首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies designed to identify novel methylation events related to cancer often employ cancer cell lines in the discovery phase of the experiments and have a relatively low rate of discovery of cancer-related methylation events. An alternative algorithm for discovery of novel methylation in cancer uses primary tumor-derived xenografts instead of cell lines as the primary source of nucleic acid for evaluation. We evaluated DNA extracted from primary head and neck squamous cell carcinomas (HNSCC), xenografts grown from these primary tumors in nude mice, HNSCC-derived cell lines, normal oral mucosal samples, and minimally transformed oral keratinocyte-derived cell lines using Illumina Infinum Humanmethylation 27 genome-wide methylation microarrays. We found >2,200 statistically significant methylation differences between cancer cell lines and primary tumors and when comparing normal oral mucosa to keratinocyte cell lines. We found no statistically significant promoter methylation differences between primary tumor xenografts and primary tumors. This study demonstrates that tumor-derived xenografts are highly accurate representations of promoter methylation in primary tumors and that cancer derived cell lines have significant drawbacks for discovery of promoter methylation alterations in primary tumors. These findings also support use of primary tumor xenografts for the study of methylation in cancer, drug discovery, and the development of personalized cancer treatments.  相似文献   

2.
《Epigenetics》2013,8(1):41-46
HOX genes are developmental genes that determine anterior–posterior embryonic pattern and govern the process of differentiation. Inappropriate expression of HOX genes has been implicated in developmental abnormalities and hematopoietic malignancies. In addition, HOX genes silencing by DNA methylation has been reported in cancers and related to disease aggressiveness and outcome. On the other hand, accumulating evidence suggests that epigenetic changes at HOX genes are linked to normal development and differentiation. To better understand the relationship between HOXA methylation and cancer, we analyzed the methylation pattern of HOXA genes in human primary breast and colon carcinomas, normal tissues and normal white blood cells. Genome-wide methylation arrays of breast cancers and white blood cells demonstrated similar methylation patterns. Quantitative methylation analysis of seven representative HOXA genes revealed various levels of methylation in both normal tissues and cancers. Analysis of epithelial-enriched normal breast tissue and stroma indicated that the stroma was the major origin of HOXA methylation. Furthermore, in selected dense breast cancers, minimal increase in methylation of several HOXA genes did not correlate with the predominance of malignant epithelial cells in these tumors. Our results suggest that methylation of the HOXA cluster may be a normal developmental and cell type specific process rather than a cancer specific mechanism.  相似文献   

3.
The human cysteine dioxygenase 1 (CDO1) gene is a non-heme structured, iron-containing metalloenzyme involved in the conversion of cysteine to cysteine sulfinate, and plays a key role in taurine biosynthesis. In our search for novel methylated gene promoters, we have analyzed differential RNA expression profiles of colorectal cancer (CRC) cell lines with or without treatment of 5-aza-2′-deoxycytidine. Among the genes identified, the CDO1 promoter was found to be differentially methylated in primary CRC tissues with high frequency compared to normal colon tissues. In addition, a statistically significant difference in the frequency of CDO1 promoter methylation was observed between primary normal and tumor tissues derived from breast, esophagus, lung, bladder and stomach. Downregulation of CDO1 mRNA and protein levels were observed in cancer cell lines and tumors derived from these tissue types. Expression of CDO1 was tightly controlled by promoter methylation, suggesting that promoter methylation and silencing of CDO1 may be a common event in human carcinogenesis. Moreover, forced expression of full-length CDO1 in human cancer cells markedly decreased the tumor cell growth in an in vitro cell culture and/or an in vivo mouse model, whereas knockdown of CDO1 increased cell growth in culture. Our data implicate CDO1 as a novel tumor suppressor gene and a potentially valuable molecular marker for human cancer.  相似文献   

