共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Many metals have been shown to alter the function of a wide range of enzyme systems, including those involved in DNA repair and replication. To assess the impact in vivo of such metal actions a "Microtitre" fluctuation assay was used to examine the ability of Ni(II) to act as a comutagen with simple alkylating agents. In E. coli, Ni(II) chloride potentiated the mutagenicity of methyl methanesulfonate (MMS) in polymerase-proficient strains (WP2+ and WP2-), but not in polA- strains (WP6 and WP67) or in lexA- (CM561) or recA- (CM571) strains. The absence of UV excision repair (WP2- and WP67) had little, if any, effect. An extended lag phase was seen at 2-4 h in the polA- strains following treatment with Ni(II) chloride and MMS, but normal growth resumed thereafter. Results suggested that mutations induced by MMS were fixed during log phase growth and that more than 2 h of exposure were necessary for potentiation by Ni(II) to be observed. Thus, the extended lag phase probably cannot explain the lack of potentiation. RecA-dependence of the comutagenic effect was corroborated with S. typhimurium TA1535 and TA100. Only in the pKM101 containing strain, TA100, was potentiation of ethyl methanesulfonate (EMS) and MMS by Ni(II) chloride evident. The mucAB genes carried on pKM101 increase the sensitivity of TA100 to a variety of mutagens, providing there is a functional recA gene product. Taken together, the data suggest that Ni(II) acts indirectly, as a comutagen, in bacterial systems, possibly affecting processes involving recA- and/or polA-dependent function(s). 相似文献
3.
Synergistic effect of an Escherichia coli mutator gene on mutagenesis by ultraviolet radiation and by alkylating agents 总被引:3,自引:0,他引:3
R F Hill 《Mutation research》1972,14(1):27-31
E. coli strains differing in a gene responsible for high spontaneous mutability (mut HI) were compared for their mutability by UV radiation and by the alkylating agents ethyl methanesulfonate and methyl methanesulfonate. All three exogenous mutagenic agents induced significantly higher frequencies of mutants with impaired carbohydrate-fermenting ability when the mutator allele rather than the wild-type allele was present. Thus the mut HI gene product possibly increases the probability of replication error due to alterations in the structure of the template strand of DNA. An attempt to detect an synergistic effect for UV-induced suppressor mutations was unsuccessful. The failure may have been due to the particular method used for scoring this type of mutation. 相似文献
4.
Summary The lethal and mutagenic effects of methyl methanesulphonate (MMS), ethyl methanesulphonate (EMS), and N-methyl-N-nitro-N-nitrosoguanidine (MNNG) can be dissociated in a mitomycin C (MTC)-sensitive mutant, strain 302, of Micrococcus radiodurans.As regards lethality 302 is extremely sensitive, compared with the wild type, to MTC and decarbamoyl MTC (DCMTC), slightly sensitive to EMS, MNNG, nitrous acid, 7-bromomethylbenz {} anthracene (BrMBA), and N-acetoxy-N-2-acetylaminofluorene (AAAF), and resistant to MMS, hydroxylamine, and ICR 191G. As regards mutability it is, compared to the wild type, very sensitive to MMS, EMS, and MNNG, and slightly sensitive to hydroxylamine and nitrous acid but not to any other agent examined.Alkaline sucrose gradient studies indicate that 302 does not incise DNA containing BrMBA adducts, although it does incise DNA damaged by AAAF but probably not to the same extent as wild type.We put forward the hypothesis that the hypermutability of 302 is due to the non-removal of bases or nucleotides, modified in exocyclic positions, which have altered base-pairing capabilities, while lethality results from the non-removal of bases or nucleotides, also modified in exocyclic positions, which no longer form hydrogen-bonded base pairs. 相似文献
5.
