首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To explore the role of the brush-like proteoglycan, aggrecan, in the shear behavior of cartilage tissue, we measured the lateral resistance to deformation of a monolayer of chemically end-attached cartilage aggrecan on a microcontact printed surface in aqueous NaCl solutions via lateral force microscopy. The effects of bath ionic strength (IS, 0.001-1.0 M) and lateral displacement rate (approximately 1-100 microm/s) were studied using probe tips functionalized with neutral hydroxyl-terminated self-assembled alkanethiol monolayers. Probe tips having two different end-radii (R approximately 50 nm and 2.5 microm) enabled access to different length-scales of interactions (nano and micro). The measured lateral force was observed to depend linearly on the applied normal force, and the lateral force to normal force proportionality constant, mu, was calculated. The value mu increased (from 0.03 +/- 0.01 to 0.11 +/- 0.01) with increasing bath IS (0.001-1.0 M) for experiments using the microsized tip due to the larger compressive strain of aggrecan that resulted from increased IS at constant compressive force. With the nanosized tip, mu also increased with IS but by a smaller amount due to the fewer number of aggrecan involved in shear deformation. The variations in lateral force as a function of applied compressive strain epsilon(n) and changes in bath IS suggested that both electrostatic and nonelectrostatic interactions contributed significantly to the shear deformational behavior of the aggrecan layers. While lateral force did not vary with lateral displacement rate at low IS, where elastic-like electrostatic interactions between aggrecan dominated, lateral force increased significantly with displacement rate at physiological and higher IS, suggestive of additional viscoelastic and/or poroelastic interactions within the aggrecan layer. These data provide insights into molecular-level deformation of aggrecan macromolecules that are important to the understanding of cartilage behavior.  相似文献   

2.
In this study, we have measured the nanoscale compressive interactions between opposing aggrecan macromolecules in near-physiological conditions, in order to elucidate the molecular origins of tissue-level cartilage biomechanical behavior. Aggrecan molecules from fetal bovine epiphyseal cartilage were chemically end-grafted to planar substrates, standard nanosized atomic force microscopy (AFM) probe tips (R(tip) approximately 50 nm), and larger colloidal probe tips (R(tip) approximately 2.5 microm). To assess normal nanomechanical interaction forces between opposing aggrecan layers, substrates with microcontact printed aggrecan were imaged using contact mode AFM, and aggrecan layer height (and hence deformation) was measured as a function of solution ionic strength (IS) and applied normal load. Then, using high-resolution force spectroscopy, nanoscale compressive forces between opposing aggrecan on the tip and substrate were measured versus tip-substrate separation distance in 0.001-1M NaCl. Nanosized tips enabled measurement of the molecular stiffness of 2-4 aggrecan while colloidal tips probed the nanomechanical properties of larger assemblies (approximately 10(4) molecules). The compressive stiffness of aggrecan was much higher when using a densely packed colloidal tip than the stiffness measured for using the nanosized tip with a few aggrecan, demonstrating the importance of lateral interactions to the normal nanomechanical properties. The measured stress at 0.1M NaCl (near-physiological ionic strength) increased sharply at aggrecan densities under the tip of approximately 40 mg/ml (physiological densities are approximately 20-80 mg/ml), corresponding to an average inter-GAG spacing of 4-5 Debye lengths (4-5 nm); this characteristic spacing is consistent with the onset of significant electrostatic interactions between GAG chains of opposing aggrecan molecules. Comparison of nanomechanical data to the predictions of Poisson-Boltzmann-based models further elucidated the regimes over which electrostatic and nonelectrostatic interactions affect aggrecan stiffness in compression. The most important aspects of this study include: the incorporation of experiments at two different length scales, the use of microcontact printing to enable quantification of aggrecan deformation and the corresponding nanoscale compressive stress vs. strain curve, the use of tips of differing functionality to provide insights into the molecular mechanisms of deformation, and the comparison of experimental data to the predictions of three increasingly refined Poisson-Boltzmann (P-B)-based theoretical models for the electrostatic double layer component of the interaction.  相似文献   

3.
Chondrogenesis in cartilage development and repair and cartilage degeneration in arthritis can be regulated by mechanical-load-induced physical factors such as tissue deformation, interstitial fluid flow and pressure, and electrical fields or streaming potentials. Previous animal and tissue explant studies have shown that time-varying dynamic tissue loading can increase the synthesis and deposition of matrix molecules in an amplitude-, frequency-, and spatially dependent manner. To provide information on the cell-level physical factors which may stimulate chondrocytes to increase production and export of aggrecan, the main proteoglycan component of the cartilage matrix, we characterized local changes in aggrecan synthesis within cyclically loaded tissue explant disks and compared those changes to values of predicted local physical factors. Aggrecan synthesis following a 23-h compression/radiolabel protocol was measured with a spatial resolution of approximately 0.1 mm across the 1.5-mm radius of explanted disks using a quantitative autoradiography method. A uniform stimulation of aggrecan synthesis was observed at an intermediate frequency of 0.01 Hz, while, at a higher frequency of 0.1 Hz, stimulation was only seen at peripheral radial positions. Profiles of radial solid matrix deformation and interstitial fluid pressure and velocity predicted to be occurring across the radius of the disk during sinusoidal loading were estimated using a composite poroelastic model. Tissue regions experiencing high interstitial fluid velocities corresponded to those displaying increased aggrecan synthesis. These results reinforce the role of load-induced flow of interstitial fluid in the stimulation of aggrecan production during dynamic loading of cartilage.  相似文献   

