首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Resident peritoneal macrophages from untreated mice develop microbicidal activity against amastigotes of the protozoan parasite Leishmania tropica (current nomenclature = Leishmania major) after in vitro exposure to LK from antigen-stimulated leukocyte culture fluids. This LK-induced macrophage microbicidal activity was completely abrogated by addition of 7:3 phosphatidylcholine: phosphatidylserine liposomes. Liposome inhibition was not due to direct toxic effects against the parasite or macrophage effector cell; factors in LK that induce macrophage microbicidal activity were not adsorbed or destroyed by liposome treatment. Other phagocytic particles, such as latex beads, had no effect on microbicidal activity. Moreover, liposome inhibition of activated macrophage effector function was relatively selective: LK-induced macrophage tumoricidal activity was not affected by liposome treatment. Liposome inhibition was dependent upon liposome dose (5 nmoles/culture) and time of addition of leishmania-infected, LK-treated macrophage cultures. Addition of liposomes through the initial 8 hr of culture completely inhibited LK-induced macrophage microbicidal activity; liposomes added after 16 hr had no effect. Similarly, microbicidal activity by macrophages activated in vivo by BCG or Corynebacterium parvum was not affected by liposome treatment. Liposome treatment also did not affect the increased resistance to infection induced in macrophages by LK. These data suggest that liposomes interfere with one or more early events in the induction of activated macrophages (macrophage-LK interaction) and not with the cytotoxic mechanism itself (parasite-macrophage interaction). These studies add to the growing body of data that implicate cell lipid in regulatory events controlling macrophage effector function.  相似文献   

2.
Macrophages from P/J mice demonstrated both quantitative and qualitative defects in lymphokine (LK)-induced activated macrophage antileishmanial effector reactions: a) these cells recognized the same LK signals that generated resistance to infection in responsive C3H/HeN macrophages, but more signal was required to observe maximal activity; b) LK-induced intracellular destruction of Leishmania tropica by P/J macrophages was minimal (less than 20%), and was induced by only one of three LK signals that regulate antimicrobial activities in C3H/HeN macrophages. The defective microbicidal activity of P/J macrophages observed with LK activation in vitro could also be demonstrated in vivo. Macrophages from P/J mice exposed to the macrophage-activating agent Mycobacterium bovis strain BCG in vivo were capable of restricting the intracellular replication of L. tropica but could not eliminate intracellular parasites, even with further incubation with LK during the 72-hr culture period. The defect of P/J macrophages for intracellular destruction of L. tropica, then, occurred in the activation sequence before the triggering stage that characterizes the macrophage defect of C3H/HeJ mice. Genetic regulation of the P/J macrophage defect appears to be by a single autosomal gene, with defective microbicidal activity as a recessive trait in these animals.  相似文献   

3.
Much of the cholesterol that accumulates in atherosclerotic plaques is found within monocyte-macrophages transforming these cells into "foam cells." Native low density lipoprotein (LDL) does not cause foam cell formation. Treatment of LDL with cholesterol esterase converts LDL into cholesterol-rich liposomes having >90% cholesterol in unesterified form. Similar cholesterol-rich liposomes are found in early developing atherosclerotic plaques surrounding foam cells. We now show that cholesterol-rich liposomes produced from cholesterol esterase-treated LDL can cause human monocyte-macrophage foam cell formation inducing a 3-5-fold increase in macrophage cholesterol content of which >60% is esterified. Although cytochalasin D inhibited LDL liposome-induced macrophage cholesteryl ester accumulation, LDL liposomes did not enter macrophages by phagocytosis. Rather, the LDL liposomes induced and entered surface-connected compartments within the macrophages, a unique endocytic pathway in these cells that we call patocytosis. LDL liposome apoB rather than LDL liposome lipid mediated LDL liposome uptake by macrophages. This was shown by the findings that: 1) protease treatment of the LDL liposomes prevented macrophage cholesterol accumulation; 2) liposomes prepared from LDL lipid extracts did not cause macrophage cholesterol accumulation; and 3) purified apoB induced and accumulated within macrophage surface-connected compartments. Although apoB mediated the macrophage uptake of LDL liposomes, this uptake did not occur through LDL, LDL receptor-related protein, or scavenger receptors. Also, LDL liposome uptake was not sensitive to treatment of macrophages with trypsin or heparinase. Cholesterol esterase-mediated transformation of LDL into cholesterol-rich liposomes is an LDL modification that: 1) stimulates uptake of LDL cholesterol by apoB-dependent endocytosis into surface-connected compartments, and 2) causes human monocyte-macrophage foam cell formation.  相似文献   

