首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recombinant amorpha-4,11-diene synthase from Artemisia annua, expressed in Escherichia coli, was incubated with the deuterium-labeled farnesyl diphosphates, (1R)-[1-(2)H]FPP, (1S)-[1-(2)H]FPP, and [1,1-(2)H2]FPP. GC-MS analysis of amorpha-4,11-diene formed from the deuterated FPPs shows that the deuterium atoms are retained in the product. Furthermore, analysis of the MS-spectra obtained with the differently labeled substrate indicates that the H-1si-proton of FPP is transferred during the cyclization reaction to carbon 10 of amorphadiene while the H-1re-proton of FPP is retained on C-6 of the product. Proton NMR and COSY experiments proved that the original H-1si-proton of FPP is located at C-10 of amorpha-4,11-diene as a result of a 1,3-hydride shift following initial 1,6-ring closure. The results obtained support the previously suggested mechanism for the cyclization of farnesyl diphosphate by amorph-4,11-diene synthase involving isomerization of FPP to (R)-nerolidyl diphosphate (NPP), ionization of NPP, and C-1,C-6-ring closure to generate a bisabolyl cation, followed by a 1,3-hydride shift, 1,10-ring closure to generate the amorphane skeleton, and deprotonation at either C-12 or C-13 to afford the final product (1S,6R,7R,10R)-amorpha-4,11-diene.  相似文献   

2.
Rat liver microsomes catalyzed the formation of A,E,E-geranylgeranyl diphosphate from farnesyl diphosphate and isopentenyl diphosphate in the presence of Triton X-100. Studies on product specificity using various primers such as Z,E-farnesyl diphosphate, E,E-farnesyl diphosphate, Z,E,E-geranylgeranyl diphosphate, E,E,E-geranylgeranyl diphosphate, Z,E,E,E-geranylfarnesyl diphosphate, and E,E,E,E-geranylfarnesyl diphosphate suggested that the microsomal dehydrodolichyl diphosphate synthase has such properties that it releases Z,E,E-geranylgeranyl diphosphate, the first intermediate, in the reactions with farnesyl diphosphate as the starting primer. Metabolic labeling of rat liver slices with [2-3H]mevalonic acid revealed the accumulation of E,E,E-geranylgeranyl (di)phosphates as well as dolichyl (di)phosphate (C85 and C90) and dehydrodolichol (C85 and C90), but no accumulation of Z,E,E-geranylgeranyl (di)phosphate or E,E-farnesyl (di)phosphate was detected. Microsomal enzyme preparations from mouse liver and hamster liver also produced Z,E,E-geranylgeranyl diphosphate from farnesyl diphosphate and isopentenyl diphosphate.  相似文献   

3.
Incubation of (3R,5S)-[5-3H1]mevalonate + (3RS)-[2-14C]mevalonate with Andrographis cell-free extract leads to trans,trans-farnesol and cis,trans-farnesol which both totally retain tritium. 2. This conflicts with our previous results which predict one third tritium loss in the cis,trans-farnesol. Inversion at C-1 during hydrolysis of trans,trans-farnesyl diphosphate to trans,trans-farnesol could explain this anomaly. 3. (1s)-trans,trans-[1-3H1]Farnesyl diphosphate and phosphate and (1R)-trans,trans-[1-3H1]-farnesyl diphosphate and phosphate, all prepared chemically, were hydrolysed with Andrographis phosphatase, and alkaline phosphatase and hydrogenolysed with lithium aluminium hydride and the product alcohols exchanged with liver alcohol hydrogenase. 4. Both Andrographis phosphatase and alkaline phosphatase hydrolyse trans,trans-farnesyl diphosphate and trans,trans-farnesyl phosphate with retention. 5. Hydrolysis of trans,trans-[1-18O]farnesyl diphosphate in H2(18O with both phosphatases supports P-O fission. 6. The C-1 configuration in (1S)-TRANS,TRANS-[1-3H1]farnesyl diphosphate and phosphate and (1R)-trans,trans-[1-3H1]farnesyl diphosphate and phosphate is progressively racemised in 0.01 M NH4OH/MeOH (1/9) AT - 20 degrees C.  相似文献   

