首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Lipid bilayers of diphytanoyl lecithin (DPhL) in which a cyanobacterial toxin, microcystin-LR (MC-LR) was incorporated, were found to be a convenient model of natural mechanosensitive membranes. The effects of pressure difference, leading to lateral membrane tension, on artificial membranes formed on the tips of glass micropipettes were investigated using patch-clamp methodology. Emplacement of MC-LR from the bathing solution was enhanced by transmembrane voltage and/or pressure difference. MC-LR pores could be recorded over a wide voltage range, their opening probability being first increased and then reduced at high membrane potential. The pores exhibited several open pore conductance levels, the higher conductance states being more probable at greater lateral tensions. Ion gradient experiments established that the MC-LR pores are cation selective, but discriminate only weakly between K and Na. These results suggest that a lipid liquid crystal matrix containing monomers of multimeric pore-forming molecules could be used as a mechanical sensor and molecular switch. Offprint requests to: P. N. R. Usherwood  相似文献   

2.
Physical and biophysical mechanisms of mechano-sensitivity of cell membranes are reviewed. The possible roles of the lipid matrix and of the cytoskeleton in membrane mechanoreception are discussed. Techniques for generation of static strains and dynamic curvatures of membrane patches are considered. A unified model for stress-activated and stress-inactivated ion channels under static strains is described. A review of work on stress-sensitive pores in lipid-peptide model membranes is presented. The possible role of flexoelectricity in mechano-electric transduction, e.g. in auditory receptors is discussed. Studies of flexoelectricity in model lipid membranes, lipid-peptide membranes and natural membranes containing ion channels are reviewed. Finally, possible applications in molecular electronics of mechanosensors employing some of the recognized principles of mechano-electric transduction in natural membranes are discussed.Abbreviations BLM Layer lipid membrane - SAC stress-activated channel - SIC stress-inactivated channel - MCYST microcystin-LR - DPhL diphytanoyl lecithin - CME condenser microphone effect Dedicated to Professor Alexander Derzhanski on the occasion of his 60th birthday Correspondence to: A. G. Petrov  相似文献   

3.
Armillaria luteobubalina produces air pores in culture. They consist of two parts: a basal region of tissue elevated to form a mound covered with a rind continuous with that of the colony, but perforated; and an apical region of long parallel hyphae, cemented together by scattered patches of extracellular material. This forms a hydrophobic structure that is elevated above the general level of the mycelial crust and does not easily become waterlogged. Air pores develop near the inoculum plug shortly after inoculation, arising directly from the mycelium, and rhizomorphs are initiated from them. The air pore contains a complex system of gas space connecting the atmosphere with the central canal of each rhizomorph. The tissue beneath the melanised colony crust also contains gas space, especially near air pores. This is also connected with the gas space of each rhizomorph and of each air pore. Measurements with oxygen electrodes show that air pores and their associated rhizomorphs conduct oxygen. The average oxygen conductance of a group of air pores with associated rhizomorphs, within agar blocks, but with rhizomorph apices cut off, was about 700 × 10−12 m3 s−1, equivalent to about 200 × 10−12 m3 s−1 for each air-pore. We conclude that the air pores conduct oxygen into the gas space below the pigmented mycelium of the colony, where the rhizomorphs - which also conduct oxygen - originate. A. luteobubalina thus has a complex aerating system which allows efficient diffusion of oxygen into rhizomorphs, and this is likely to facilitate extension of inoculum into low-oxygen environments.  相似文献   