4.
Macrophages exposed to lymphokines (LK) before exposure to parasites develop the capacity to resist infection with amastigotes of Leishmania major. Activity of LK for induction of this activated macrophage effector function is abrogated by depleting the LK of IFN-gamma, yet IFN-gamma is incapable of inducing the activity by itself. To identify the factors in LK that serve as second signals for induction of resistance to infection, we exposed macrophages to the following cytokines available as recombinant or highly purified reagents: CSF-1, granulocyte/macrophage colony-stimulating factor (GM-CSF), IL-1, -2, -3, -4, and -5, and IFN-alpha/beta. None of these factors induced resistance to infection by themselves or in combination with each other; in the presence of 50 U/ml IFN-gamma, three cytokines were active: GM-CSF, IL-2, and IL-4. IFN-gamma was an essential component of the activation cascade but was insufficient by itself to induce the effector reaction. Cytokines that act as cofactors with IFN-gamma worked directly on macrophages and not through another cell in the peritoneal cell (PC) cultures. Activation of PC depleted of Thy-1.2+ cells (85 +/- 5% macrophages) and bone marrow-derived macrophages (100% macrophages) showed that 50% maximal doses of GM-CSF, IL-2, and IL-4 for these macrophage-enriched populations were not different than for untreated PC. Unlike other effector reactions of activated macrophages, bacterial LPS did not synergistically enhance the activity of any of the cytokines, alone or in combination with IFN-gamma. Antibody depletion of the active cytokines from LK, singly or in combination, failed to alter the dose response of the active factors in whole LK for induction of resistance to infection. Thus, multiple factors can provide the second signal for IFN-gamma in the induction of resistance to infection, namely, GM-CSF, IL-2, IL-4, and at least two additional undefined factors in whole LK. Resistance to infection may be the first example of an activated macrophage effector reaction that has an absolute requirement for more than one endogenous signal for its induction.  相似文献   

5.
The susceptibility of 26 strains and clones of Leishmania to in vitro killing by lymphokine (LK)-activated macrophages was determined. A spectrum in the susceptibility of Leishmania to macrophage killing was observed. Some leishmanias were completely resistant to killing, including some but not all of the L. mexicana strains studied. This resistance was expressed in amastigotes and stationary growth-phase promastigotes, but not in logarithmic promastigotes. In contrast, some L. braziliensis parasites failed to survive within either activated or nonactivated macrophages. Between these two extremes were strains that survived within nonactivated macrophages, but were readily killed within activated macrophages. These included L. donovani, L. major, and some L. mexicana strains. Finally, one L. mexicana strain (WR357) was found to be susceptible to killing at high LK concentrations, but was relatively resistant at lower LK concentrations or at cutaneous temperatures. The observed differences in susceptibility to macrophage-mediated microbicidal activity may explain, in part, the variable pathogenesis of leishmanial infections.  相似文献   