4.
Presqualene diphosphate (PSDP) is a bioactive lipid that rapidly remodels to presqualene monophosphate (PSMP) upon cell activation (Levy, B. D., Petasis, N. A., and Serhan, C. N. (1997) Nature 389, 985-990). Here, we have identified and characterized a phosphatase that converts PSDP to PSMP. Unlike the related polyisoprenyl phosphate farnesyl diphosphate (FDP), PSDP was not a substrate for type 2 lipid phosphate phosphohydrolases. PSDP phosphatase activity was identified in activated human neutrophil (PMN) extracts and partially purified in the presence of Nonidet P-40 with gel filtration and anion exchange chromatography. Peptide sequencing of a candidate phosphatase was consistent with phosphatidic acid phosphatase domain containing 2 (PPAPDC2), an uncharacterized protein that contains a lipid phosphate phosphohydrolase consensus motif. Recombinant PPAPDC2 displayed diphosphate phosphatase activity with a substrate preference for PSDP > FDP > phosphatidic acid. PPAPDC2 activity was independent of Mg(2+) and optimal at pH 7.0 to 8.0. Incubation of [(14)C]FDP with recombinant human squalene synthase led to [(14)C]PSDP and [(14)C]squalene formation, and in the presence of PPAPDC2, [(14)C]PSMP was generated from [(14)C]PSDP. PPAPDC2 mRNA was detected in human PMN, and is widely expressed in human tissues. Together, these findings indicate that PPAPDC2 in human PMN is the first lipid phosphate phosphohydrolase identified for PSDP. Regulation of this activity of the enzyme may have important roles for PMN activation in innate immunity.  相似文献   

5.
To investigate the unknown stereochemical course of the reaction catalyzed by the type-II isomerase, which interconverts isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), a sample of [1,2-(13)C2]-IPP stereospecifically labelled with 2H at C2 was prepared by incubating a D2O solution of (E)-4-hydroxy-3-methyl[1,2-(13)C2]but-2-enyl diphosphate with a recombinant IspH protein of Escherichia coli in the presence of NADH as a reducing agent and flavodoxin as well as flavodoxin reductase as auxiliary proteins. As monitored by 13C-NMR spectroscopy, treatment of the deuterated IPP with either type-I or type-II IPP isomerase resulted in the formation of DMAPP molecules retaining all the 2H label of the starting material. From the known stereochemical course of the type-I isomerase-catalyzed reaction, one has to conclude that the label introduced from D2O in the course of the IspH reaction resides specifically in the H(Si)-C2 position of IPP and that the two isomerases mobilize specifically the same H(Re)-C2 ligand of their common IPP substrate. The outcome of an additional experiment, in which unlabelled IPP was incubated in D2O with the type-II enzyme, demonstrates that the two isomerases also share the same preference in selecting for their reaction the (E)-methyl group of DMAPP.  相似文献   

6.
Geranylgeranyl diphosphate synthase from rat liver was separated from farnesyl diphosphate synthase, the most abundant and widely occurring prenyltransferase, by DEAE-Toyopearl column chromatography. The enzyme catalyzed the formation of E,E,E-geranylgeranyl diphosphate (V) from isopentenyl diphosphate (II) and dimethylallyl diphosphate (I), geranyl diphosphate (III), or farnesyl diphosphate (IV) with relative velocities of 0.09:0.15:1. 3-Azageranylgeranyl diphosphate (VII), designed as a transition-state analog for the geranylgeranyl diphosphate synthase reaction, was synthesized and found to act as a specific inhibitor for this synthase, but not for farnesyl diphosphate synthase. Diphosphate V and its Z,E,E-isomer (VI) also inhibited geranylgeranyl diphosphate synthase, but the effect was not as striking as that of the aza analog VII. Specific inhibition of geranylgeranyl diphosphate synthase by VII was also observed in experiments with 100,000g supernatants of rat brain and liver homogenates which contained isopentenyl diphosphate isomerase and prenyltransferases including farnesyl diphosphate synthase as well as geranylgeranyl diphosphate synthase. For farnesyl:protein transferase from rat brain, however, the aza compound did not show a stronger inhibitory effect than E,E,E-geranylgeranyl diphosphate.  相似文献   

