首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to investigate the mechanism underlying arteriolar responses to hyperosmolality and to determine the effects of daily exercise on this response. Dilator responses were measured in isolated, cannulated, and pressurized skeletal muscle arterioles. Osmolality was increased from approximately 290 to 330 mosmol/kgH(2)O by adding glucose, sucrose, or mannitol to the superfusion solution. All three compounds elicited similar changes in vessel diameter, suggesting that this response was due to changes in osmolality. Responses to glucose were abolished by endothelium removal but were not altered in endothelium-intact vessels by superfusion with the nitric oxide synthase inhibitor N(omega)-nitro-L-arginine or the cyclooxygenase inhibitor indomethacin. In endothelium-intact arterioles, responses to glucose superfusion with the ATP-sensitive potassium (K(ATP)) channel inhibitor glibenclamide; however, intraluminal perfusion with glibenclamide nearly abolished the responses to glucose and mannitol. Intraluminal administration of glucose elicited a significantly greater dilation than extraluminal glucose. The response to intraluminal glucose was also inhibited by intraluminal glibenclamide. Four weeks of daily exercise did not significantly alter the responses to hyperosmolality in gracilis or soleus muscle arterioles. These data demonstrate that physiological increases in intraluminal osmolality dilate rat skeletal muscle arterioles via activation of endothelial K(ATP) channels; however, this endothelium-dependent response is not augmented by daily exercise.  相似文献   

2.
F E Weber  D Pette 《FEBS letters》1988,238(1):71-73
An 11-fold increase in hexokinase activity and the hexokinase II isoform was found in rat tibialis anterior muscle after 7 days of chronic, low-frequency stimulation. In vivo labeling studies showed that this increase in enzyme protein content was related to an approx. 30-fold increase in [35S] methionine incorporation.  相似文献   

3.
Calorie restriction (CR) extends life span and ameliorates age-related pathologies in most species studied, yet the mechanisms underlying these effects remain unclear. Using mouse skeletal muscle as a model, we show that CR acts in part by enhancing the function of tissue-specific stem cells. Even short-term CR significantly enhanced stem cell availability and activity in the muscle of young and old animals, in concert with an increase in mitochondrial abundance and induction of conserved metabolic and longevity regulators. Moreover, CR enhanced endogenous muscle repair and CR initiated in either donor or recipient animals improved the contribution of donor cells to regenerating muscle after transplant. These studies indicate that metabolic factors play a critical role in regulating stem cell function and that this regulation can influence the efficacy of recovery from injury and the engraftment of transplanted cells.  相似文献   

4.
This study tested the hypothesis that both structural and functional adaptations of arterioles occur within the skeletal muscle of rats aerobically trained for 8-10 wk with treadmill exercise. The training regimen used has been shown to elicit a 37% increase in plantaris citrate synthase activity but did not result in an elevation in citrate synthase activity in the spinotrapezius or gracilis muscles of rats used in this study. In the in vivo resting spinotrapezius muscle, arteriole diameters were similar in sedentary (SED) and trained (TR) rats. However, large- (1A) and intermediate- (2A) sized arterioles dilated proportionately more in TR than in SED rats during 1- to 8-Hz muscle contractions, even though the passive mechanical properties (circumference-passive wall tension relationships) were similar between groups. Vascular casts demonstrated a trend for an increase in the number of small (3A) arterioles and an approximately 20% increase in the passive diameter of 1A and 2A arterioles in the spinotrapezius muscle of TR rats. In contrast, in the gracilis muscle, arteriole diameters and density were identical in SED and TR rats, but the capillary-to-muscle fiber ratio was approximately 15% higher in TR rats. The results suggest that aerobic exercise training can greatly increase functional vasodilation and induce a slight increase in vascular density in skeletal muscle tissues, even if the oxidative capacity of these tissues is not increased by the training regimen.  相似文献   