The role of N3-ethyldeoxythymidine in mutagenesis and cytotoxicity by ethylating agents 总被引:2,自引:0,他引:2
The significance of DNA ethylation at the central hydrogen-bonding site (N3) of thymine was investigated using an in vitro DNA replication system. The system utilized a primed template in which the 3'-end of the primer is eight nucleotides away from N3-ethyldeoxythymidine (N3-Et-dT), present at template position 26 from the 3'-end. The 34-nucleotide template corresponds to a specific DNA sequence at gene G of bacteriophage phi X174. DNA synthesis products were quantitated by electrophoretic separation and autoradiography. At 10 microM dNTP and 0.5 mM Mn2+, N3-Et-dT blocked DNA synthesis by Escherichia coli polymerase I (Klenow fragment): 60% after incorporating a nucleotide opposite N3-Et-dT (incorporation-dependent blocked product) and 39% 3' to N3-Et-dT. DNA replication past the lesion (post-lesion synthesis) was negligible. Post-lesion synthesis increased using higher concentrations of dNTP, reaching 68% at 200 microM dNTP. DNA sequencing revealed that dA was incorporated opposite N3-Et-dT in the incorporation-dependent blocked product. In the post-lesion synthesis product, dT was exclusively incorporated opposite N3-Et-dT. Formation of the N3-Et-dT.dA base pair at the replication fork terminated DNA synthesis, while the N3-Et-dT.dT base pair formed at the 3'-end of the growing chain was extended, leading to an A.T----T.A transversion mutation. The results suggest a dual role for the N3-Et-dT lesion, contributing in part to the cytotoxicity and mutagenicity of ethylating agents. These studies provide a basis for understanding the activation of oncogene neu by A.T----T.A transversion mutation in rat neuroblastomas induced by N-ethyl-N-nitrosourea. 相似文献
6.
7.
8.
Lynnette R. Ferguson Pamela M. Turner Trudi A. Gourdie Kisione K. Valu William A. Denny 《Mutation research》1989,215(2):213-222
Although the biological properties (cytotoxicity, mutagenicity and carcinogenicity) of alkylating agents result from their bonding interactions with DNA, such compounds generally do not show any special binding affinity for DNA. A series of acridine-linked aniline mustards of widely-varying alkylator reactivity have been designed as DNA-directed alkylating agents. We have considered whether such DNA targeting has an effect on mutagenic properties by evaluating this series of drugs in comparison with their untargeted counterparts for toxic, recombinogenic and mutagenic properties in Saccharomyces cerevisae strain D5. The simple untargeted aniline mustards are effective inducers of mitotic crossing-over in this strain, but resemble other reported alkylators in being rather inefficient inducers of the “petite” or mitochondrial mutation in yeast. However, the majority of the DNA-targeted mustards were very efficient petite, mutagens, while showing little evidence of mitotic crossing-over or other nuclear events. The 100% conversion of cells into petites and the lack of a differential between growing and non-growing cells are similar to the effects of the well characterised mitochondrial mutagen ethidium bromide. These data suggest very different modes of action between the DNA-targeted alkylators and their non-targeted counterparts. 相似文献
9.
10.
Arianna Lee Karen L. Clark Martin Fleischmann Markus Aebi Michael W. Clark 《Molecular & general genetics : MGG》1994,245(1):32-44
Prp20/Srm1, a homolog of the mammalian protein RCC1 in Saccharomyces cerevisiae, binds to double-stranded DNA (dsDNA) through a multicomponent complex in vitro. This dsDNA-binding capability of the Prp20 complex has been shown to be cell-cycle dependent; affinity for dsDNA is lost during DNA replication. By analyzing a number of temperature sensitive (ts) prp20 alleles produced in vivo and in vitro, as well as site-directed mutations in highly conserved positions in the imperfect repeats that make up the protein, we have determined a relationship between the residues at these positions, cell viability, and the dsDNA-binding abilities of the Prp20 complex. These data reveal that the essential residues for Prp20 function are located mainly in the second and the third repeats at the amino-terminus and the last two repeats, the seventh and eighth, at the carboxyl-terminus of Prp20. Carboxyl-terminal mutations in Prp20 differ from amino-terminal mutations in showing loss of dsDNA binding: their conditional lethal phenotype and the loss of dsDNA binding affinity are both suppressible by overproduction of Gsp1, a GTP-binding constituent of the Prp20 complex, homologous to the mammalian protein TC4/Ran. Although wild-type Prp20 does not bind to dsDNA on its own, two mutations in conserved residues were found that caused the isolated protein to bind dsDNA. These data imply that, in situ, the other components of the Prp20 complex regulate the conformation of Prp20 and thus its affinity for dsDNA. Gsp1 not only influences the dsDNA-binding ability of Prp20 but it also regulates other essential function(s) of the Prp20 complex. Overproduction of Gsp1 also suppresses the lethality of two conditional mutations in the penultimate carboxyl-terminal repeat of Prp20, even though these mutations do not eliminate the dsDNA binding activity of the Prp20 complex. Other site-directed mutants reveal that internal and carboxyl-terminal regions of Prp20 that lack homology to RCC1 are dispensable for dsDNA binding and growth. 相似文献
11.
