首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of administration of cortisol, corticosterone, testosterone, progesterone and a synthetic estrogen. diethylstilbestrol (DES) on total brain Na(+)-K+- ATPase were investigated in tilapia, O. mossambicus. Exogenous administration of 0.125 and 0.25 microg/g body weight of glucocorticoids and 0.125, 0.25 and 0.5 microg/g body weight of DES for 5 days significantly stimulated Na+(-) K+ ATPase activity by 14-41% in the brain, while 0.5 microg/g body weight of glucocorticoids did not evoke any response on the activity of the enzyme. Progesterone (0.125 and 0.25 microg/g body weight) administration significantly decreased the enzyme activity by 21-36% and high dose (0.5 microg/g body weight) was ineffective. Testosterone exhibited a biphasic effect on Na(+)-K+ ATPase activity--a low dose stimulated by 14% while middle and high doses inhibited it by 19-24%. The results seem to be the first report on the effect of steroids on brain ATPase activity in a teleost. When 0.25microg/g body weight of actinomycin D or puromycin was administered prior to the treatment of similar doses of hormones, the inhibitors significantly inhibited the effect of the hormones by 24-52%. This clearly shows that the effect of the hormones was sensitive to the action of inhibitors suggesting a possible genomic mode of action under long-term treatment. The results suggest that cortisol, corticosterone and DES may possibly stimulate the co-transport of glucose and excitation of membrane potential while progesterone and testosterone inhibit them in the brain of O. mossambicus by regulating the activity of Na(+)-K+ ATPase.  相似文献   

2.
Deane EE  Kelly SP  Woo NY 《Life sciences》2000,66(15):1435-1444
The effect of cortisol treatment on branchial Na(+)-K(+)-ATPase subunit mRNA abundance, enzyme activity, chloride cell number/morphometrics and serum electrolyte levels were investigated for the marine teleost Sparus sarba. Groups of fish received intraperitoneal injections of cortisol at a concentration of 4 micrograms/g body weight, daily, over a seven-day period. This dose of cortisol was sufficiently high enough to maintain a condition of hypercortisolemia as serum cortisol levels in treated fish were eleven fold higher than controls at time of sacrifice. By using branchial Na(+)-K(+)-ATPase alpha- and beta-subunit cDNA clones we were able to demonstrate that cortisol administration to S. sarba caused a significant elevation in the abundance of alpha-mRNA whereas the levels of beta-mRNA were unchanged. In addition Na(+)-K(+)-ATPase activity remained unaltered by cortisol administration. Branchial chloride cell number, exposure, apical area as well as serum Na+ and Cl- levels remained unchanged after cortisol administration. The results of this study suggest that elevated cortisol level may not necessarily translate into modulated branchial Na(+)-K(+)-ATPase activity and chloride cell function in hypo-osmoregulating marine fish.  相似文献   

3.
(Na(+)-K+)ATPase and (Ca(++)-Mg++)ATPase are enzymes located in erythrocyte plasma membranes, driving back ions against the electrochemical gradient; (Na(+)-K+)ATPase transports 3 Na+ ions out of the cell, and 2 K+ ions into it for each hydrolyzed ATP molecule, whereas the Ca(2+)-pump transports Ca2+ ions out of the cells, by utilizing still the ATP hydrolysis. The method used to test the activity of the above mentioned enzymes is based on the measuring of the ADP quantity released during the reaction by HPLC, that is High Performance Liquid Chromatography; the chromatographic type is a Ion-Pair Reversed-Phase. This method presents the following important advantages for the assay of the enzymes we analysed: 1) It is reproducible through time; 2) It is perfectly linear; 3) It is extremely sensitive. This method allowed us to carry out a comparative study of (Na(+)-K+)ATPase and (Ca(++)-Mg++)ATPase in erythrocyte plasma membranes of several species of mammalia: man, horse, rabbit, lamb, rat. We recovered different values in ATPase activity; (Ca(++)-Mg++)ATPase shows a higher activity than Na(+)-K+)ATPase; moreover, some differences exist in the various Mammalia considered, with relation to each pump: the lamb shows the lowest activity for both pumps, whereas the rabbit shows the highest one. At present, the different values obtained are being interpreted and analysed. This method is also very versatile, since it allowed us to assess the Km value for Ca++ of the (Ca(++)-Mg++)ATPase in erythrocyte plasma membranes of rabbit. The value resulted to be 100 microMs, thus 10 times higher than the human Km value for the Ca++.  相似文献   