4.
5.
Recent studies suggest that paired box 5 (PAX5) is down‐regulated in multiple tumours through its promoter methylation. However, the role of PAX5 in non‐small cell lung cancer (NSCLC) pathogenesis remains unclear. The aim of this study is to examine PAX5 expression, its methylation status, biological functions and related molecular mechanism in NSCLC. We found that PAX5 was widely expressed in normal adult tissues but silenced or down‐regulated in 88% (7/8) of NSCLC cell lines. PAX5 expression level was significantly lower in NSCLC than that in adjacent non‐cancerous tissues (P = 0.0201). PAX5 down‐regulation was closely associated with its promoter hypermethylation status and PAX5 expression could be restored by demethylation treatment. Frequent PAX5 promoter methylation in primary tumours (70%) was correlated with lung tumour histological types (P = 0.006). Ectopic expression of PAX5 in silenced lung cancer cell lines (A549 and H1975) inhibited their colony formation and cell viability, arrested cell cycle at G2 phase and suppressed cell migration/invasion as well as tumorigenicity in nude mice. Restoration of PAX5 expression resulted in the down‐regulation of β‐catenin and up‐regulation of tissue inhibitors of metalloproteinase 2, GADD45G in lung tumour cells. In summary, PAX5 was found to be an epigenetically inactivated tumour suppressor that inhibits NSCLC cell proliferation and metastasis, through down‐regulating the β‐catenin pathway and up‐regulating GADD45G expression.  相似文献   

6.
《Epigenetics》2013,8(3):159-164
Previous reports have shown that DNA methylation profiles within primary human malignant tissues are altered when these cells are transformed into cancer cell lines. However, it is unclear if similar differences in DNA methylation profiles exist between DNA derived from peripheral blood leukocytes (PBLs) and corresponding Epstein-Barr Virus transformed lymphoblastoid cell lines (LCLs). To assess the utility of LCLs as a resource for methylation studies we have compared DNA methylation profiles in promoter and 5/ regions of 318 genes in PBL and LCL sample pairs from patients with type 1 diabetes with or without nephropathy. We identified a total of 27 (~8%) genes that revealed different DNA methylation profiles in PBL compared with LCL-derived DNA samples. In conclusion, although the profiles for most promoter regions were similar between PBL-LCL pairs, our results indicate that LCL-derived DNA may not be suitable for DNA methylation studies at least in diabetic nephropathy.  相似文献   

7.
Earlier experiments demonstrated that DNA from young plants of 5-azacytidine-induced flax (Linum usitatissimum) lines that flower earlier-than-normal is hypomethylated relative to DNA from their control lines and detected differences in methylation level between plants sampled at different ages, which suggested that the methylation level in flax changes during development. To investigate this possibility, and its potential impact on the difference in methylation level between early-flowering and control lines, developmental profiles were established for the cytosine methylation levels in DNA from post-germination seedlings and from the shoot tips of main stems and the cotyledons sampled throughout vegetative phase. The methylation profiles for two early-flowering lines and their control lines were compared. The methylation profiles were then compared to profiles for DNA content, tissue weight and chlorophyll content (green tissues); these additional parameters provided information on tissue status in terms of cell division, tissue expansion and/or photosynthetic maturity. With one exception, methylation levels were either static or increased with plant age and/or tissue maturity; the highest methylation levels were seen in senescent cotyledons. Although DNA from immature plants or tissues of the early-flowering lines was usually hypomethylated, the hypomethylation was not always apparent in tissues from older plants.  相似文献   

8.
Altered methylation of versican proteoglycan gene in human colon carcinoma   总被引:1,自引:0,他引:1  
We show for the first time that DNA isolated from human colon carcinoma tissue exhibits a selective hypomethylation of versican gene, which encodes a large chondroitin sulfate proteoglycan. The degree of methylation of CpG sequences of versican gene locus, as determined by isoschizomeric endonucleases and Southern hybridization, is about three times lower than that found in either normal colon or ulcerative colitis tissues. Hypomethylation can be observed in both benign and malignant colonic neoplasms; however, there is no correlation with increased expression since versican mRNA levels do not significantly vary between normal and neoplastic tissues. We further show that versican gene locus from malignant tissue, but not from normal or ulcerative colitis tissues, contains Hind III hypersensitive sites which also comprise hypomethylated CpG sequences. Analysis of versican methylation status in colon carcinoma cells and benign mesenchymal cells derived from human colon suggests that the changes observed in vivo derive from demethylating events involving host stromal cells rather than tumor cells themselves. These findings demonstrate that changes in versican gene methylation are specific for colonic neoplasms, that these changes may precede malignant transformation, and that inflammation and tissue remodelling alone are not enough to generate these changes in proteoglycan gene methylation and nuclease hypersensitivity.  相似文献   