Christina Kennedy Rawia Gamal Richard Humphrey Juan Ramos Kevin Brigle Dennis Dean 《Molecular & general genetics : MGG》1986,205(2):318-325
Summary Tn5 was introduced into Azotobacter vinelandii on a suicide vector, pGS9. Three Nif- mutants were found to carry Tn5 in nifH (MV6), in nifN (MV22), and in or near nifM (MV21), from the results of hybridisation experiments. For MV21 and MV22 this was also shown by complementation with the nif genes of Klebsiella pneumoniae on pRD1. MV6 failed to synthesis the nifH, D and K gene products. MV6 and MV22 fixed nitrogen in the absence of supplied molybdenum while mutant MV21 did not, suggesting that the nifM gene product may be required for the alternative nitrogenase system synthesised in azotobacteria under conditions of molybdenum deprivation. Reconstitution experiments with mutant extracts showed that MV22 (nifN
-) lacked the FeMo cofactor and that MV21 (NifM-) synthesised inactive Fe protein. These biochemical phenotypes are identical to those of the K. pneumoniae nifN and nifM mutants, respectively, demonstrating that these genes have the same function in both K. pneumoniae and A. vinelandii. Complementation of the A. vinelandii mutants with pLAFR1 gene banks of A. vinelandii or a. chroococcum yielded three cosmids of interest. pLV10 complemented UW91, a nifH mutant, and corrected the defect in MV6 after recombination with the mutant genome. It also carried nifD (but not nifK) and about 18 kb of DNA upstream from nifH. pLV1 from the A. vinelandii gene bank complemented both MV21 and MV22 as did pLC11, isolated from the A. chroococcum gene bank. Both pLV1 and pLC11 carried part of the nif cluster downstream of nifHDK which also includes nifEN and nifMVS on about 22 kb of DNA. 相似文献
12.
13.
Mechanisms of carcinogenesis induced by alkylating agents 总被引:42,自引:0,他引:42
14.
15.
The mutagenic interaction between near-ultraviolet (365 nm) radiation and the alkylating agents ethyl methanesulphonate (EMS) and methyl methanesulphonate (MMS) was studied in a repair-competent and an excision-deficient strain of Escherichia coli. Near-UV radiation modified the metabolic response of exposure to these chemicals and either reduced or increased their mutagenic efficiency. Based on these results, an experimental model was formulated to explain the mutagenic interactions that occur between near-UV and various agents that induce prototrophic revertants via error-prone repair of DNA. According to this model, low doses of near-UV provoke conditions for mutation frequency decline (MFD) and lead to a mutagenic antagonism. With increasing near-UV doses, damage to constitutive error-free repair systems increases, favouring the error-prone system and inhibiting the MFD. Under these conditions there will be a progressive decrease in antagonism until at high doses an enhancement of mutation frequency (positive interaction) will occur. 相似文献
16.
Bacillus subtilis mutants deficient in the adaptive response to simple alkylating agents. 总被引:2,自引:3,他引:2
下载免费PDF全文

Three mutant strains exhibiting hyper-sensitivity to N-methyl-N'-nitro-N-nitrosoguanidine, but not to methyl methanesulfonate, were selected by a replica method from mutagenized spores of Bacillus subtilis. All three were totally deficient in the adaptive response to N-methyl-N'-nitro-N-nitrosoguanidine with regard to both lethality and mutagenesis. The activity to destroy O6-methylguanine residues in the methylated DNA was not elevated in the mutant cells by the pretreatment with sublethal concentrations of N-methyl-N'-nitro-N-nitrosoguanidine. This deficiency corresponded to the persistence of O6-methylguanine residues in the DNA of both control and pretreated mutant cells challenged with the drug. The lethal and mutagenic sensitivity of the mutant strains were observed only for methyl- or ethyl-nitroso compounds that are thought to be active as inducers and are also active in O-alkylation. Except for the insensitivity to methyl methanesulfonate, the phenotypes of these mutants look very similar to those of ada mutants isolated previously in Escherichia coli. 相似文献
17.