4.
Experimental and computer-assisted studies of the ability of the Agrobacterium virulence protein VirE2 to interact with an artificial bilayer lipid membrane were carried out. The lipid mixture of 63.5% diphytanoyl phosphatidylcholine, 30% diphytanoyl phosphatidylethanolamine, and 6.5% diphytanoyl phosphatidylglycerol proved to be optimal for preparation of membranes that were stable for 20 min. When a field of 10 to 50 mV was applied, the conductance of the planar bilayer lipid membranes upon introduction of the recombinant protein VirE2 abruptly increased, indicating possible formation of single long-living (1.5–5 s) pores. No proteins homologous to the protein VirE2 from Agrobacterium tumefaciens (no. P08062) were found in the SWISS-PROT or NCBI databases. Fifteen β-sheets and 12α-helices were predicted for the protein VirE2 using PROFsec. Computer-aided methods were used to build model structures consisting of two and four VirE2 proteins. It has been shown for the first time that pores with the channel diameters of 2.2 or 4 nm can be formed in a model structure consisting of two or four VirE2 molecules, respectively, which is located in the bilayer membrane. The ends of a motile interdomain loop exposed in the channel formed by two proteins narrow the channel bore to 0.7 nm.  相似文献   

5.
Membrane-based bioanalytical devices for metal determination using green fluorescent protein as the sensor molecule may be a useful future biomimetic material. However, in order to develop such a device, it is necessary first to understand the interaction of the protein with lipid membranes. Thus we have investigated the interaction between chimeric cadmium-binding green fluorescent proteins (CdBPGFPs) and lipid monolayers, using a film-balance technique complemented with epifluorescence microscopy. The binding avidity was monitored from the surface pressure vs. area isotherms or from the measured increase in the lateral pressure upon injection of the chimeric CdBPGFPs beneath the lipid monolayer. Increased fluidization as well as expansion of the surface area were shown to depend on the concentration of the CdBPGFPs. The kinetics of the protein-induced increase in lateral pressure was found to be biphasic. The chimeric CdBPGFPs possessed high affinity to the 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) monolayer with a dissociation constant of Kd=10–8M. Epifluorescence measurements showed that this affinity is due to the presence of the Cd-binding peptide, which caused the GFP to incorporate preferentially to the liquid phase and defect part of the rigid domain at low interfacial pressure. At high compression, the Cd-binding peptide could neither incorporate nor remain in the lipid core. However, specific orientation of the chimeric CdBPGFPs underneath the air–water interface was achieved, even under high surface pressure, when the proteins were applied to the metal-chelating lipid-containing surfaces. This specific binding could be controlled reversibly by the addition of metal ions or metal chelator. The reversible binding of the chimeric CdBPGFPs to metal-chelating lipids provided a potential approach for immobilization, orientation and lateral organization of a protein at the membrane interface. Furthermore, the feasibility of applying the chelator lipids for the codetermination of metal ions with specific ligands was also revealed. Our finding clearly demonstrates that a strong interaction, particularly with fluid lipid domains, could potentially be used for sensor development in the future.Abbreviations GFP green fluorescent protein - CdBPGFPs cadmium-binding green fluorescent protein - DPPC 1,2-dipalmitoyl-sn-glycero-3-phosphocholine - AAS atomic absorption spectrometry - Cd2+ cadmium (II) - Zn2+ zinc (II) - Cu2+ copper (II) - Ni2+ nickel (II) - E. coli Escherichia coli - NTA-DOGS 1,2-dioleoyl-sn-glycero-3-(N-(5-amino-1-carboxypentyl iminodiacetic acid) succinyl) - His6GFP hexahistidine green fluorescent protein - CdBP4GFP four-repeat cadmium-binding peptide green fluorescent protein - His6CdBP4GFP hexahistidine four-repeat cadmium-binding peptide green fluorescent protein - IMAC immobilized-metal-affinity chromatography - PBS phosphate-buffered saline - mN/m millinewton per metre - le liquid expanded - lc liquid condensed - PE phosphatidyl ethanolamine - PI phosphatidyl inositol - NTA nitrilotriacetic acid - EDTA ethylenediamine tetraacetic acid - RESA ring-infected erythrocyte surface antigen - CdBP cadmium-binding peptide  相似文献   