7.
Z-prenyl diphosphate synthases catalyze the sequential condensation of isopentenyl diphosphate with allylic diphosphates to synthesize polyprenyl diphosphates. In mycobacteria, these are precursors of decaprenyl phosphate, a molecule which plays a central role in the biosynthesis of essential mycobacterial cell wall components, such as the mycolyl-arabinogalactan-peptidoglycan complex and lipoarabinomannan. Recently, it was demonstrated that open reading frame Rv2361c of the Mycobacterium tuberculosis H37Rv genome encodes a unique prenyl diphosphate synthase (M. C. Schulbach, P. J. Brennan, and D. C. Crick, J. Biol. Chem. 275:22876-22881, 2000). We have now purified the enzyme to near homogeneity by using an Escherichia coli expression system and have shown that the product of this enzyme is decaprenyl diphosphate. Rv2361c has an absolute requirement for divalent cations and an optimal pH range of 7.5 to 8.5, and the activity is stimulated by both detergent and dithiothreitol. The enzyme catalyzes the addition of isopentenyl diphosphate to geranyl diphosphate, neryl diphosphate, omega,E,E-farnesyl diphosphate, omega,E,Z-farnesyl diphosphate, or omega,E,E,E-geranylgeranyl diphosphate, with Km values for the allylic substrates of 490, 29, 84, 290, and 40 microM, respectively. The Km value for isopentenyl diphosphate is 89 microM. The catalytic efficiency is greatest when omega,E,Z-farnesyl diphosphate is used as the allylic acceptor, suggesting that this is the natural substrate in vivo, a conclusion that is supported by previous structural studies of decaprenyl phosphoryl mannose isolated from M. tuberculosis. This is the first report of a bacterial Z-prenyl diphosphate synthase that preferentially utilizes an allylic diphosphate primer having the alpha-isoprene unit in the Z configuration, indicating that Rv1086 (omega,E,Z-farnesyl diphosphate synthase) and Rv2361c act sequentially in the biosynthetic pathway that leads to the formation of decaprenyl phosphate in M. tuberculosis.  相似文献   

8.
Cotton plants were transformed with an antisense construct of cdn1-Cl, a member of a complex gene family of delta-(+)cadinene (CDN) synthase. This synthase catalyzes the cyclization of (E,E)-farnesyl diphosphate to form CDN, and in cotton, it occupies the committed step in the biosynthesis of cadinane sesquiterpenoids and heliocides (sesterterpenoids). Southern analyses of the digestion of leaf DNA from R(o), T(o), and T(1) plants with Hind III, Pst I and Kpn I restriction enzymes show the integration of antisense cdn1-C1 cDNA driven by the CaMV 35S promoter into the cotton genome. Northern blots demonstrate the appearance of cdn synthase mRNA preceding CDN synthase activity and the formation of gossypol in developing cottonseed. T(2) cottonseed show a reduced CDN synthase activity and up to a 70% reduction in gossypol. In T(1) leaves the accumulated amounts of gossypol, hemigossypolone and heliocides are reduced 92.4, 83.3 and 68.4%, respectively. These data demonstrate that the integration of antisense cdn1-C1 cDNA into the cotton genome leads to a reduction of CDN synthase activity and negatively impacts on the biosynthesis of cadinane sesquiterpenoids and heliocides in cotton plants.  相似文献   

9.
Geranyl diphosphate synthase belongs to a subgroup of prenyltransferases, including farnesyl diphosphate synthase and geranylgeranyl diphosphate synthase, that catalyzes the specific formation, from C(5) units, of the respective C(10), C(15), and C(20) precursors of monoterpenes, sesquiterpenes, and diterpenes. Unlike farnesyl diphosphate synthase and geranylgeranyl diphosphate synthase, which are homodimers, geranyl diphosphate synthase from Mentha is a heterotetramer in which the large subunit shares functional motifs and a high level of amino acid sequence identity (56-75%) with geranylgeranyl diphosphate synthases of plant origin. The small subunit, however, shares little sequence identity with other isoprenyl diphosphate synthases; yet it is absolutely required for geranyl diphosphate synthase catalysis. Coexpression in Escherichia coli of the Mentha geranyl diphosphate synthase small subunit with the phylogenetically distant geranylgeranyl diphosphate synthases from Taxus canadensis and Abies grandis yielded a functional hybrid heterodimer that generated geranyl diphosphate as product in each case. These results indicate that the geranyl diphosphate synthase small subunit is capable of modifying the chain length specificity of geranylgeranyl diphosphate synthase (but not, apparently, farnesyl diphosphate synthase) to favor the production of C(10) chains. Comparison of the kinetic behavior of the parent prenyltransferases with that of the hybrid enzyme revealed that the hybrid possesses characteristics of both geranyl diphosphate synthase and geranylgeranyl diphosphate synthase.  相似文献   