5.
This study determined alterations to nitric oxide (NO)-dependent dilation of skeletal muscle arterioles from obese (OZR) versus lean Zucker rats (LZR). In situ cremaster muscle arterioles from both groups were viewed via television microscopy, and vessel dilation was measured with a video micrometer. Arteriolar dilation to acetylcholine and sodium nitroprusside was reduced in OZR versus LZR, although dilation to aprikalim was unaltered. NO-dependent flow-induced arteriolar dilation (via parallel microvessel occlusion) was attenuated in OZR, impairing arteriolar ability to regulate wall shear rate. Vascular superoxide levels, as assessed by dihydroethidine fluorescence, were elevated in OZR versus LZR. Treatment of cremaster muscles of OZR with the superoxide scavengers polyethylene glycol-superoxide dismutase and catalase improved arteriolar dilation to acetylcholine and sodium nitroprusside and restored flow-induced dilation and microvascular ability to regulate wall shear rate. These results suggest that NO-dependent dilation of skeletal muscle microvessels in OZR is impaired due to increased levels of superoxide. Taken together, these data suggest that the development of diabetes and hypertension in OZR may be associated with an impaired skeletal muscle perfusion via an elevated vascular oxidant stress.  相似文献   

6.
Tang  Liang  Cao  Wenxin  Zhao  Tingting  Yu  Kang  Sun  Lijun  Guo  Jianzhong  Fan  Xiushan  Ta  Dean 《Journal of physiology and biochemistry》2021,77(2):273-281
Journal of Physiology and Biochemistry - Skeletal muscle atrophy (SMA) is a dominant symptom induced by estrogen deficiency which can lead to severe health problems of postmenopausal women....  相似文献   

7.
8.
At the onset of dynamic exercise, muscle blood flow increases within 1-2 s. It has been postulated that local vasodilatory agents produced by the vascular endothelium or the muscle itself contribute to this response. We hypothesized that only vasodilators that act directly on the vascular smooth muscle could produce vasodilation of skeletal muscle arterioles in <2 s. To test this hypothesis, we determined the time course of the vasodilatory response of isolated skeletal muscle arterioles to direct application of potassium chloride, adenosine, acetylcholine, and sodium nitroprusside. Soleus and gastrocnemius muscles were dissected from the hindlimbs of male Sprague-Dawley rats. First-order arterioles (100-200 microm) were isolated, cannulated on micropipettes, and pressurized to 60 cmH(2)O in an organ bath. Vasodilatory agents were added directly to the bath, and diameter responses of the arterioles were recorded in real time on a videotape recorder. Frame-by-frame analysis of the diameter responses indicated that none of the vasodilator agents tested produced significant diameter increases in <4 s in either soleus or gastrocnemius muscle arterioles. These results indicate that, although these local vasodilators produce significant vasodilation of skeletal muscle resistance arterioles, these responses are not rapid enough (within 1-2 s) to contribute to the initiation of the exercise hyperemic response at the onset of dynamic exercise.  相似文献   

9.
10.
Blood flow capacity in skeletal muscle declines with age. Reduced blood flow capacity may be related to decline in the maximal vasodilatory capacity of the resistance vasculature. This study tested the hypothesis that aging results in impaired vasodilatory capacity of first-order (1A) arterioles isolated from rat-hindlimb locomotory muscle: 1A arterioles (90-220 microm) from gastrocnemius and soleus muscles of young (4 mo) and aged (24 mo) Fischer-144 rats were isolated, cannulated, and pressurized via hydrostatic reservoirs. Vasodilatory responses to increasing concentrations of ACh (10(-9) to 10(-4) M), adenosine (ADO, 10(-10) to 10(-4) M), and sodium nitroprusside (SNP, 10(-10) to 10(-4) M) were evaluated at a constant intraluminal pressure of 60 cmH(2)O in the absence of flow. Flow-induced vasodilation was also evaluated in the absence of pressure changes. Responses to ADO and SNP were not altered by age. Endothelium-dependent vasodilation induced by flow was significantly reduced in arterioles from both gastrocnemius and soleus muscles. In contrast, endothelium-dependent vasodilation to ACh was reduced only in soleus muscle arterioles. These results indicate that aging impairs vasodilatory responses mediated through the endothelium of resistance arterioles from locomotory muscle, whereas smooth muscle vasodilatory responses remain intact with aging. Additionally, ACh-induced vasodilation was altered by age only in soleus muscle arterioles, suggesting that the mechanism of age-related endothelial impairment differs in arterioles from soleus and gastrocnemius muscles.  相似文献   