6.
Mutations affecting pore formation by haemolysin from Escherichia coli   总被引:1,自引:0,他引:1  
Summary By introduction of site-specific deletions, three regions in HlyA were identified, which appear to be involved in pore formation by Escherichia coli haemolysin. Deletion of amino acids 9–37 at the N-terminus led to a haemolysin which had an almost threefold higher specific activity than wild-type and formed pores in an artificial asolectin lipid bilayer with a much longer lifetime than those produced by wild-type haemolysin. The three hydrophobic regions (DI–DIII) located between amino acids 238–410 contributed to pore formation to different extents. Deletion of DI led to a mutant haemolysin which was only slightly active on erythrocyte membranes and increased conductivity of asolectin bilayers without forming defined pores. Deletions in the two other hydrophobic regions (DII and DIII) completely abolished the pore-forming activity of the mutant haemolysin. The only polar amino acid in DI, Asp, was shown to be essential for pore formation. Removal of this residue led to a haemolysin with a considerably reduced capacity to form pores, while replacement of Asp by Glu or Asn had little effect on pore formation. A deletion mutant which retained all three hydrophobic domains but had lost amino acids 498–830 was entirely inactive in pore formation, whereas a shorter deletion from amino acids 670–830 led to a mutant haemolysin which formed abnormal minipores. The conductivity of these pores was drastically reduced compared to pores introduced into an asolectin bilayer by wild-type haemolysin. Based on these data and structural predictions, a model for the pore-forming structure of E. coli haemolysin is proposed.  相似文献   

7.
We studied the structural and dynamical properties of methane and ethane in montmorillonite (MMT) slit pore of sizes 10, 20 and 30 Å using grand canonical Monte Carlo and classical molecular dynamics (MD) simulations. The isotherm, at 298.15 K, is generated for pressures up to 60 bar. The molecules preferentially adsorb at the surface as indicated by the density profile. In case of methane, we observe only a single layer, at the pore wall, whose density increases with increasing pressure. However, ethane also displays a second layer, though of low density in case of pore widths 20 and 30 Å. In-plane self-diffusion coefficient, D, of methane and ethane is of the order of 10? 6 m2/s. At low pressure, D increases significantly with the pore size. However, D decreases rapidly with increasing pressure. Furthermore, the effect of pore size on D diminishes at high pressure. Ideal adsorbed solution theory is used to understand the adsorption behaviour of the binary mixture of methane (80%) and ethane (20%) at 298.15 K. Furthermore, we calculate the selectivity of the gases at various pressures of the mixture, and found high selectivity for ethane in MMT pores. However, selectivity of ethane decreases with increase in pressure or pore size.  相似文献   

8.
Membranes fuse by forming highly curved intermediates, culminating in structures described as fusion pores. These hourglass-like figures that join two fusing membranes have high bending energies, which can be estimated using continuum elasticity models. Fusion pore bending energies depend strongly on shape, and the present study developed a method for determining the shape that minimizes bending energy. This was first applied to a fusion pore modeled as a single surface and then extended to a more realistic model treating a bilayer as two monolayers. For the two-monolayer model, fusion pores were found to have metastable states with energy minima at particular values of the pore diameter and bilayer separation. Fusion pore energies were relatively insensitive to membrane thickness but highly sensitive to spontaneous curvature and membrane asymmetry. With symmetrical bilayers and monolayer spontaneous curvatures of ?0.1 nm?1 (a typical value) separated by 6 nm (closest distance determined by repulsive hydration forces), fusion pore formation required 43–65 kT. The pore radius of ~2.25 nm fell within the range estimated from conductance measurements. With bilayer separation >6 nm, fusion pore formation required less energy, suggesting that protein scaffolds can promote fusion by bending membranes toward one another. With nonzero spontaneous monolayer curvature, the shape that minimized the energy change during fusion pore formation differed from the shape that minimized its energy after it formed. Thus, a nascent fusion pore will relax spontaneously to a new shape, consistent with the experimentally observed expansion of nascent fusion pores during viral fusion.  相似文献   