10.
11.
Farnesyl diphosphate synthase (FPS; EC 2.5.1.1, 2.5.1.10) catalyzes biosynthesis of farnesyl diphosphate, which is important to insects as the precursor of juvenile hormone and the substrate for (E)-beta-farnesene synthase. Here, two FPS cDNAs were isolated from the green peach aphid, Myzus persicae (EU334430 and EU334431). Their shared identity within the coding region is approximately 82%. The deduced amino acid sequences of the two M. persicae FPS cDNAs have the highly conserved motifs characteristic of most known FPSs. Phylogenetic analyses showed that they are closely related to other insect FPSs. Homology modeling of structures suggested a very good fit between the three-dimensional structures of the two putative M. persicae FPSs (designated as MpFPS1 and MpFPS2) and the avian FPS crystal structure. The corresponding genomic DNA sequences were subsequently determined (EU429295 and EU429296). Sequence comparisons revealed a different splicing pattern between the two MpFPS genes. Furthermore, the two MpFPS genes exhibited a seemingly very primitive gene-splicing pattern at 5' ends but a gene-splicing style similar to mammalian FPS genes at 3' ends. These data, combined with results of Southern blotting, suggest that M. persicae contains two different FPS genes. This is the first report that two different FPS genes exist in a hemipteran insect.  相似文献   

12.
S Ohnuma  T Koyama  K Ogura 《FEBS letters》1989,257(1):71-74
In the undecaprenyl diphosphate synthase reaction, an allylic substrate homologue, (2Z,6E,10E)-4-methyl-geranylgeranyl diphosphate was found to be a potent competitive inhibitor against the allylic primer, (2Z,6E,10E)-geranylgeranyl diphosphate. On the other hand, it acted as a strong noncompetitive inhibitor against isopentenyl diphosphate. On the basis of these facts, the topology of the substrate-binding sites as well as the reason why the synthase reaction with (E)-3-methyl-3-pentenyl diphosphate always stops completely at the first stage of condensation, yielding an allylic diphosphate with a methyl group at the 4-position, are discussed.  相似文献   

13.
A clone encoding farnesyl diphosphate synthase (FPPS) was obtained by PCR from a cDNA library made from young leaves of Artemisia annua. A cDNA clone encoding the tobacco epi-aristolochene synthase (eAS) was kindly supplied by J. Chappell (University of Kentucky, Lexington, KY, USA). Two fusions were constructed, i.e. FPPS/eAS and eAS/FPPS. The stop codon of the N-terminal enzyme was removed and replaced by a short peptide (Gly-Ser-Gly) to introduce a linker between the two ORFs. These two fusions and the two single cDNA clones were separately introduced into a bacterial expression vector (pET32). Escherichia coli was transformed with the expression vectors and enzymatically active soluble proteins were obtained after induction with isopropyl thio-beta-d-thiogalactoside. The recombinant enzymes were purified using immobilized metal affinity chromatography on Co2+ columns. The fusion enzymes produced epi-aristolochene from isopentenyl diphosphate through a coupled reaction. The Km values of FPPS and eAS for isopentenyl diphosphate and farnesyl diphosphate, respectively, were essentially the same for the single and fused enzymes. The bifunctional enzymes showed a more efficient conversion of isopentenyl diphosphate to epi-aristolochene than the corresponding amount of single enzymes.  相似文献   

14.
Known nucleoside diphosphate kinases (NDPKs) are oligomers of 17-23-kDa subunits and catalyze the reaction N1TP + N2DP --> N1DP + N2TP via formation of a histidine-phosphorylated enzyme intermediate. NDPKs are involved in the activation of heterotrimeric GTP-binding proteins (G-proteins) by catalyzing the formation of GTP from GDP, but the properties of G-protein-associated NDPKs are still incompletely known. The aim of our present study was to characterize NDPK in soluble preparations of the retinal G-protein transducin. The NDPK is operationally referred to as transducin-NDPK. Like known NDPKs, transducin-NDPK utilizes NTPs and phosphorothioate analogs of NTPs as substrates. GDP was a more effective phosphoryl group acceptor at transducin-NDPK than ADP and CDP, and guanosine 5'-[gamma-thio]triphosphate (GTP[S]) was a more effective thiophosphoryl group donor than adenosine 5'-[gamma-thio]triphosphate (ATP[S]). In contrast with their action on known NDPKs, mastoparan and mastoparan 7 had no stimulatory effect on transducin-NDPK. Guanosine 5'-[beta, gamma-imido]triphosphate (p[NH]ppG) potentiated [3H]GTP[S] formation from [3H]GDP and ATP[S] but not [3H]GTP[S] formation from [3H]GDP and GTP[S]. Depending on the thiophosphoryl group acceptor and donor, [3H]NTP[S] formation was differentially regulated by Mg2+, Mn2+, Co2+, Ca2+ and Zn2+. [gamma-32P]ATP and [gamma-32P]GTP [32P]phosphorylated, and [35S]ATP[S] [35S]thiophosphorylated, a 36-kDa protein comigrating with transducin-beta. p[NH]ppG potentiated [35S]thiophosphorylation of the 36-kDa protein. 32P-labeling of the 36-kDa protein showed characteristics of histidine phosphorylation. There was no evidence for (thio)phosphorylation of 17-23-kDa proteins. Our data show the following: (a) soluble transducin preparations contain a GDP-prefering and guanine nucleotide-regulated NDPK; (b) transducin-beta may serve as a (thio)phosphorylated NDPK intermediate; (c) transducin-NDPK is distinct from known NDPKs and may consist of multiple kinases or a single kinase with multiple regulatory domains.  相似文献   