11.
Compensatory metabolic adaptations induced in streptozotocin-diabetic rat skeletal muscle by submaximal endurance training have been investigated. The gastrocnemius muscles of sedentary streptozotocin-diabetic rats were found to have a lower than normal myoglobin content, succinate dehydrogenase activity, and capacity to oxidize pyruvate and palmitate-1-[14C]. The values of these parameters were significantly increased in the diabetic skeletal muscle by the training program, obtaining levels similar to those of normal sedentary animals.  相似文献   

12.
Combining endurance and strength training (concurrent training) may change the adaptation compared with single mode training. However, the site of interaction and the mechanisms are unclear. We have investigated the hypothesis that molecular signaling of mitochondrial biogenesis after endurance exercise is impaired by resistance exercise. Ten healthy subjects performed either only endurance exercise (E; 1-h cycling at ~65% of maximal oxygen uptake), or endurance exercise followed by resistance exercise (ER; 1-h cycling + 6 sets of leg press at 70-80% of 1 repetition maximum) in a randomized cross-over design. Muscle biopsies were obtained before and after exercise (1 and 3 h postcycling). The mRNA of genes related to mitochondrial biogenesis [(peroxisome proliferator-activated receptor-γ coactivator-1 (PGC-1)α, PGC-1-related coactivator (PRC)] related coactivator) and substrate regulation (pyruvate dehydrogenase kinase-4) increased after both E and ER, but the mRNA levels were about twofold higher after ER (P < 0.01). Phosphorylation of proteins involved in the signaling cascade of protein synthesis [mammalian target of rapamycin (mTOR), ribosomal S6 kinase 1, and eukaryotic elongation factor 2] was altered after ER but not after E. Moreover, ER induced a larger increase in mRNA of genes associated with positive mTOR signaling (cMyc and Rheb). Phosphorylation of AMP-activated protein kinase, acetyl-CoA carboxylase, and Akt increased similarly at 1 h postcycling (P < 0.01) after both types of exercise. Contrary to our hypothesis, the results demonstrate that ER, performed after E, amplifies the adaptive signaling response of mitochondrial biogenesis compared with single-mode endurance exercise. The mechanism may relate to a cross talk between signaling pathways mediated by mTOR. The results suggest that concurrent training may be beneficial for the adaptation of muscle oxidative capacity.  相似文献   

13.
The activities of phosphofructokinase, aldolase and pyruvate kinase were diminished in extracts from skeletal muscle of streptozotocin diabetic rats, whereas the activities of glucose phosphate isomerase and phosphoglucomutase were not changed. Treatment of diabetic rats with insulin restored the activity of phosphofructokinase to normal. A kinetic study of the partially purified enzyme from normal and diabetic rats showed identical Michaelis constants for ATP and equal sensitivity to inhibition by excess of this substrate. Extracts of quick frozen muscle from diabetic rats had higher levels of citrate (an inhibitor of phosphofructokinase) and lower levels of D-fructose-1,6-bisphosphate and D-glucose-1,6-bisphosphate (activators of this enzyme). The levels of D-fructose-6-phosphate, D-glucose-6-phosphate, ATP, ADP and AMP were the same for the two groups. Our data suggest that the in vivo decrease of phosphofructokinase activity in skeletal muscle of diabetic rats is due to a decrease in the level of the enzymatically active protein as well as to an unfavorable change in the level of several of its allosteric modulators.  相似文献   