9.
Locusta migratoria has three adipokinetic hormones, adipokinetic hormone-I, II and III. Adipokinetic hormone-III (50=1.33·10-10 mol·l-1) compared with other adipokinetic hormones (EC505.33·10-10 mol·l-1) at inhibiting acetate uptake into locust fat body in vitro, especially so when it is only moderately potent in mobilizing lipid in vivo. The Trp7 in adipokinetic hormones-III, alongside the Trp8 characteristic of adipokinetic hormones, is not seen in any other adipokinetic hormones. To test whether this is responsible for the high potency of adipokinetic hormone-III in the assay in vitro, novel peptides were synthesised to include or remove this structural motif. Thus, 7-Locusta-adipokinetic hormone-I or [Gly8a-Thr8b]-Locustra-adipokinetic hormone-III); 9-Thr10]-Locusta-adipokinetic hormone-I or Asn7-Locusta-adipokinetic hormone-III); 7-Locusta-adipokinetic hormone-II) and 7-Acheta-adipokinetic hormones) were tested both in vitro and in vivo. Except for Trp7-adipokinetic hormone-I in the acetate uptake assay, each of these analogues is less potent then its respective parent, irrespective of the assay. However, the acetate uptake response is highly tolerant of peptides containing Trp7-Trp8, whereas this motif markedly reduces potency in the lipid assay. The different responses exploited in these assays may be exerted through different receptor populations.Abbreviations AKH adipokinetic hormones - BSA bovine serum albumin - cAMP cyclic adenosine monophosphate - EC 50 effective concentration giving 50% of effect - FA fatty acid(s) - HPLC high performance liquid chromatography - RPCH red pigment-concentrating hormone  相似文献   

10.
The brackish, bloom-forming cyanobacterium Nodularia spumigena produces a peptide called nodularin, which may induce liver damage in fish. In the summer of 2007, nodularin was detected in liver tissue of European flounder caught in Swedish waters of Öresund, within the upper salinity limit for N. spumigena. Nodularin concentrations ranging between 22 and 557 μg kg−1 liver (d.w.) were detected in fish liver. Nodularin was not detected in blue mussels (Mytilus edulis). Although N. spumigena blooms can occur in the area, the cyanobacteria were only present in very small amounts in 2007. Results suggested that nodularin accumulated in flounder livers during the summer of 2006, when vast N. spumigena blooms were observed in Öresund, and persisted over several months. Nodularin has previously been shown to induce oxidative stress in mice, crustaceans and mollusks but work on the potential negative effects of nodularin on fish is still scarce. To examine the dynamics of nodularin induced oxidative stress in liver tissue of flounder, the differential responses of the antioxidant enzymes glutathione-S-transferase catalase (CAT) and the formation of malondialdehyde (MDA) were monitored during 14 days in flounder exposed to an intraperitoneal injection of nodularin (0, 2, 10 and 50 μg nodularin kg−1 body weight). The activities of GST and CAT in the liver decreased significantly in the 50 μg nodularin kg−1 exposure after 7 days, but were restored to control levels after an additional 10 days of recovery. The results suggested that nodularin induced oxidative stress in terms of decreased GST and CAT activity, which can result in increased vulnerability of the cell to reactive oxygen species (ROS). No significant changes could be found in MDA levels between the treatments. Thus, the antioxidant defense system presumably managed to prevent oxygen mediated toxicity as seen by the unchanged levels of MDA. Alteration of the enzymatic defense system may increase energetic costs, thus reducing fish growth and survival. The present study also suggests that oxidative stress biomarkers can be used in fish to detect early responses to nodularin.  相似文献   

11.
A technique of neutron in-plane scattering for studying the structures of peptide pores in membranes is described. Alamethicin in the inserted state was prepared and undeuterated and deuterated dilauroyl phosphatidylcholine (DLPC) hydrated with D2O or H2O. Neutron in-plane scattering showed a strong dependence on deuteration, clearly indicating that water is a part of the high-order structure of inserted alamethicin. The data are consistent with the simple barrel-stave model originally proposed by Baumann and Mueller. The theoretical curves computed with this model at four different deuteration conditions agree with the data in all cases. Both the diameter of the water pore and the effective outside diameter of the channel are determined accurately. Alamethicin forms pores in a narrow range of size. In a given sample condition, > 70% of the peptide forms pores of n and n +/- 1 monomers. The pore size varies with hydration and with lipid. In DLPC, the pores are made of n = 8-9 monomers, with a water pore approximately 18 A in diameter and with an effective outside diameter of approximately 40 A. In diphytanoyl phosphatidylcholine, the pores are made of n approximately 11 monomers, with a water pore approximately 26 A in diameter, with an effective outside diameter of approximately 50 A.  相似文献   