4.
NaCl hyperosmolarity increases intestinal blood flow during food absorption due in large part to increased NO production. We hypothesized that in vivo, sodium ions enter endothelial cells during NaCl hyperosmolarity as the first step to stimulate an increase in intestinal endothelial NO production. Perivascular NO concentration ([NO]) and blood flow were determined in the in vivo rat intestinal microvasculature at rest and under hyperosmotic conditions, 330 and 380 mosM, respectively, before and after application of bumetanide (Na(+)-K(+)-2Cl(-) cotransporter inhibitor) or amiloride (Na(+)/H(+) exchange channel inhibitor). Suppressing amiloride-sensitive Na(+)/H(+) exchange channels diminished hypertonicity-linked increases in vascular [NO], whereas blockade of Na(+)-K(+)-2Cl(-) channels greatly suppressed increases in vascular [NO] and intestinal blood flow. In additional experiments we examined the effect of sodium ion entry into endothelial cells. We proposed that the Na(+)/Ca(2+) exchanger extrudes Na(+) in exchange for Ca(2+), thereby leading to the calcium-dependent activation of endothelial nitric oxide synthase (eNOS). We blocked the activity of the Na(+)/Ca(2+) exchanger during 360 mosM NaCl hyperosmolarity with KB-R7943; complete blockade of increased vascular [NO] and intestinal blood flow to hyperosmolarity occurred. These results indicate that during NaCl hyperosmolarity, sodium ions enter endothelial cells predominantly through Na(+)-K(+)-2Cl(-) channels. The Na(+)/Ca(2+) exchanger then extrudes Na(+) and increases endothelial Ca(2+). The increase in endothelial Ca(2+) causes an increase in eNOS activity, and the resultant increase in NO increases intestinal arteriolar diameter and blood flow during NaCl hyperosmolarity. This appears to be the major mechanism by which intestinal nutrient absorption is coupled to increased blood flow.  相似文献   

5.
6.
The combined effects of ouabain (Na(+)-K(+) ATPase inhibitor) and hyperinflation (inflation volume=three tidal volumes) on slowly adapting pulmonary stretch receptors (SARs) were studied before and after administration of nifedipine (an L-type Ca(2+) channel blocker) and KB-R7943 (a reverse-mode Na(+)-Ca(2+) exchanger blocker) in anesthetized, artificially ventilated rabbits after bilateral vagotomy. Before ouabain administration, hyperinflation stimulated SAR activity. After 20 min of ouabain administration (30 microg/kg) the SARs increased discharge rates in normal inflation. Under these conditions, hyperinflation initially stimulated SAR activity but subsequently inhibited the activity at peak inflation. Additional administration of 60 microg/kg ouabain (total dose=90 microg/kg) caused a further stimulation of SAR activity, but 20 min later both normal inflation and hyperinflation resulted in a greater inhibition of the receptor activity. The hyperinflation-induced SAR inhibition in the presence of ouabain (30 microg/kg) was not significantly altered by administration of either nifedipine (2 and 4 mg/kg) or KB-R7943 (1 and 3 mg/kg). In another series of experiments, we further examined the combined effects of ouabain and hyperinflation in veratridine (a Na(+) channel opener, 40 microg/kg)-treated animals. After recovery from the veratridine effect on SAR activity, which vigorously stimulated the receptor activity, ouabain treatment (30 microg/kg) that silenced the receptor activity at peak inflation greatly inhibited hyperinflation-induced SAR stimulation. These results suggest that hyperinflation-induced SAR inhibition in the presence of ouabain may be related to a Na(+) overload, but not to a Ca(2+) influx via activation of L-type Ca(2+) channels, in the SAR endings.  相似文献   