6.
The effect of the macrophage growth and differentiation factor CSF-1 on the tumoricidal capacity of murine peritoneal exudate macrophages was investigated. Pretreatment of peptone-elicited macrophages 1 day with 300-1200 U/ml CSF-1 induced moderate killing and greatly stimulated lymphokine (LK)-induced killing of [3H]thymidine-labeled TU5 sarcoma cells to levels above that seen with fresh macrophages. Further addition of CSF-1 at Day 1 at the time of the tumor lysis assay promoted moderate increases in spontaneous and LK-induced activity. CSF-1 did not stimulate freshly harvested exudate macrophages to lyse TU5 targets in the presence or absence of lymphokine (LK) activators. Lipopolysaccharide (LPS) at 0.1-1000 ng/ml did not stimulate cytotoxicity, and the low endotoxin content and the use of polymyxin B and C3H/HeJ mice excluded a role for LPS in these experiments. Incubation of the macrophages with IFN and the myeloid growth factors IL-3 and GM-CSF did not stimulate tumoricidal activity. CSF-1 has been proposed as a therapeutic agent to restore myeloid cell numbers in induced (cancer chemotherapy, bone marrow transplantation, etc.) and natural aplastic anemias. These studies show that CSF-1 also may be useful in combination with LK activators to promote resistance to cancer in mature mononuclear cells. CSF-1 may have similar effects in LK-activated macrophages to enhance resistance to infectious diseases.  相似文献   

7.
为探讨磷脂酰丝氨酸(phosphatidylserine,PS)外翻和磷脂氧化在凋亡细胞被吞噬细胞清除中的作用,用脂质体整合的方法将不同的磷脂整合到红细胞上或用N-乙酰马来酰胺(N-ethylmaleimide,NEM)预处理红细胞然后整合磷脂,制备含不同凋亡信号的红细胞模型,测定巨噬细胞对整合不同磷脂信号红细胞的结合率和吞噬率。结果表明,单独整合PS或用NEM处理造成PS外翻,可显著性提高巨噬细胞对红细胞的结合率,但对吞噬率没有影响;同时整合PS和氧化磷脂(氧化PS或氧化磷脂酰胆碱(phosphatidylcholine,PC)),或用NEM处理造成PS外翻后再整合氧化PS或氧化PC,不仅可显著提高巨噬细胞对红细胞的结合率,而且可显著性提高吞噬率。这些结果提示PS外翻可能参与了巨噬细胞对凋亡细胞的结合,而磷脂氧化可能启动了巨噬细胞对凋亡细胞的吞噬,二者协作才可能完成巨噬细胞对凋亡细胞的清除。  相似文献   

8.
The influence of phosphatidylserine (PS) on the isoniazid-induced convulsions has been studied in mice. Sonicated dispersions of this phospholipid given intravenously do not show anticonvulsant activity but they do so when -aminobutyric acid (GABA) is simultaneously injected. GABA alone is inactive. The synergism between PS and GABA is influenced by the structure of the phospholipid liposomes. In contrast to multilamellar vesicles, oligolamellar vesicles are active. Under these conditions the effect shows head group specificity, in that the neutral phosphatidylcholine (PC) or the acidic phosphatidylinositol (PI) are inactive, either in the presence or in the absence of GABA. Lysophosphatidylserine (lysoPS), the deacylated PS derivative, shows increased efficacy as an isoniazid antagonist in the presence of GABA, and has anticonvulsant activity also in the absence of GABA. Other lysophospholipids are inactive. It is suggested that PS, after its metabolic conversion to lysoPS, enhances the anticonvulsant effect of GABA.  相似文献   