12.
Methods for applying sound pressure to membrane patches formed at the tips of patch-clamp pipettes have been developed. Artificial membrane patches were formed from diphytanoyl phosphatidylcholine using a pipette dipping technique. Natural membrane patches were excised (inside-out mode) from collagenase-treated locust muscle membrane. Curvature-electric signals were registered under both voltage clamp and current clamp conditions. The phenomenon of flexoelectricity in membranes has previously been attributed to curvature-induced polarization originating from the liquid crystalline properties of membranes. The estimated magnitude (2·10-18 C) of the flexoelectric coefficient of the artificial lipid bilayers is consistent with previous findings while that of the muscle membrane was in certain cases several times larger. The present study is the first to report on flexoelectricity in a natural membrane and raises the question of the biological significance of this phenomenon.  相似文献   

13.
Summary The pore size and shape of porous matrices were evaluated as to their effect on the immobilization efficiency in cultured coffee (Coffea arabica L.)/cells. A hydrophilic porous matrix (13–20 pores/25 mm) and reticulate polyurethane foam (30 pores/25 mm) indicated more efficient immobilization than the others, in small cubes (1 cm3 × 9) and a strip (1 × 1 × 9 cm3) at the end of the fourth subculture. Among the large cubes (9 cm3), the reticulate one with the largest pore size (13 pores/25 mm) was the most advantageous for immobilization. In the strip-shaped matrices (1 × 1 × 9 cm3), immobilization was the most efficient in spite of its lower surface area as compared to the small cubes, except for those with the largest pore size. The strip-shaped foams, which were fixed on the inside of the flask against shaking, were effective for immobilization. Finally, strips (30 pores/25 mm) with slits to increase the surface area of the foam immobilized the largest amount of cells at the end of the fourth subculture. Caffeine production was not changed by diffenences in pore size.This paper is Part 76 in the series of Studies on Plant Tissue Cultures. For Part 75, see Furuya T., Orihara Y., Koge K. (1991) Plant Cell Rep 9:659–662 Offprint requests to: T. Furuya  相似文献   

14.
The white-rot basidiomycete Bjerkandera adusta was cultivated in a liquid medium enriched with l-phenylalanine and various phospholipid sources (lecithin, egg yolk and asolectin). Three aromatic metabolites (benzaldehyde, benzyl alcohol and benzoic acid) were produced under these culture conditions. High concentrations of benzaldehyde (404 mg l–1) were obtained when the cultures were supplemented with 10 g lecithin l–1. Benzyl alcohol production was promoted when the strain was grown with 5 or 10 g lecithin l–1. In the absence of or with a low concentration of lecithin (2.5 g l–1), benzoic acid was the major aryl metabolite synthesized. The results presented here indicate that aryl alcohol oxidase, an extracellular enzyme catalyzing the oxidation of benzyl alcohol into benzaldehyde, was maximally detected when significant amounts of benzaldehyde were produced. Aryl alcohol oxidase activity was significantly enhanced in the presence of elevated concentrations of phospholipid sources. Together with lignin peroxidase, methoxylated and hydroxylated aryl metabolites were also synthesized under these culture conditions. The possible involvement of phospholipids in the synthesis of aryl metabolites is discussed. Received: 7 August 1998 / Accepted: 30 November 1998  相似文献   