7.
A method to culture tissue explants of the intestine from freshwater-adapted sockeye salmon (Oncorhynchus nerka) was developed to assess possible direct effects of cortisol on Na(+)-K(+)-ATPase activity. As judged by several criteria, explants from pyloric ceca and the posterior region of the intestine remained viable during short-term (6-day) culture, although Na(+)-K(+)-ATPase activity declined and basolateral components of the enterocytes were observed to be partially degraded. Addition of cortisol to the culture medium maintained Na(+)-K(+)-ATPase activity (over 2-12 days) above that of control explants and, in some cases, was similar to levels before culture. The response to cortisol was dose dependent (0.001-10 microg/ml). Within the physiological range, the response was specific for cortisol and showed the following hierarchy: dexamethasone >/= cortisol > 11-deoxycortisol > cortisone. Insulin maintained Na(+)-K(+)-ATPase activity over controls in explants of ceca but not posterior intestine. To compare in vivo and in vitro responses, slow-release implants of cortisol (50 microg/g) were administered to salmon for 7 days. This treatment elevated plasma cortisol levels and stimulated Na(+)-K(+)-ATPase activity in both intestinal regions. The results demonstrate that the teleost intestine is a direct target of cortisol, this corticosteroid protects in vitro functionality of Na(+)-K(+)-ATPase, and explants retain cortisol responsiveness during short-term culture.  相似文献   

8.
9.
Phospholemman (PLM), when phosphorylated at serine 68, relieves its inhibition on Na(+)-K(+)-ATPase but inhibits Na(+)/Ca(2+) exchanger 1 (NCX1) in cardiac myocytes. Under stress when catecholamine levels are high, enhanced Na(+)-K(+)-ATPase activity by phosphorylated PLM attenuates intracellular Na(+) concentration ([Na(+)](i)) overload. To evaluate the effects of PLM on NCX1 on in vivo cardiac contractility, we injected recombinant adeno-associated virus (serotype 9) expressing either the phosphomimetic PLM S68E mutant or green fluorescent protein (GFP) directly into left ventricles (LVs) of PLM-knockout (KO) mice. Five weeks after virus injection, ~40% of isolated LV myocytes exhibited GFP fluorescence. Expression of S68E mutant was confirmed with PLM antibody. There were no differences in protein levels of α(1)- and α(2)-subunits of Na(+)-K(+)-ATPase, NCX1, and sarco(endo)plasmic reticulum Ca(2+)-ATPase between KO-GFP and KO-S68E LV homogenates. Compared with KO-GFP myocytes, Na(+)/Ca(2+) exchange current was suppressed, but resting [Na(+)](i), Na(+)-K(+)-ATPase current, and action potential amplitudes were similar in KO-S68E myocytes. Resting membrane potential was slightly lower and action potential duration at 90% repolarization (APD(90)) was shortened in KO-S68E myocytes. Isoproterenol (Iso; 1 μM) increased APD(90) in both groups of myocytes. After Iso, [Na(+)](i) increased monotonically in paced (2 Hz) KO-GFP but reached a plateau in KO-S68E myocytes. Both systolic and diastolic [Ca(2+)](i) were higher in Iso-stimulated KO-S68E myocytes paced at 2 Hz. Echocardiography demonstrated similar resting heart rate, ejection fraction, and LV mass between KO-GFP and KO-S68E mice. In vivo closed-chest catheterization demonstrated enhanced contractility in KO-S68E compared with KO-GFP hearts stimulated with Iso. We conclude that under catecholamine stress when [Na(+)](i) is high, PLM minimizes [Na(+)](i) overload by relieving its inhibition of Na(+)-K(+)-ATPase and preserves inotropy by simultaneously inhibiting Na(+)/Ca(2+) exchanger.  相似文献   

10.
The aim of this study was to investigate the effect of desferrioxamine on peroxynitrite-mediated damage in erythrocytes by measuring the 3-nitrotyrosine level and glutathione peroxidase and Na(+)-K(+) ATPase activities in vitro. 3-Nitrotyrosine levels were determined by HPLC; glutathione peroxidase and Na(+)-K(+) ATPase activities were measured by spectrophotometry. Peroxynitrite increased the 3-nitrotyrosine level but decreased both enzyme activities. In the presence of desferrioxamine, glutathione peroxidase activity was increased with a decrease in the 3-nitrotyrosine level. Desferrioxamine was found to possess an important antioxidant activity as assessed in an in vitro system, reducing protein nitration, restoring enzyme activities and maintaining erythrocyte membrane integrity.  相似文献   