9.
Human interferon-gamma (IFN-gamma), a T cell lymphokine (LK), activates monocytes to kill many intra- and extracellular pathogens. In fact, previous reports assert that all activity in LK for macrophage activation is due to IFN-gamma. To test this assertion, we examined monocyte interactions with amastigotes of Leishmania donovani after treatment with recombinant DNA or affinity-purified leukocyte IFN-gamma and IFN-gamma containing LK. Cells treated with at least 200 IU/ml IFN-gamma were microbicidal for L. donovani. Analysis of IFN-gamma dose responses for induction of microbicidal activity by recombinant IFN-gamma (r-IFN-gamma) and LK, however, documented a striking difference: LK was 25-fold more efficient than r-IFN-gamma at equivalent IFN-gamma titers. This large difference suggested that monocyte activation factor(s) in LK may not be IFN-gamma. Rabbit anti-IFN-gamma completely inhibited antiviral activity in LK but did not abrogate the ability to induce monocyte cytotoxicity against leishmania. Furthermore, removal of IFN-gamma from LK by monoclonal anti-IFN-gamma affinity chromatography or by treatment with anti-IFN-gamma followed by staphylococcal protein A chromatography also did not inhibit LK activity. Fractionation of LK on Sephadex G-100 revealed two activity peaks: one in the 50,000 to 60,000 m.w. range coincident with IFN-gamma, and the other at 25,000 to 30,000 daltons with no IFN-gamma. These studies document LK physicochemically and antigenically distinct from IFN-gamma that activate monocytes to kill L. donovani. Such novel factors may have broad import for the study of macrophage-mediated host defenses and for development of immunotherapeutic regimens.  相似文献   

10.
Macrophages continuously exposed to lymphokines (LK) and target cells throughout a 48-hr cytotoxicity assay exhibit 3-fold more tumoricidal activity than do cells optimally treated with LK before addition of tumor cells. Increased cytotoxic activity induced by continuous LK treatment was not due to direct toxic effects of LK on tumor target cells or to alterations in target cell susceptibility to cytopathic effects of LK-activated macrophages. Moreover, sensitivities of responsive macrophages to LK activation signals and time courses for onset and loss of tumoricidal activity during continuous exposure or LK pulse were identical. Analysis of macrophage or LK dose responses and time courses for development of cytotoxicity each suggest that differences in tumoricidal activity between macrophages continuously exposed or pulsed with LK were quantitative: the number of cytotoxic events was increased 2.7 ± 0.2-fold (mean ± SEM for 11 experiments) during continuous LK treatment. Optimal levels of macrophage tumoricidal activity then occur only if effector cells, target cells and activation stimuli are simultaneously present for a defined time interval: tumor cells need not be present during the initial 2 to 3 hr of culture; LK can be removed after 8 hr with little or no loss of cytotoxic activity. However, removal of LK or target cells during the critical 4- to 8-hr interval decreased levels of cytotoxicity 3-fold. Thus, nonspecific effector function by LK-activated macrophages in controlled by both the physicochemical nature of the LK mediator and the time interval effector and target cells are exposed to LK.  相似文献   

11.
The correlations among the potentiating activity of various PS analogs on concanavalin A (Con A)-induced rat mast cell degranulation, the hemolytic activity and the incorporation into the mast cell membrane were studied. The following results were obtained. Lysophosphatidylserine (LysoPS) caused rat mast cell activation (degranulation) in the presence of Con A. The order of the activity was as follows: 1-stearoyl lysoPS = 1-palmitoyl lysoPS greater than 1-myristoyl lysoPS greater than 1-lauroyl lysoPS. The relative hemolytic activity of these compounds was similar to that observed in the mast cell activation. Dilauroyl PS, which shows similar hemolytic activity to 1-myristoyl lysoPS, did not activate mast cells appreciably. The relative activity of these phospholipids in the binding to mast cells was 1-stearoyl lysoPS greater than dilauroyl PS greater than 1-lauroyl lysoPS. Hemolytic activity, as well as activity on mast cells, of lysoPS analogs was well correlated to mast cell membrane incorporation, whereas such a correlation was not found with PS analogs. Dilauroyl PS could be accumulated in the mast cell membrane and showed hemolytic activity, but did not activate histamine secretion.  相似文献   