15.
We have recently reported that fluorocarbon gases exhibit an effective fluidizing effect on Langmuir monolayers of dipalmitoyl phosphatidylcholine (DPPC), preventing them from crystallizing up to surface pressures of ∼ 40 mN m− 1, i.e. well above the DPPC's equilibrium surface pressure. We now report that gaseous perfluorooctyl bromide (gPFOB) promotes the re-spreading of DPPC Langmuir monolayers compressed on a bovine serum albumin (BSA)-containing sub-phase. The latter protein is known to maintain a concentration-dependent surface pressure that can exceed the re-spreading pressure of collapsed monolayers. This phenomenon was proposed to be responsible for lung surfactant inactivation. Compression/expansion isotherms and fluorescence microscopy experiments were carried out to assess the monolayers' physical state. We have found that, during expansion under gPFOB-containing air, the surface pressure of a DPPC monolayer on a BSA-containing sub-phase decreased to much lower values than when the DPPC monolayer was expanded in the presence of BSA under air (∼ 0 mN m− 1 vs. ∼ 7.5 mN m− 1 at 120 Å2, respectively). Moreover, fluorescence images showed that, during expansion, the BSA-coupled DPPC monolayers, in contact with gPFOB, remained in the liquid-expanded state for surface pressures lower than 10 mN m− 1, whereas they were in a liquid-condensed semi-crystalline state, even at large molecular areas (120 Å2), when expanded under air. The re-incorporation of the PFOB molecules in the DPPC monolayer during expansion thus competes with the re-incorporation of BSA, thus preventing the latter from penetrating into the DPPC monolayer. We suggest that combinations of DPPC and a fluorocarbon gas may be useful in the treatment of lung conditions resulting from a deterioration of the native lung surfactant function due to plasma proteins, such as in the acute respiratory distress syndrome.  相似文献   

16.
Cells expressing the hemagglutinin protein of influenza virus were fused to planar bilayer membranes containing the fluorescent lipid probes octadecylrhodamine (R18) or indocarbocyanine (DiI) to investigate whether spontaneous curvature of each monolayer of a target membrane affects the growth of fusion pores. R18 and DiI lowered the transition temperatures for formation of an inverted hexagonal phase, indicating that these probes facilitate the formation of negative curvature structures. The probes are known to translocate from one monolayer of a bilayer membrane to the other in a voltage-dependent manner. The spontaneous curvature of the cis monolayer (facing the cells) or the trans monolayer could therefore be made more negative through control of the polarity of voltage across the planar membrane. Electrical admittance measurements showed that the open times of flickering fusion pores were shorter when probes were in trans monolayers and longer when in cis monolayers compared with times when probe was symmetrically distributed. Open times were the same for probe symmetrically distributed as when probes were not present. Thus, open times were a function of the asymmetry of the spontaneous curvature between the trans and cis monolayers. Enriching the cis monolayer with a negative curvature probe reduced the probability that a small pore would fully enlarge, whereas enriching the trans monolayer promoted enlargement. Lysophosphatidylcholine has positive spontaneous curvature and does not translocate. When lysophosphatidylcholine was placed in trans leaflets of planar membranes, closing of fusion pores was rare. The effects of the negative and positive spontaneous curvature probes do not support the hypothesis that a flickering pore closes from an open state within a hemifusion diaphragm (essentially a “flat” structure). Rather, such effects support the hypothesis that the membrane surrounding the open pore forms a three-dimensional hourglass shape from which the pore flickers shut.  相似文献   

17.
18.
Locular pressure was monitored during ripening of tomato (Lycopersicon esculentum Mill.) fruit and the anatomy of the endocarp surface examined using scanning electron microscopy. The manometric pressure of the locule tissue increased from 0 in mature-green fruit to 10 to 50 Pa at the turning or pink stages, and then subsided in ripe fruit. Nonclimacteric fruit containing the ripening inhibitor (rin) mutation showed a similar pattern of internal pressure accumulation during senescence. Build-up of locular tissue pressure occurred in fruit ripening, on or off the plant, as well as in fruit with different susceptibility to cuticle cracking. Apertures ranging from 18-31 μm in width and 33-41 μm in length, with densities ranging from 6.7 to 47.9 apertures · mm−2 were observed in the endocarp of mature-green fruit. These apertures were progressively occluded during early ripening and were absent in late ripening fruit. Aperture occlusion might result in reduced gas exchange between the locule and external fruit atmosphere, resulting in modification of the locular gas composition.  相似文献   