11.
Significant amounts of di(2-ethylhexyl) phthalate (DEHP) leach out into blood stored in DEHP plasticized polyvinyl chloride (PVC) bags resulting in the exposure of recipients of blood transfusion to this compound. The aim of this study was to find out whether DEHP at these low levels has any effect on the activity of membrane Na(+)-K+ ATPase, since a decrease in this enzyme activity has been reported to take place in a number of disorders like neurodegenerative and psychiatric disorders, coronary artery disease and stroke, syndrome-X, tumours etc. DEHP was administered (ip) at a low dose of 750 microg/100 g body weight to rats and the activity of membrane Na(+)-K+ ATPase in liver, brain and RBC was estimated. Histopathology of brain, activity of HMG CoA reductase (a major rate limiting enzyme in the isoprenoid pathway of which digoxin, the physiological inhibitor of Na(+)-K+ ATPase is a product), intracellular concentration of Ca2+ and Mg2+ in RBC (which is altered as a result of inhibition of Na(+)-K+ ATPase) were also studied. (In the light of the observation of increase of intracellular Ca2+ load and intracellular depletion of Mg2+ when Na(+)-K+ ATPase is inhibited). Histopathology of brain revealed areas of degeneration in the rats administered DEHP. There was significant inhibition of membrane Na(+)-K+ ATPase in brain, liver and RBC. Intracellular Ca2+ increased in the RBC while intracellular Mg2+ decreased. However activity of hepatic HMG CoA reductase decreased. Activity of Na(+)-K+ ATPase and HMG CoA reductase, however returned to normal levels within 7 days of stopping administration of DEHP. The inhibition of membrane Na(+)-K+ ATPase activity by DEHP may indicate the possibility of predisposing recipients of transfusion of blood or hemodialysis to the various disorders mentioned above. However since this effect is reversed when DEHP administration is stopped, it may not be a serious problem in the case of a few transfusion; but in patients receiving repeated blood transfusion as in thalassemia patients or patients undergoing hemodialysis, possibility of this risk has to be considered. This inhibition is a direct effect of DEHP or its metabolites, since activity of HMG CoA reductase, (an enzyme which catalyses a major rate limiting step in the isoprenoid pathway by which digoxin, the physiological inhibitor of Na(+)-K+ ATPase is synthesized) showed a decrease.  相似文献   

12.
A number of studies have reported that oxidant stress reduces the activity of isolated Na(+)-K(+) ATPase and Ca(2+) ATPase which are known to affect the cell membrane integrity. The aim of the study is to determine whether the administration of lisinopril is able to protect the membrane-bound enzyme levels in isolated guinea pig hearts and also ascertain whether or not a relationship exists between oxygen free radicals and membrane bound Na(+)-K(+) ATPase and Ca(2+) ATPase. Forty guinea pig hearts were studied in an isolated Krebs-Henseleit solution-perfused Langendorff cardiac model. In all groups cardioplegic arrest was achieved by administering St. Thomas' Hospital cardioplegic solution (STHCS). Group 1 (control, n=10) received only STHCS. Group 2 (n=10) were arrested with lisinopril (l micromol l(-1)) added STHCS. Group 3 (n=10) were pretreated with oral lisinopril (0.2 mg kg(-1) twice a day) for 10 days and then arrested with STHCS. Group 4 were also pretreated with oral lisinopril (0.2 mg kg(-1) twice a day for 10 days), arrested with STHCS and reperfused with lisinopril added to Krebs-Henseleit solution (l micromol l(-1)). Hearts were subjected to normothermic global ischaemia for 90 min and then reperfused at 37 degrees C. Pretreatment and addition of lisinopril in the reperfusion buffer improved the levels of membrane-bound enzymes. When the treated groups were compared with control hearts, the best results were achieved in group 4. The Na(+)-K(+) and Ca(2+) ATPase levels increased from 466.38+/-5.99 to 560.12+/-18.02 and 884.69+/-9.13 to 1287.71+/-13.01 nmolPi mg(-1) protein h(-1) respectively (p<0.05). These results suggest that lisinopril protects the cell membrane integrity and lessens free radical-induced oxidant stress.  相似文献   

