects at low temperatures. Thalli segments were cultivated in ribitol concentration of 32 or 50 mM for 168 h at temperatures +5, 0, and ?5 °C. The chlorophyll fluorescence parameters (potential yield of photochemical reactions in PS 2 (variable to maximum fluorescence ratio, Fv/Fm), effective quantum yield of photochemical reactions in PS 2 (ΦPS2), and non-photochemical quenching (NPQ) were monitored in 24-h intervals using an imaging system. The effect of 32 mM ribitol on Fv/Fm and ΦPS2 was apparent only at ?5 °C, however, the effect was seen throughout the whole exposure. Surprisingly, 50 mM ribitol concentration treatment led to a decrease in Fv/Fm and ΦPS2 and to an increase in NPQ values at ?5 °C, while no change was observed at 0 °C and +5 °C. Acetone-rinsing caused decrease of Fv/Fm, ΦPS2 and NPQ.  相似文献   

19.
The phototrophic bacterium Rhodobacter sphaeroides strain Si4 induced ribitol dehydrogenase (EC 1.1.1.56) when grown on ribitol- or xylitol-containing medium. This ribitol dehydrogenase was purified to apparent homogeneity by ammonium sulphate precipitation, affinity chromatography on Procion red, and chromatography on Q-Sepharose. For the native enzyme an isoelectric point of pH 6.1 and an apparent M(r) of 50,000 was determined. SDS-PAGE yielded a single peptide band of M(r) 25,000 suggesting a dimeric enzyme structure. The ribitol dehydrogenase was specific for NAD+ but unspecific as to its polyol substrate. In order of decreasing activity ribitol, xylitol, erythritol, D-glucitol and D-arabitol were oxidized. The pH optimum of substrate oxidation was 10, and that of substrate reduction was 6.5. The equilibrium constant of the interconversion of ribitol to D-ribulose was determined to be 0.33 nM at pH 7.0 and 25 degrees C. The Km-values determined for ribitol, ribulose, xylitol and NAD+ (in the presence of ribitol) were 6.3, 12.5, 77 and 0.077 mM, respectively. Because of the favourable Km for ribitol, a method for quantitative ribitol determination was elaborated.  相似文献   

20.
The polyol pathway has been implicated in the process of diabetic cataractogenesis. We report the use of deuterium (2H) spectroscopy for dynamically monitoring the polyol and glycolytic pathways in the single intact rabbit lens. Using 2H labeled C-1 D-glucose, the formation of sorbitol from glucose and the metabolism of sorbitol to fructose was dynamically monitored at 5.5 mM and 35.5 mM glucose concentrations. The accumulation of sorbitol at 35.5 mM glucose concentration was prevented by the inhibition of aldose reductase using an inhibitor (Sorbinil). 2H spectra were obtained in short acquisition times because of the short T1's of deuterated metabolites. A further advantage of 2H spectroscopy is that the natural abundance resonance of water (HDO) can be used as an internal reference standard. These findings confirm previous studies and demonstrate for the first time by NMR spectroscopy activity in the polyol pathway at low glucose concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号