14.
We tested the hypotheses that 4 wk of exercise training would diminish the magnitude of vasoconstriction in response to sympathetic nerve stimulation and augment endothelium-dependent vasodilation (EDD) in resting skeletal muscle in a training intensity-dependent manner. Sprague-Dawley rats were randomly assigned to sedentary time-control (S), mild- (M; 20 m/min, 5% grade), or heavy-intensity (H; 40 m/min, 5% grade) treadmill exercise groups. Animals trained 5 days/wk for 4 wk with training volume matched between groups. Rats were anesthetized and instrumented for study 24 h after the last training session. Arterial pressure and femoral artery blood flow were measured, and femoral vascular conductance (FVC) was calculated. Lumbar sympathetic chain stimulation was delivered continuously at 2 Hz and in patterns at 20 and 40 Hz. EDD was assessed by the vascular response to intra-arterial bolus injections of ACh. The response (% change FVC) to sympathetic stimulation increased (P < 0.05) in a training intensity-dependent manner at 2 Hz (S: -20.2 ± 9.8%, M: -34.0 ± 6.7%, and H: -44.9 ± 2.0%), 20 Hz (S: -22.0 ± 10.6%, M: -31.2 ± 8.4%, and H: -42.8 ± 5.9%), and 40 Hz (S: H -24.5 ± 8.5%, M: -35.1 ± 8.9%, H: -44.9 ± 6.5%). The magnitude of EDD also increased in a training intensity-dependent manner (P < 0.05). These data demonstrate that short-term exercise training augments the magnitude of vasoconstriction in response to sympathetic stimulation and EDD in resting skeletal muscle in a training intensity-dependent manner.  相似文献   

15.
Borst SE  Snellen HG  Lai HL 《Life sciences》2000,67(2):165-174
Although the glucose-lowering properties of metformin are well-established, its effects on glucose metabolism in skeletal muscle have not been clearly defined. We tested the effects of metformin in young adult male Sprague-Dawley rats, which have a documented reduced response to insulin in skeletal muscle. Rats were treated with metformin for 20 days (320 mg/kg/day) in the drinking water. During this period, metformin completely prevented the increase in food intake and decreased adiposity by 30%. Metformin also reduced insulin secretion by 37% following an intra-peritoneal injection of glucose. Finally, metformin enhanced transport of [3H]-2-deoxyglucose in isolated strips of soleus muscle. Metformin substantially increased insulin-stimulated transport, while having no effect on basal transport. In control rats, a maximal concentration of insulin stimulated transport 77% above basal. In metformin-treated rats, insulin stimulated transport 206% above basal. We conclude that in the Sprague-Dawley rat model, metformin causes a significant increase in insulin-responsiveness.  相似文献   

16.
Ferrando, Arny A., Kevin D. Tipton, Marcas M. Bamman, andRobert R. Wolfe. Resistance exercise maintains skeletal muscle protein synthesis during bed rest. J. Appl.Physiol. 82(3): 807-810, 1997.Spaceflightresults in a loss of lean body mass and muscular strength. Aground-based model for microgravity, bed rest, results in a loss oflean body mass due to a decrease in muscle protein synthesis (MPS).Resistance training is suggested as a proposed countermeasure forspaceflight-induced atrophy because it is known to increase both MPSand skeletal muscle strength. We therefore hypothesized that scheduledresistance training throughout bed rest would ameliorate the decreasein MPS. Two groups of healthy volunteers were studied during 14 days ofsimulated microgravity. One group adhered to strict bed rest (BR;n = 5), whereas a second group engagedin leg resistance exercise every other day throughout bed rest (BREx;n = 6). MPS was determined directly bythe incorporation of infusedL-[ring-13C6]phenylalanineinto vastus lateralis protein. After 14 days of bed rest, MPS in theBREx group did not change and was significantly greater than in the BRgroup. Thus moderate-resistance exercise can counteract the decrease inMPS during bed rest.

  相似文献   

17.
The effects of estradiol on neuropeptide Y (NPY) neurotransmission in skeletal muscle resistance vessels have not been described. The purpose of this study was to determine the effects of long-term estradiol supplementation on NPY overflow, degradation, and vasoconstriction in gastrocnemius first-order arterioles of adult female rats. Female rats (4 mo; n = 34) were ovariectomized (OVX) with a subset (n = 17) receiving an estradiol pellet (OVE; 17β-estradiol, 4 μg/day). After conclusion of the treatment phase (8 wk), arterioles were excised, placed in a physiological saline solution (PSS) bath, and cannulated with micropipettes connected to albumin reservoirs. NPY-mediated vasoconstriction via a Y(1)-agonist [Leu31Pro34]NPY decreased vessel diameter 44.54 ± 3.95% compared with baseline; however, there were no group differences in EC(50) (OVE: -8.75 ± 0.18; OVX: -8.63 ± 0.10 log M [Leu31Pro34]NPY) or slope (OVE: -1.11 ± 0.25; OVX: -1.65 ± 0.34% baseline/log M [Leu31Pro34]NPY). NPY did not potentiate norepinephrine-mediated vasoconstriction. NPY overflow experienced a slight increase following field stimulation and significantly increased (P < 0.05) over control conditions in the presence of a DPPIV inhibitor (diprotin A). Estradiol status did not affect DPPIV activity. These data suggest that NPY can induce a moderate decrease in vessel diameter in skeletal muscle first-order arterioles, and DPPIV is active in mitigating NPY overflow in young adult female rats. Long-term estradiol supplementation did not influence NPY vasoconstriction, overflow, or its enzymatic breakdown in skeletal muscle first-order arterioles.  相似文献   