Summary The mutagenisity of NTG (N-methyl-N-nitro-N-nitrosoguanidine) for Gloeotrichia ghosei, a cyanobacterium, was enhanced by simultaneous treatment with NTG and chloramphenicol with minimal effect on survival. Addition of chloramphenicol at the time of NTG treatment enhanced the mutation frequency of the fil5marker considerably (about ten times). 相似文献
18.
Preventive action of thioethers towards in vitro DNA binding and mutagenesis in E. coli K12 by alkylating agents 总被引:1,自引:0,他引:1
Thioethers are effective scavengers of electrophilic metabolites derived from the hepatocarcinogen N-hydroxy-2-acetylaminofluorene (van den Goorbergh et al., 1987). In this study 2 of these thioethers, 4-(methylthio)benzoic acid (MTB) and its methylester, methyl 4-(methylthio)benzoate (MMTB), have been tested for their ability to prevent in vitro DNA binding and mutation induction in E. coli K12 by the direct alkylating agents ethylnitrosourea (ENU), methylnitrosourea (MNU), ethyl methanesulfonate (EMS) and methyl methanesulfonate (MMS). In addition to MTB and MMTB, the thioether L-methionine (Met), and the thiols glutathione (GSH) and L-cysteine (Cys) were included for reasons of comparison. MTB was able to (partially) prevent DNA binding and mutation induction by ENU. However, this thioether was ineffective with EMS. DNA binding and mutagenesis by EMS were (partially) prevented by GSH and Cys, while these thiols could not prevent DNA binding and mutation induction by ENU. MMTB was unable to prevent mutation induction by these ethylating agents. With the methylating agents, similar effects of MTB were observed: MTB effectively prevented mutation induction by MNU while it was much less effective towards MMS. GSH and Cys were comparably effective as antimutagenic agents towards both methylating agents. Met was unable to prevent either DNA binding or mutation induction by these agents. Taken together, the results show that aromatic thioethers are able to trap genotoxic electrophiles derived from the nitrosoureas ENU and MNU, and may therefore act as potential anticarcinogens towards these agents, which are only poorly detoxified by GSH. 相似文献
19.
Jeffrey F. Lemontt 《Molecular & general genetics : MGG》1976,145(2):125-132
Summary A UV-revertible mutant of the nar1 structural gene for nitrate reductase was isolated in wildtype (nar
+
nir
+) Ustilago maydis. It proved to be vigorously revertible by gamma rays as well. Genetic analysis revealed that the strain carried a single, nonleaky, recessive allele (nar1-m) with an unusually high spontaneous reversion rate (3×10-5/div.). Reliable reversion frequencies were determined with a special agar medium that reduced the normally high level of residual growth observed on nitrate minimal agar. Radiation-induced reversion frequencies in the homozygous diploid were approximately twice those in the hapliod. Following crosses to wild type, two revertants (one spontaneous and one UV-induced) were found to map at nar1. Although the molecular basis of nar1-m reversion is not known, available data suggest that some form of point mutation is involved. 相似文献
20.
Summary The slow-growing soybean symbiont, Rhizobium japonicum, has not readily been accessible so far to classical mutational analysis of genes responsible for symbiotic nitrogen fixation. We have overcome part of this problem by the successful application of a site-directed mutagenesis technique to this organism. The following steps are involved: (i) local Tn5 mutagenesis, in E. coli, of cloned R. japonicum DNA (e.g. the nifDK operon); (ii) conjugational transfer of the mutated DNA into R. japonicum using vectors which are unable to replicate there; (iii) selection of R. japonicum exconjugants which have exchanged their wild-type genomic DNA region for the Tn5-containing fragment by homologous recombination. While using this technique it appeared mandatory to distinguish double-crossover-events (true replacements) from single-crossover events (replicon fusions or cointegrations). Only the true replacement mutants were genetically stable; their phenotypes were determined with respect to nodulation (Nod) and nitrogen fixation (Fix) by plant infection tests. Tn5 mutations within nifD and nifK caused a Nod+ Fix- phenotype, whereas mutants with insertions in the immediate vicinity on either side of nifDK were found to be Nod+ Fix+, suggesting that genes flanking nifDK may not be involved in the nitrogen fixing symbiosis. Nodule reisolates were found to carry Tn5 at their original locations. 相似文献