9.
Liu ZJ  Maekawa M  Horii T  Morita M 《Life sciences》2003,73(15):1963-1972
The changes of methylation status of various gene promoters are a common feature of malignant cells and these changes can occur early in the progression process. Therefore, abnormal methylation can be used as cancer marker. Such studies will first require the development of a panel of methylated markers that are methylated in cancer tissues but unmethylated in normal tissues or methylated status is different between cancer tissues and normal tissues. By using methylation-specific PCR (MSP) assay method, we observed alterations in DNA methylation at the double promoter regions of the progesterone receptor (PR) gene and estrogen receptor (ERalpha) gene in various tumor cell lines. Compared with normal white blood cell, the methylation status of PRA promoter in various cancer cell lines changed from unmethylation pattern to methylation pattern. That of PRB promoter changed from both unmethylated and methylated alleles to only methylated allele. The methylation status of ERalpha-A and ERalpha-B promoter in various cancer cell lines are cell -specific. This study indicates that PR promoter methylation may be a molecular marker in various cancer detections. And the methylation status of ERalpha-A and ERalpha-B is cell-specific.  相似文献   

10.
11.
Aberrant DNA methylation patterns have been reported in inflamed tissues and may play a role in disease. We studied DNA methylation and gene expression profiles of purified intestinal epithelial cells from ulcerative colitis patients, comparing inflamed and non-inflamed areas of the colon. We identified 577 differentially methylated sites (false discovery rate <0.2) mapping to 210 genes. From gene expression data from the same epithelial cells, we identified 62 differentially expressed genes with increased expression in the presence of inflammation at prostate cancer susceptibility genes PRAC1 and PRAC2. Four genes showed inverse correlation between methylation and gene expression; ROR1, GXYLT2, FOXA2, and, notably, RARB, a gene previously identified as a tumor suppressor in colorectal adenocarcinoma as well as breast, lung and prostate cancer. We highlight targeted and specific patterns of DNA methylation and gene expression in epithelial cells from inflamed colon, while challenging the importance of epithelial cells in the pathogenesis of chronic inflammation.  相似文献   

12.
Early detection of lung cancer is challenging due to a lack of adequate biomarkers. To discover novel tumor suppressor genes (TSGs) silenced by aberrant promoter methylation, we analyzed the gene expression profiles of two lung adenocarcinoma cell lines using pharmacologic-unmasking and subsequent microarray-analysis. Among 617 genes upregulated, we selected 30 genes and investigated the methylation status of their promoters by bisulfite sequencing analysis. Aberrant methylation was detected in four genes (CRABP2, NOEY2, T, MAP2K3) in at least one lung adenocarcinoma cell lines. Furthermore, the T promoter was methylated in 60% of primary lung adenocarcinomas versus 13% of non-malignant lung tissues. Conversely, RT-PCR analysis revealed T expression was low in lung tumors, while high in normal tissues. In addition, no non-synonymous mutations related to gene silencing were found. While further analysis is warranted, our results suggest that T has the potential to be a novel candidate TSG in lung cancer.  相似文献   

13.
14.
We wished to determine if a partial methylation profile for a specific CpG site was stably maintained in both mammalian tissues and cultured cell lines. To accomplish this, we identified a CpG site with a partial methylation profile located upstream of the mouse adenine phosphoribosyltransferase promoter region. This site was found to be methylated at a level of approximately 25% in mouse brain, kidney, lung, and skeletal muscle tissues, at a level close to 50% in liver, and at level close to 0% in testis. These tissue-specific methylation profiles were not altered during aging. A methylation profile of approximately 25% at this CpG site was also observed in five mouse teratocarcinoma stem cell lines and one additional cultured cell line. This profile, however, was altered upon cellular differentiation, adenine phosphoribosyltransferase hemizygosity, and a loss of adenine phosphoribosyltransferase activity in some of the cultured cell lines. We conclude that partial methylation of a specific CpG site can be stably maintained both in vivo and in vitro and that a mechanism exists for its maintenance. The functional significance of a partial methylation profile remains to be determined.  相似文献   