13.
It is unclear whether muscle activity reduces or increases Na(+)-K(+)-ATPase maximal in vitro activity in rat skeletal muscle, and it is not known whether muscle activity changes the Na(+)-K(+)-ATPase ion affinity. The present study uses quantification of ATP hydrolysis to characterize muscle fiber type-specific changes in Na(+)-K(+)-ATPase activity in sarcolemmal membranes and in total membranes obtained from control rats and after 30 min of treadmill running. ATPase activity was measured at Na(+) concentrations of 0-80 mM and K(+) concentrations of 0-10 mM. K(m) and V(max) values were obtained from a Hill plot. K(m) for Na(+) was higher (lower affinity) in total membranes of glycolytic muscle (extensor digitorum longus and white vastus lateralis), when compared with oxidative muscle (red gastrocnemius and soleus). Treadmill running induced a significant decrease in K(m) for Na(+) in total membranes of glycolytic muscle, which abolished the fiber-type difference in Na(+) affinity. K(m) for K(+) (in the presence of Na(+)) was not influenced by running. Running only increased the maximal in vitro activity (V(max)) in total membranes from soleus, whereas V(max) remained constant in the three other muscles tested. In conclusion, muscle activity induces fiber type-specific changes both in Na(+) affinity and maximal in vitro activity of the Na(+)-K(+)-ATPase. The underlying mechanisms may involve translocation of subunits and increased association between PLM units and the alphabeta complex. The changes in Na(+)-K(+)-ATPase ion affinity are expected to influence muscle ion balance during muscle contraction.  相似文献   

14.
白细胞介素-2对大鼠心肌Ca2+ATPase和Na+ /K+ATPase的影响   总被引:3,自引:0,他引:3  
Cao CM  Xia Q  Fu C  Jiang HD  Ye ZG  Shan YL  Chan JZ 《生理学报》2003,55(1):83-90
为了探讨IL-2对心肌细胞内钙影响的可能机制,用光学法检测心肌肌浆网Ca^2 ATPase的活性,以及细胞膜Ca^2 ATPase和Na^ /K^ ATPase的活性。结果:(1)用IL-2(10、40、200、800U/ml)灌流心脏后,其肌浆网Ca^2 ATPase的活性随IL-2浓度的升高而增强;(2)在ATP浓度为0.1-4mmol/L时,Ca^2 ATPase的活性随ATP浓度的升庙则增强,由IL-2(200U/ml)灌流后的心脏获得肌浆网(SR),其Ca^2 ATPase的活性对ATP的反应强于对照组;(3)在[Ca^2 ]为1-40μmol/L时,心脏SR Ca^2 ATPase的活性随[Ca^2 ]增加而增强,而IL-2灌流心脏后分离的SR,其Ca^2 ATPase活性在[Ca^2 ]升高时没有明显改变;(4)用nor-BNI(10nmol/L)预处理5min后,IL-2(200U/ml)灌流后不再使SR Ca^2 ATPase的活性增强;(5)用PTX(5mg/L)预处理后,IL-2对SR Ca^2 ATPase的影响减弱;(6)用磷脂酶C(PLC)抑制剂U73122(5μmol/L)处理后,IL-2不再使SR Ca^2 ATPase活性增高;(7)用IL-2直接处理从正常大鼠分离的SR后,对SR Ca^2 ATPase活性无明显影响;(8)IL-2灌流后,对心肌细胞膜Ca^2 ATPase和Na^ /K^ ATPase活性没有显著。上述结果表明,IL-2灌流心脏后使心肌肌浆网Ca^2 ATPase的活性增加,心肌细胞膜上的κ-阿片受体及其下游的G蛋白和PLC介导了IL-2的作用。尽管IL-2提高SR Ca^2 ATPase对ATP的反应性,但却抑制SR Ca^2 ATPase对钙离子的敏感性。IL-2对心肌细胞膜Ca^2 ATPase和Na^ /K^ ATPase的活性无明显影响。  相似文献   