12.
ABSTRACT: BACKGROUND: Inflammation plays an important role in many pathologies, including cardiovascular diseases, neurological conditions and oncology, and is considered an important predictor for disease progression and outcome. In vivo imaging of inflammatory cells will improve diagnosis and provide a read-out for therapy efficacy. Paramagnetic phosphatidylserine (PS)-containing liposomes were developed for magnetic resonance imaging (MRI) and confocal microscopy imaging of macrophages. These nanoparticles also provide a platform to combine imaging with targeted drug delivery. RESULTS: Incorporation of PS into liposomes did not affect liposomal size and morphology up to 12 mol% of PS. Liposomes containing 6 mol% of PS showed the highest uptake by murine macrophages, while only minor uptake was observed in endothelial cells. Uptake of liposomes containing 6 mol% of PS was dependent on the presence of Ca2+ and Mg2+. Furthermore, these 6 mol% PS-containing liposomes were mainly internalized into macrophages, whereas liposomes without PS only bound to the macrophage cell membrane. CONCLUSIONS: Paramagnetic liposomes containing 6 mol% of PS for MR imaging of macrophages have been developed. In vitro these liposomes showed specific internalization by macrophages. Therefore, these liposomes might be suitable for in vivo visualization of macrophage content and for (visualization of) targeted drug delivery to inflammatory cells.  相似文献   

13.
Abstract

Liposomes can be used as carriers for antigens, immunomodulators and cytotoxic drugs. Such liposomes may serve as a tool to manipulate immune and non-immune host defense mechanisms. In most cases their effects are mediated by macrophages. Macrophages seem to be involved in humoral (antibody) responses and in cytotoxic T-lymphocyte responses. They are also important in non-immune defense mechanisms against foreign invaders and altered self. Which macrophages can be influenced by the liposome encapsulated molecules depends on the administration route of the liposomes. The macrophages ingest the liposomes. Once within the cell, lysosomal phospholipases disrupt the phospholipid bilayers. In this way, encapsulated molecules are released in the cell. Such liposome delivered molecules can be processed (antigens), activate the macrophage (immunomodulators) or disturb the metabolism of the cells (cytotoxic drugs). That the latter inhibition of macrophage functions may result in immunopotentiation is explained by the fact that certain macrophages are regulating immune functions by suppression.  相似文献   

14.
Cutaneous leishmaniasis can be either a spontaneously healing or chronic disease, depending upon the strain of parasite and the immunological status of the host. We have investigated parasite factors responsible for the variable pathogenesis observed in leishmanial infections by testing the sensitivity of several leishmanial strains to intracellular killing in lymphokine (LK) activated mouse macrophages. Significant microbicidal activity against Leishmania tropica, a strain which heals in C57BL/6 (B6) mice, was found. In contrast, a strain (Maria) which has previously been shown to induce chronic nonhealing cutaneous lesions in B6 mice was resistant to killing in activated macrophages. This resistance to killing was observed in macrophages activated by LK obtained from either Bacille Calmette-Guérin-, L. tropica, or the Maria strain infected mice. The inability of LK activated macrophages to kill the Maria strain was shown not to be due to parasite induced inhibition of killing mechanisms, since Maria strain infected, LK treated macrophages exhibited tumoricidial activity similar to uninfected macrophages. Furthermore, LK activated macrophages simultaneously infected with the Maria strain and another intracellular pathogen, Toxoplasma gondii, killed Toxoplasma, but not the Maria strain. Temperature was also found to significantly influence the multiplication and killing of Leishmania parasites. As would be expected from their cutaneous nature, L. tropica and Maria strain parasites multiplied better at 35 degrees C than at 37 degrees C. Also consistent with the failure of cutaneous strains to visceralize in immunocompetent mice was the observation that the killing of leishmanial parasites was enhanced at the higher temperature. Thus, the temperature dependent growth capacity and sensitivity to killing of a given leishmanial strain in macrophages may be important factors influencing the pathogenesis of cutaneous leishmaniasis.  相似文献   