15.
Dickkopf‐related protein 3 (DKK3) is an antagonist of Wnt ligand activity. Reduced DKK3 expression has been reported in various types of cancers, but its functions and related molecular mechanisms in breast tumorigenesis remain unclear. We examined the expression and promoter methylation of DKK3 in 10 breast cancer cell lines, 96 primary breast tumours, 43 paired surgical margin tissues and 16 normal breast tissues. DKK3 was frequently silenced in breast cell lines (5/10) by promoter methylation, compared with human normal mammary epithelial cells and tissues. DKK3 methylation was detected in 78% of breast tumour samples, whereas only rarely methylated in normal breast and surgical margin tissues, suggesting tumour‐specific methylation of DKK3 in breast cancer. Ectopic expression of DKK3 suppressed cell colony formation through inducing G0/G1 cell cycle arrest and apoptosis of breast tumour cells. DKK3 also induced changes of cell morphology, and inhibited breast tumour cell migration through reversing epithelial‐mesenchymal transition (EMT) and down‐regulating stem cell markers. DKK3 inhibited canonical Wnt/β‐catenin signalling through mediating β‐catenin translocation from nucleus to cytoplasm and membrane, along with reduced active‐β‐catenin, further activating non‐canonical JNK signalling. Thus, our findings demonstrate that DKK3 could function as a tumour suppressor through inducing apoptosis and regulating Wnt signalling during breast tumorigenesis.  相似文献   

16.
Down-regulation of RECK, an important metastasis suppressor gene, has been found in human colon cancer. However, the molecular mechanism for this down- regulation and its biological significance are still unclear. In the present study, we investigated whether down-regulation of RECK is caused by epigenetic inactivation via promoter methylation and tested the effect of DNA methyltransferase (DNMT) inhibitor on RECK expression and cell invasion. The mRNA and protein levels of RECK in colon tumor tissues and their normal counterparts were compared. We found that down-regulation of RECK was found in 48% of the twenty five tumors analyzed. MSP analysis demonstrated that methylation of RECK promoter was detected in 44% (11/25) of the tumor tissues and a strong correlation between down-regulation and promoter methylation was found (P = 0.028). Promoter methylation was also found in SW480 and SW620 human colon cancer cell lines. DNA methyltransferase (DNMT) inhibitor 5'-azacytidine reversed promoter methylation, restored RECK expression and suppressed invasion by these two cell lines. Restoration of RECK is critical for 5'-azacytidine-mediated suppression of cell invasion because inhibition of RECK by a specific antibody significantly attenuated the anti-invasive ability of 5'-azacytidine. Taken together, our results suggest that down-regulation of the metastasis suppressor RECK in colon cancer is associated with promoter methylation and that a DNMT inhibitor may restore RECK expression to inhibit cell invasion.  相似文献   

17.
《Epigenetics》2013,8(4):492-502
Alterations in DNA methylation have been proposed to create a field cancerization state in the colon, where molecular alterations that predispose cells to transformation occur in histologically normal tissue. However, our understanding of the role of DNA methylation in field cancerization is limited by an incomplete characterization of the methylation state of the normal colon. In order to determine the colon’s normal methylation state, we extracted DNA from normal colon biopsies from the rectum, sigmoid, transverse, and ascending colon and assessed the methylation status of the DNA by pyrosequencing candidate loci as well as with HumanMethylation450 arrays. We found that methylation levels of repetitive elements LINE-1 and SAT-α showed minimal variability throughout the colon in contrast to other loci. Promoter methylation of EVL was highest in the rectum and progressively lower in the proximal segments, whereas ESR1 methylation was higher in older individuals. Genome-wide methylation analysis of normal DNA revealed 8388, 82, and 93 differentially methylated loci that distinguished right from left colon, males from females, and older vs. younger individuals, respectively. Although variability in methylation between biopsies and among different colon segments was minimal for repetitive elements, analyses of specific cancer-related genes as well as a genome-wide methylation analysis demonstrated differential methylation based on colon location, individual age, and gender. These studies advance our knowledge regarding the variation of DNA methylation in the normal colon, a prerequisite for future studies aimed at understanding methylation differences indicative of a colon field effect.  相似文献   