18.
Summary Adult, untrained NMRI mice were exhausted on a motor-driven treadmill by an intermittent-type running programme. Serial cryostate sections for the staining of NADH-tetrazolium reductase, -glucuronidase, -N-acetylglucosaminidase, and -glycerophosphatase activities and for making hematoxylin-eosin staining were cut from m. quadriceps femoris 1, 2, 3, 5, 7, and 15 days after physical exhaustion. A strong increase in the activities of -glucuronidase and -N-acetylglucosaminidase, was observed 7 days after exhaustion and the activity changes, which were similar for the both glycosidases, were more prominent in the highly oxidative red compared to less oxidative white fibres. Activity granules were more numerous in the perinuclear than the interfibrillar area of red fibres. Spots were arranged like longitudinal chains between myofibrils. Activity in connective tissue was usually observed only in animals exhausted 3–7 days earlier. Simultaneous activity in fibres exceeded that in connective tissue -Glycerophosphatase activity was not, by the method used, seen in histologically healthy or normal-looking fibres. in samples taken 2–5 days after exhaustion some degenerating and necrotic fibres were observed. Inflammatory reaction was also observed being at its strongest five days after loading when mononuclear cells were seen inside necrotic fibres. The number of regenerating muscle cells was most abundant 7 days after exhaustion. It is suggested that temporary hypoxia, which accompanies exhaustive physical exercise in skeletal muscle, upsets the energy metabolism and homeostasis of fibres and causes the observed histological and histochemical alterations, which posses features typical of both lethal and sublethal acute cell injury.  相似文献   

19.
Our objective was to test the hypothesis that short-term exercise training (STR) of pigs increases endothelium-dependent dilation (EDD) of coronary arteries but not coronary arterioles. Female Yucatan miniature swine ran on a treadmill for 1 h, at 3.5 mph, twice daily for 7 days (STR; n = 28). Skeletal muscle citrate synthase activity was increased in STR compared with sedentary controls (Sed; n = 26). Vasoreactivity was evaluated in isolated segments of conduit arteries (1-2 mm ID, 3-4 mm length) mounted on myographs and in arterioles (50-100 microm ID) isolated and cannulated with micropipettes with intraluminal pressure set at 60 cmH(2)O. EDD was assessed by examining responses to increasing concentrations of bradykinin (BK) (conduit arteries 10(-12)-10(-6) M and arterioles 10(-13)-10(-6) M). There were no differences in maximal EDD or BK sensitivity of coronary arterioles from Sed and STR hearts. In contrast, sensitivity of conduit arteries (precontracted with PGF(2alpha)) to BK was increased significantly (P < 0.05) in STR (EC(50), 2.33 +/- 0.62 nM, n = 12) compared with Sed animals (EC(50), 3.88 +/- 0.62 nM, n = 13). Immunoblot analysis revealed that coronary arteries from STR and Sed animals had similar levels of endothelial nitric oxide synthase (eNOS). In contrast, eNOS protein was increased in STR aortic endothelial cells. Neither protein nor mRNA levels of eNOS were different in coronary arterioles from STR compared with Sed animals. STR did not alter expression of superoxide dismutase (SOD-1) protein in any artery examined. We conclude that pigs exhibit increases in EDD of conduit arteries, but not in coronary arterioles, at the onset of exercise training. These adaptations in pigs do not appear to be mediated by alterations in eNOS or SOD-1 expression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号