19.
In this study, we employed electrophysiology experiments carried out at the single-molecule level to study the mechanism of action of the HPA3 peptide, an analogue of the linear antimicrobial peptide, HP(2–20), isolated from the N-terminal region of the Helicobacter pylori ribosomal protein. Amplitude analysis of currents fluctuations induced by HPA3 peptide at various potentials in zwitterionic lipid membranes reveal the existence of reproducible conductive states in the stochastic behavior of such events, which directly supports the existence of transmembrane pores induced the peptide. From our data recorded both at the single-pore and macroscopic levels, we propose that the HPA3 pore formation is electrophoretically facilitated by trans-negative transmembrane potentials, and HPA3 peptides translocate into the trans monolayers after forming the pores. We present evidence according to which the decrease in the membrane dipole potential of a reconstituted lipid membranes leads to an augmentation of the membrane activity of HPA3 peptides, and propose that a lower electric dipole field of the interfacial region of the membrane caused by phloretin facilitates the surface-bound HPA3 peptides to break free from one leaflet of the membrane, insert into the membrane and contribute to pore formation spanning the entire thickness of the membrane.  相似文献   

20.
E. Steudle  J. S. Boyer 《Planta》1985,164(2):189-200
Hydraulic resistances to water flow have been determined in the cortex of hypocotyls of growing seedlings of soybean (Glycine max L. Merr. cv. Wayne). Data at the cell level (hydraulic conductivity, Lp; half-time of water exchange, T 1/2; elastic modulus, ; diffusivity for the cell-to-cell pathway, D c) were obtained by the pressure probe, diffusivities for the tissue (D t) by sorption experiments and the hydraulic conductivity of the entire cortex (Lpr) by a new pressure-perfusion technique. For cortical cells in the elongating and mature regions of the hypocotyls T 1/2=0.4–15.1 s, Lp=0.2·10-5–10.0·10-5 cm s-1 bar-1 and D c=0.1·10-6–5.5·10-6 cm2 s-1. Sorption kinetics yielded a tissue diffusivity D t=0.2·10-6–0.8·10-6 cm2 s-1. The sorption kinetics include both cell-wall and cell-to-cell pathways for water transport. By comparing D c and D t, it was concluded that during swelling or shrinking of the tissue and during growth a substantial amount of water moves from cell to cell. The pressure-perfusion technique imposed hydrostatic gradients across the cortex either by manipulating the hydrostatic pressure in the xylem of hypocotyl segments or by forcing water from outside into the xylem. In segments with intact cuticle, the hydraulic conductance of the radial path (Lpr) was a function of the rate of water flow and also of flow direction. In segments without cuticle, Lpr was large (Lpr=2·10-5–20·10-5 cm s-1 bar-1) and exceeded the corticla cell Lp. The results of the pressure-perfusion experiments are not compatible with a cell-to-cell transport and can only the explained by a preferred apoplasmic water movement. A tentative explanation for the differences found in the different types of experiments is that during hydrostatic perfusion the apoplasmic path dominates because of the high hydraulic conductivity of the cell wall or a preferred water movement by film flow in the intercellular space system. For shrinking and swelling experiments and during growth, the films are small and the cell-to-cell path dominates. This could lead to larger gradients in water potential in the tissue than expected from Lpr. It is suggested that the reason for the preference of the cell-to-cell path during swelling and growth is that the solute contribution to the driving force in the apoplast is small, and tensions normally present in the wall prevent sufficiently thick water films from forming. The solute contribution is not very effective because the reflection coefficient of the cell-wall material should be very small for small solutes. The results demonstrate that in plant tissues the relative magnitude of cell-wall versus cell-to-cell transport could dependent on the physical nature of the driving forces (hydrostatic, osmotic) involved.Abbreviations and symbols D c diffusivity of the cell-to-cell pathway - D t diffusivity of the tissue - radial flow rate per cm2 of segment surface - Lp hydraulic conductivity of plasma-membrane - Lpr radial hydraulic conductance of the cortex - T 1/2 half-time of water exchange between cell and surroundings - volumetric elastic modulus  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号