18.
Alterations in DNA methylation have been proposed to create a field cancerization state in the colon, where molecular alterations that predispose cells to transformation occur in histologically normal tissue. However, our understanding of the role of DNA methylation in field cancerization is limited by an incomplete characterization of the methylation state of the normal colon. In order to determine the colon’s normal methylation state, we extracted DNA from normal colon biopsies from the rectum, sigmoid, transverse, and ascending colon and assessed the methylation status of the DNA by pyrosequencing candidate loci as well as with HumanMethylation450 arrays. We found that methylation levels of repetitive elements LINE-1 and SAT-α showed minimal variability throughout the colon in contrast to other loci. Promoter methylation of EVL was highest in the rectum and progressively lower in the proximal segments, whereas ESR1 methylation was higher in older individuals. Genome-wide methylation analysis of normal DNA revealed 8388, 82, and 93 differentially methylated loci that distinguished right from left colon, males from females, and older vs. younger individuals, respectively. Although variability in methylation between biopsies and among different colon segments was minimal for repetitive elements, analyses of specific cancer-related genes as well as a genome-wide methylation analysis demonstrated differential methylation based on colon location, individual age, and gender. These studies advance our knowledge regarding the variation of DNA methylation in the normal colon, a prerequisite for future studies aimed at understanding methylation differences indicative of a colon field effect.  相似文献   

19.
The methylation of CpG dinucleotides has become a topic of great interest in cancer research, and the methylation of promoter regions of several tumor suppressor genes has been identified as a marker of tumorigenesis. Evaluation of DNA methylation markers in tumor tissue requires hundreds of samples, which must be analyzed quantitatively due to the heterogeneous composition of biological material. Therefore novel, fast and inexpensive methods for high throughput analysis are needed. Here we introduce a new assay based on peptide nucleic acid (PNA)-library hybridization and subsequent MALDI-TOF analysis. This method is multiplexable, allows the use of standard 384 well automated pipetting, and is more specific and flexible than established methods, such as microarrays and MS-SNuPE. The approach was used to evaluate three candidate colon cancer methylation markers previously identified in a microarray study. The methylation of the genes Ade-nomatous polyposis coli (APC), glycogen synthase kinase-β-3 (GSK3β) and eyes absent 4 (EYA4) was analyzed in 12 colon cancer and 12 normal tissues. APC and EYA4 were confirmed as being differentially methylated in colon cancer patients whereas GSK3β did not show differential methylation.  相似文献   

20.
Frequent aberrant methylation of p16INK4a in primary rat lung tumors.   总被引:29,自引:1,他引:28       下载免费PDF全文
The p16INK4a (p16) tumor suppressor gene is frequently inactivated by homozygous deletion or methylation of the 5' CpG island in cell lines derived from human non-small-cell lung cancers. However, the frequency of dysfunction in primary tumors appears to be significantly lower than that in cell lines. This discordance could result from the occurrence or selection of p16 dysfunction during cell culture. Alternatively, techniques commonly used to examine tumors for genetic and epigenetic alterations may not be sensitive enough to detect all dysfunctions within the heterogeneous cell population present in primary tumors. If p16 inactivation plays a central role in development of non-small-cell lung cancer, then the frequency of gene inactivation in primary tumors should parallel that observed in cell lines. The present investigation addressed this issue in primary rat lung tumors and corresponding derived cell lines. A further goal was to determine whether the aberrant p16 gene methylation seen in human tumors is a conserved event in this animal model. The rat p16 gene was cloned and sequenced, and the predicted amino acid sequence of its product found to be 62% homologous to the amino acid sequence of the human analog. Homozygous deletion accounted for loss of p16 expression in 8 of 20 cell lines, while methylation of the CpG island extending throughout exon 1 was observed in 9 of 20 cell lines. 2-Deoxy-5-azacytidine treatment of cell lines with aberrant methylation restored gene expression. The methylated phenotype seen in cell lines showed an absolute correlation with detection of methylation in primary tumors. Aberrant methylation was also detected in four of eight primary tumors in which the derived cell line contained a deletion in p16. These results substantiate the primary tumor as the origin for dysfunction of the p16 gene and implicate CpG island methylation as the major mechanism for inactivating this gene in the rat lung tumors examined. Furthermore, rat lung cancer appears to be an excellent model in which to investigate the mechanisms of de novo gene methylation and the role of p16 dysfunction in the progression of neoplasia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号