15.
Expression and activity of cardiac Na(+)/Ca(2+) exchanger (NCX1) are altered in many disease states. We engineered mice in which the phosphomimetic phospholemman S68E mutant (inhibits NCX1 but not Na(+)-K(+)-ATPase) was constitutively overexpressed in a cardiac-specific manner (conS68E). At 4-6 wk, conS68E mice exhibited severe bradycardia, ventricular arrhythmias, increased left ventricular (LV) mass, decreased cardiac output (CO), and ~50% mortality compared with wild-type (WT) littermates. Protein levels of NCX1, calsequestrin, ryanodine receptor, and α(1)- and α(2)-subunits of Na(+)-K(+)-ATPase were similar, but sarco(endo)plasmic reticulum Ca(2+)-ATPase was lower, whereas L-type Ca(2+) channels were higher in conS68E hearts. Resting membrane potential and action potential amplitude were similar, but action potential duration was dramatically prolonged in conS68E myocytes. Diastolic intracellular Ca(2+) ([Ca(2+)](i)) was higher, [Ca(2+)](i) transient and maximal contraction amplitudes were lower, and half-time of [Ca(2+)](i) transient decline was longer in conS68E myocytes. Intracellular Na(+) reached maximum within 3 min after isoproterenol addition, followed by decline in WT but not in conS68E myocytes. Na(+)/Ca(2+) exchange, L-type Ca(2+), Na(+)-K(+)-ATPase, and depolarization-activated K(+) currents were decreased in conS68E myocytes. At 22 wk, bradycardia and increased LV mass persisted in conS68E survivors. Despite comparable baseline CO, conS68E survivors at 22 wk exhibited decreased chronotropic, inotropic, and lusitropic responses to isoproterenol. We conclude that constitutive overexpression of S68E mutant was detrimental, both in terms of depressed cardiac function and increased arrhythmogenesis.  相似文献   

16.
Calcium homeostasis is crucial for the proper function of cardiac cells. Since the Na(+)/Ca(2+) exchanger is an important modulator of calcium homeostasis especially in the heart, the objective of this study was to investigate the effect of immobilization stress on the high capacity Na(+)/Ca(2+) exchanger in rat heart ventricles and atria. Repeated immobilization stress increased both the mRNA and the protein level and the activity of the Na(+)/Ca(2+) exchanger in the left, but not the right ventricle of rat heart. Since corticosterone is rapidly increased during the stress stimulus, it might be assumed that mRNA of the Na(+)/Ca(2+) exchanger is increased through a glucocorticoid responsive element. However, we have found that cortisol did not change the Na(+)/Ca(2+) exchanger at the mRNA or protein levels. These results clearly show that this effect of stress is not mediated via cortisol.  相似文献   

17.
Aphanothece cells could take up Na(+) and this uptake was strongly inhibited by the protonophore, carbonyl cyanide m-chlorophenylhydrazone (CCCP). Cells preloaded with Na(+) exhibited Na(+) extrusion ability upon energizing with glucose. Na(+) was also taken up by the plasma membranes supplied with ATP and the uptake was abolished by gramicidin D, monensin or Na(+)-ionophore. Orthovanadate and CCCP strongly inhibited Na(+) uptake, whereas N, N'-dicyclohexylcarbodiimide (DCCD) slightly inhibited the uptake. Plasma membranes could hydrolyse ATP in the presence of Na(+) but not with K(+), Ca(2+) and Li(+). The K(m) values for ATP and Na(+) were 1.66+/-0.12 and 25.0+/-1.8 mM, respectively, whereas the V(max) value was 0.66+/-0.05 mumol min(-1) mg(-1). Mg(2+) was required for ATPase activity whose optimal pH was 7.5. The ATPase was insensitive to N-ethylmaleimide, nitrate, thiocyanate, azide and ouabain, but was substantially inhibited by orthovanadate and DCCD. Amiloride, a Na(+)/H(+) antiporter inhibitor, and CCCP showed little or no effect. Gramicidin D and monensin stimulated ATPase activity. All these results suggest the existence of a P-type Na(+)-stimulated ATPase in Aphanothece halophytica. Plasma membranes from cells grown under salt stress condition showed higher ATPase activity than those from cells grown under nonstress condition.  相似文献   