15.
Macrophages treated with lymphokine (LK)-rich culture fluids from antigen- or mitogen-stimulated spleen cells or the hybridoma T cell 24/G1, or murine recombinant interferon-gamma (IFN-gamma) from either transfected monkey kidney cells (cos rIFN-gamma) or bacterial (E. coli) DNA (rIFN-gamma) developed the capacity to kill intracellular amastigotes of Leishmania major. Removal of IFN activity from LK by neutralizing fluid phase monoclonal anti-rIFN-gamma antibody, or by solid phase immunoadsorption, left residual macrophage activation factors that induced approximately 50% of the macrophage anti-leishmanial activity of untreated LK. In contrast, rIFN-gamma subjected to the same antibody treatments lost all capacity to induce this macrophage effector function. These results suggest that the intracellular destruction of amastigotes is regulated by several different factors. One of these factors is clearly IFN-gamma, which is pleiotropic in its effects on macrophage functions. The other non-IFN LK factors are immunochemically unrelated to IFN-gamma, and may regulate macrophage microbicidal activities in a more selective manner.  相似文献   

16.
In dissociated cultures of cerebellar granule cells, extracellular high potassium (HK) and low potassium (LK) concentrations control cell survival and apoptosis, respectively. Apoptosis-associated tyrosine kinase (AATYK) is up-regulated during the LK-induced apoptosis. Overexpression of wild-type AATYK, but not its kinase-deficient mutant, stimulates apoptosis in LK. In this study, we analyzed the relationship between the phosphorylation states of AATYK and the survival of granule cells. AATYK was hypophosphorylated in HK, whereas it was hyperphosphorylated in apoptotic LK. HK-dependent hypophosphorylation of AATYK was controlled by L-type voltage-dependent calcium channel-mediated Ca2+ influx followed by Ca2+-dependent protein phosphatase activity. However, LK-induced hyperphosphorylation of AATYK at multiple sites was blocked by kainate, lithium, and protein kinase C-delta inhibitor. AATYK phosphorylation was concurrent with c-Jun phosphorylation. In addition, mutations of AATYK on either the kinase domain or Ser-480, Ser-558, and Ser-566 residues suppressed the LK-induced hyperphosphorylation and apoptosis, suggesting the involvement of self-kinase activity and these Ser residues in this process. Our data therefore indicate that the phosphorylation states of AATYK are closely related to the HK-induced survival and LK-induced apoptosis of cerebellar granule cells.  相似文献   

17.
A cloned variant of the EL-4 murine T-cell line treated with phorbol myristate acetate (PMA) releases a factor that activates macrophages for nonspecific tumor cytotoxicity. This macrophage activation factor (MAF) is both physicochemically (Mr 25,000; pH 2 stable) and biologically different from interferon-gamma (IFN-gamma). However, EL-4 MAF may represent a breakdown product or otherwise altered fragment of IFN-gamma. We examined this possibility with a unique pair of hamster monoclonal antibodies against different epitopes of murine IFN-gamma. Both antibodies inhibited IFN-gamma-induced fibroblast antiviral activity; H21 but not H1 antibody also inhibited lymphokine (LK)-induced macrophage-mediated tumor cytotoxicity. Neither antibody, however, had any effect on the EL-4 MAF throughout a broad dose response. Moreover, passage through a H21 immunoaffinity chromatography column or addition of staphylococcal protein A and antibody completely inhibited LK-induced macrophage tumoricidal activity but did not affect the activity in EL-4 MAF. Identical effects in both fluid and solid phase were observed with polyclonal rabbit antisera to murine IFN-gamma. Results with all of these antibodies strongly suggest that the EL-4 MAF and murine IFN-gamma are antigenically distinct.  相似文献   