15.
The tightly coupled nature of the reaction sequence catalyzed by monoterpene synthases has prevented direct observation of the topologically required isomerization step leading from geranyl diphosphate to the enzyme-bound, tertiary allylic intermediate linalyl diphosphate, which then cyclizes to the various monoterpene skeletons. X-ray crystal structures of these enzymes complexed with suitable analogues of the substrate and intermediate could provide a clearer view of this universal, but cryptic, step of monoterpenoid cyclase catalysis. Toward this end, the functionally inert analogues 2-fluorogeranyl diphosphate, (±)-2-fluorolinalyl diphosphate, and (3R)- and (3S)-homolinalyl diphosphates (2,6-dimethyl-2-vinyl-5-heptenyl diphosphates) were prepared, and compared to the previously described substrate analogue 3-azageranyl diphosphate (3-aza-2,3-dihydrogeranyl diphosphate) as inhibitors and potential crystallization aids with two representative monoterpenoid cyclases, (-)-limonene synthase and (+)-bornyl diphosphate synthase. Although these enantioselective synthases readily distinguished between (3R)- and (3S)-homolinalyl diphosphates, both of which were more effective inhibitors than was 3-azageranyl diphosphate, the fluorinated analogues proved to be the most potent competitive inhibitors and have recently yielded informative liganded structures with limonene synthase.  相似文献   

16.
Unusual features of a recombinant apple alpha-farnesene synthase   总被引:3,自引:0,他引:3  
A recombinant alpha-farnesene synthase from apple (Malus x domestica), expressed in Escherichia coli, showed features not previously reported. Activity was enhanced 5-fold by K(+) and all four isomers of alpha-farnesene, as well as beta-farnesene, were produced from an isomeric mixture of farnesyl diphosphate (FDP). Monoterpenes, linalool, (Z)- and (E)-beta-ocimene and beta-myrcene, were synthesised from geranyl diphosphate (GDP), but at 18% of the optimised rate for alpha-farnesene synthesis from FDP. Addition of K(+) reduced monoterpene synthase activity. The enzyme also produced alpha-farnesene by a reaction involving coupling of GDP and isoprenyl diphosphate but at <1% of the rate with FDP. Mutagenesis of active site aspartate residues removed sesquiterpene, monoterpene and prenyltransferase activities suggesting catalysis through the same active site. Phylogenetic analysis clusters this enzyme with isoprene synthases rather than with other sesquiterpene synthases, suggesting that it has evolved differently from other plant sesquiterpene synthases. This is the first demonstration of a sesquiterpene synthase possessing prenyltransferase activity.  相似文献   

17.
We have recently shown that open reading frame Rv1086 of the Mycobacterium tuberculosis H37Rv genome sequence encodes a unique isoprenyl diphosphate synthase. The product of this enzyme, omega,E,Z-farnesyl diphosphate, is an intermediate for the synthesis of decaprenyl phosphate, which has a central role in the biosynthesis of most features of the mycobacterial cell wall, including peptidoglycan, arabinan, linker unit galactan, and lipoarabinomannan. We have now purified Z-farnesyl diphosphate synthase to near homogeneity using a novel mycobacterial expression system. Z-Farnesyl diphosphate synthase catalyzed the addition of isopentenyl diphosphate to omega,E-geranyl diphosphate or omega,Z-neryl diphosphate yielding omega,E,Z-farnesyl diphosphate and omega,Z,Z-farnesyl diphosphate, respectively. The enzyme has an absolute requirement for a divalent cation, an optimal pH range of 7-8, and K(m) values of 124 micrometer for isopentenyl diphosphate, 38 micrometer for geranyl diphosphate, and 16 micrometer for neryl diphosphate. Inhibitors of the Z-farnesyl diphosphate synthase were designed and chemically synthesized as stable analogs of omega,E-geranyl diphosphate in which the labile diphosphate moiety was replaced with stable moieties. Studies with these compounds revealed that the active site of Z-farnesyl diphosphate synthase differs substantially from E-farnesyl diphosphate synthase from pig brain (Sus scrofa).  相似文献   