18.
The effect of subcutaneous injection of hydrocortisone and corticosterone on the activity values of some subcellular fractions marker enzymes from rat liver and brain was investigated and compared with controls (without treatment with hormones). The following enzymes were studied (subcellular fraction are shown between parentheses): N-acetyl-beta-D-glucosaminidase and beta-glucuronidase (lysosomes); succinate dehydrogenase = SDH (mitochondria); glucose-6-phosphatase (endoplasmic reticulum); 5'-nucleotidase and Na+-K+-Mg2+ ATPase (plasma membrane). The specific activity of lysosomal enzymes from liver showed no change when rats were injected either with hydrocortisone or corticosterone. The same enzymes from brain showed significant increases in their activities with both hydrocortisone or corticosterone except beta-glucuronidase; this enzyme gave activity values remaining between the control levels, after treatment with corticosterone. The activity of mitochondrial SDH was increased after corticosterone injection either in liver or brain. After hydrocortisone injection, its activity rises significantly in brain (72%), but it falls in liver compared to the control values. Glucose-6-phosphatase behaves similarly in brain or liver fractions; its activity increases always after corticosterone treatment and decreases by hydrocortisone. The plasma membrane marker enzymes did not change practically in brain fractions, excepted Na+-K+-Mg2+ ATPase which tends to rise its activity after hydrocortisone injection. In liver fractions, both 5'-nucleotidase and Na+-K+-Mg2+ ATPase activities increase either by corticosterone or hydrocortisone treatment, except 5'-nucleotidase which specific activity decreases in liver after hydrocortisone treatment.  相似文献   

19.
In the present study, the expression of Na(+)-K(+) ATPase in the gerbil hippocampus associated with various sequelae of spontaneous seizures were investigated in order to identify the roles of Na(+)-K(+) ATPase in the epileptogenesis and the recovery mechanisms in these animals. The population of Na(+)-K(+) ATPase immunoreactive neurons and Na(+)-K(+) ATPase immunodensity were significantly lower in the pre-seizure group of SS gerbils than those in SR gerbils. At 30-min postictal, the Na(+)-K(+) ATPase immunoreactivity was significantly elevated in the hippocampal complex. At 3-h postictal, the Na(+)-K(+) ATPase immunoreactivity in the hippocampus was declined, as compared to the 30-min postictal. At 12h after seizure on-set, Na(+)-K(+) ATPase expression was re-enhanced in the all regions of the hippocampal complex including the dentate hilus. Following administration of vigabatrin Na(+)-K(+) ATPase expression was also increased. The present data suggest that altered Na(+)-K(+) ATPase expression may contribute the regulation of the seizure activity in this animal.  相似文献   

20.
Alveolar epithelial cells effect edema clearance by transporting Na(+) and liquid out of the air spaces. Active Na(+) transport by the basolaterally located Na(+)-K(+)-ATPase is an important contributor to lung edema clearance. Because alveoli undergo cyclic stretch in vivo, we investigated the role of cyclic stretch in the regulation of Na(+)-K(+)-ATPase activity in alveolar epithelial cells. Using the Flexercell Strain Unit, we exposed a cell line of murine lung epithelial cells (MLE-12) to cyclic stretch (30 cycles/min). After 15 min of stretch (10% mean strain), there was no change in Na(+)-K(+)-ATPase activity, as assessed by (86)Rb(+) uptake. By 30 min and after 60 min, Na(+)-K(+)-ATPase activity was significantly increased. When cells were treated with amiloride to block amiloride-sensitive Na(+) entry into cells or when cells were treated with gadolinium to block stretch-activated, nonselective cation channels, there was no stimulation of Na(+)-K(+)-ATPase activity by cyclic stretch. Conversely, cells exposed to Nystatin, which increases Na(+) entry into cells, demonstrated increased Na(+)-K(+)-ATPase activity. The changes in Na(+)-K(+)-ATPase activity were paralleled by increased Na(+)-K(+)-ATPase protein in the basolateral membrane of MLE-12 cells. Thus, in MLE-12 cells, short-term cyclic stretch stimulates Na(+)-K(+)-ATPase activity, most likely by increasing intracellular Na(+) and by recruitment of Na(+)-K(+)-ATPase subunits from intracellular pools to the basolateral membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号