18.
Modulation of vitronectin receptor binding by membrane lipid composition.   总被引:5,自引:0,他引:5  
The vitronectin (Vn) receptor belongs to the integrin family of proteins and although its biochemical structure is fully characterized little is known about its binding affinity and specificity. We report here that Vn receptor binding to different matrix proteins is influenced by the surrounding lipid composition of the membrane. Human placenta affinity purified Vn receptor was inserted into liposomes of different composition: (i) phosphatidylcholine (PC); (ii) PC+phosphatidylethanolamine (PE); (iii) PC+PE+phosphatidylserine (PS) + phosphatidylinositol (PI) + cholesterol (chol). The amount of purified material that could be incorporated into the three lipid vesicle preparations was proportional to the efficiency of the vesicle formation that increased from PC (38%) to PC+PE and PC+PE+PS+PI+chol (about 50%) vesicles. Electron microscopy analysis showed that the homogeneity and size of the three liposome preparations were comparable (20-nm diameter) but their binding capacity to a series of substrates differed widely. Vn receptor inserted in PC liposomes bound only Vn, but when it was inserted in PC+PE and PC+PE+PS+PI+chol liposomes it also attached to von Willebrand factor (vWF) and fibronectin (Fn). Vn receptor had higher binding capacity for substrates when it was inserted in PC+PE+PS+PI+chol than PC+PE liposomes. Antibodies to Vn receptor blocked Vn receptor liposome binding to Vn, vWF, and Fn. The intrinsic emission fluorescence spectrum of the Vn receptor reconstituted in PC+PE+PS+PI+chol liposomes was blue-shifted in relation to PC liposomes, suggesting a conformational change of the receptor in the membranes. These data provide direct evidence that the Vn receptor is "promiscuous" and can associate with Vn, vWF and Fn. The nature of the membrane lipid composition surrounding the receptor could thus influence its binding affinity, possibly by changing its conformation or exposure or both.  相似文献   

19.
Dog heart microsomes catalyze the transfer of acyl groups from the sn-2 position of phosphatidylcholine (PC) to lysophosphatidylserine (lysoPS) in the presence of coenzyme A (CoA) at pH optima of 4.5-5.0 and 7.5. Acyl transfer activity at acidic pH is about three times higher than at neutral pH. Transacylation of lysoPS by acyl transfer from PC with dog heart microsomes at neutral pH favors arachidonate over linoleate by a factor of 2.1, whereas free linoleic acid is favored by a factor of 3.7 over arachidonic acid for lysoPS acylation in the presence of acyl-CoA-generating cofactors. Considering the location and acyl composition of myocardial PS, it appears that both acyl transfer from PC and utilization of unesterified fatty acids may be involved in the acylation of lysoPS at its sn-2 position.  相似文献   

20.
Serum proteins, acting as opsonins, are believed to contribute significantly to liposome-macrophage cell association and thus regulate liposome uptake by cells of the mononuclear phagocytic system (MPS). We studied the effect of serum protein on binding and uptake of phosphatidylglycerol-, phosphatidylserine-, cardiolipin-, and N,N-dioleyl-N,N-dimethylammonium chloride- (DODAC) containing as well as poly(ethylene glycol)- (PEG) containing liposomes by mouse bone marrow macrophages in vitro. Consistent with the postulated surface-shielding properties of PEG, protein-free uptake of liposomes containing 5 mol% PEG and either 20 mol% anionic phosphatidylserine or 20 mol% cationic DODAC was equivalent to uptake of neutral liposomes. In contrast to previous reports indicating that protein adsorption to liposomes increases uptake by macrophages, the presence of bound serum protein did not increase the uptake of these liposomes by cultured macrophages. Rather, we found that pre-incubating liposomes with serum reduced the uptake of liposomes containing phosphatidylserine. Surprisingly, serum treatment of PEG-containing liposomes also significantly reduced liposome uptake by macrophages. It is postulated that, in the case of phosphatidylserine liposomes, the bound serum protein can provide a non-specific surface-shielding property that reduces the charge-mediated interactions between liposomes and bone marrow macrophage cells. In addition, incubation of PEG-bearing liposomes with serum can result in a change in the properties of the PEG, resulting in a surface that is better protected against interactions with cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号