18.
Sesquiterpene cyclases (synthases) catalyze the conversion of the isoprenoid intermediate farnesyl diphosphate to various sesquiterpene structural types. In plants, many sesquiterpenes are produced as defensive chemicals (phytoalexins) or mediators of chemical communication (i.e., pollinator attractants). A number of sesquiterpene synthases are present in Artemisia annua L. (annual wormwood). We have isolated a cDNA clone encoding one of these, epi-cedrol synthase. This clone contains a 1641-bp open reading frame coding for 547 amino acids (63.5 kDa), a 38-bp 5'-untranslated end, and a 272-bp 3'-untranslated sequence. The deduced amino acid sequence was 32 to 43% identical with the sequences of other known sesquiterpene cyclases from angiosperms. When expressed in Escherichia coli, the recombinant enzyme catalyzed the formation of both olefinic (3%) and oxygenated (97%) sesquiterpenes from farnesyl diphosphate. GC-MS analysis identified the olefins as alpha-cedrene (57% of the olefins), beta-cedrene (13%), (E)-beta-farnesene (5%), alpha-acoradiene (1%), (E)-alpha-bisabolene (8%), and three unknown olefins (16%) and the oxygenated sesquiterpenes (97% of total sesquiterpene generated, exclusive of farnesol and nerolidol) as cedrol (4%) and epi-cedrol (96%). epi-Cedrol synthase was not active with geranylgeranyl diphosphate as substrate, whereas geranyl diphosphate was converted to monoterpenes by the recombinant enzyme at a rate of about 15% of that observed with farnesyl diphosphate as substrate. The monoterpene olefin products are limonene (45%), terpinolene (42%), gamma-terpinene (8%), myrcene (5%), and alpha-terpinene (2%); a small amount of the monoterpene alcohol terpinen-4-ol is also produced. The pH optimum for the recombinant enzyme is 8.5-9.0 (with farnesyl diphosphate as substrate) and the K(m) values for farnesyl diphosphate are 0.4 and 1.3 microM at pH 7. 0 and 9.0, respectively. The K(m) for Mg(2+) is 80 microM at pH 7.0 and 9.0.  相似文献   

19.
(Z)-and (E)-phosphoenol-2-ketobutyrate were synthesized. [3-2H]-2-Ketobutyrates were formed from both isomers in the pyruvate kinase reaction in 2H2O and were converted to chiral propionates. Authentic (2S)-[2-2H]propionic acid was also prepared, and the optical rotatory dispersion curves of the propionates were compared. The rotation compared with standard propionate at 240 nm of sodium (2R)-[2-2H]propionate from the Z isomer was 47% (i.e., 53% was RS), and of (2S)-[2-2H]propionate from the E isomer was 29% (i.e., 71% was RS). Protonation at C-3 of the 2 si, 3 re face of the pseudosubstrates would have yielded (2R)- and (2S)-[2-2H]propionates from the Z and E analogues, respectively. An explanation offered for the nonstereoselective protonation that occurred is dissociation of the enol from the enzyme and subsequent random protonation in solution.  相似文献   

20.
Numerous terpenoid compounds are present in copious amounts in the oleoresin produced by conifers, especially following exposure to insect or fungal pests. CDNA clones for many terpene synthases responsible for the biosynthesis of these defense compounds have been recovered from several conifer species. Here, the use of three terpene synthase sequences as heterologous probes for the discovery of related terpene synthase genes in Douglas-fir, Pseudotsuga menziesii (Mirbel) Franco (Pinaceae), is reported. Four full-length terpene synthase cDNAs were recovered from a methyl jasmonate-induced Douglas-fir bark and shoot cDNA library. These clones encode two multi-product monoterpene synthases [a (-)-alpha-pinene/(-)-camphene synthase and a terpinolene synthase] and two single-product sesquiterpene synthases [an (E)-beta-farnesene synthase and a (E)-gamma-bisabolene synthase].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号