4.
In this study we have investigated whether proteoglycans (aggrecan) are modified by nonenzymatic glycation as in collagen. Purified human aggrecan from osteoarthritic and normal human knee articular cartilage was assayed for pentosidine, a cross-link formed by nonenzymatic glycation, using reverse-phase HPLC. In addition, an in vitro study was done by incubation of purified bovine nasal cartilage aggrecan with ribose. Pentosidine was found in all the purified human aggrecan samples. 2-3% of the total articular cartilage pentosidine was found in aggrecan. Purified link protein also contained penosidine. The in vitro study led to pentosidine formation, but did not appear to increase the molecular size of the aggrecan suggesting that pentosidine was creating intramolecular cross-links. Similar amounts of glycation were found in osteoarthritic and normal cartilage. Like collagen, aggrecan and link proteins are crosslinked by nonenzymatic glycation in normal and osteoarthritic cartilage. Crosslinking could be reproduced, in vitro, by incubating aggrecan with ribose. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
Reactive oxygen species (ROS) are implicated in aging of cartilage and in the pathogenesis of osteoarthritis. However, the biological role of chondrocytes-derived ROS has not been elucidated. An in-vitro model was developed to study the role of chondrocyte-derived ROS in cartilage matrix degradation. The primary articular chondrocytes were cultured and the aggrecan matrix was radiolabeled with 35-sulfate. The labeled aggrecan matrix was washed to remove unincorporated label and chondrocytes were returned to serum free balanced salt solution. The cell-monolayer-matrix sensitivity to oxidative damage due to either hydrogen peroxide or glucose oxidase was established by monitoring the release of labeled aggrecan into the medium. Lipopolysaccharide (LPS) treatment of chondrocytemonolayer enhanced the release of labeled aggrecan. Catalase significantly prevented the release of labeled aggrecan in LPS-chondrocyte cultures, suggesting a role for chondrocyte-derived hydrogen peroxide in aggrecan degradation. Superoxide dismutase or boiled catalase had no such inhibitory effect. The effect of several antioxidants on LPS-chondrocyte-dependent aggrecan degradation was examined. Hydroxyl radical scavengers (mannitol and thiourea) significantly decreased aggrecan degradation. A spin trapping agent N-tert-butyl-phenylnitrone (but not its inactive analog tert-butyl-phenylcarbonate) significantly decreased aggrecan degradation. Butylated hydroxytoluene also inhibited aggrecan degradation, whereas the other lipophilic antioxidant tested, propyl gallate, had a marked dose-dependent inhibitory effect. These data indicate that general antioxidants, hydroxyl radical scavengers, antioxidant vitamins, iron chelating agents, lipophilic antioxidants, and spin trapping agents can influence chondrocyte-dependent aggrecan degradation. These studies support the role of a chondrocyte-dependent oxidative mechanism in aggrecan degradation and indicate that antioxidants can prevent matrix degradation and therefore may have a preventive or therapeutic value in arthritis. The enhancement of oxidative activity in chondrocytes and its damaging effect on matrix may be an important mechanism of matrix degradation in osteoarthritis.  相似文献   

6.
The matrix components responsible for cartilage mechanical properties, type II collagen and aggrecan, are degraded in osteoarthritis through proteolytic cleavage by matrix metalloproteinases (MMPs) and aggrecanases, respectively. We now show that aggrecan may serve to protect cartilage collagen from degradation. Although collagen in freeze-thawed cartilage depleted of aggrecan was completely degraded following incubation with MMP-1, collagen in cartilage with intact aggrecan was not. Using interleukin-1-stimulated bovine nasal cartilage explants where aggrecan depletion occurs during the first week of culture, followed by collagen loss during the second week, we evaluated the effect of selective MMP and aggrecanase inhibitors on degradation. A selective MMP inhibitor did not block aggrecan degradation but caused complete inhibition of collagen breakdown. Similar inhibition was seen with inhibitor addition following aggrecan depletion on day 6-8, suggesting that MMPs are not causing significant collagen degradation prior to the second week of culture. Inclusion of a selective aggrecanase inhibitor blocked aggrecan degradation, and, in addition, inhibited collagen degradation. When the inhibitor was introduced following aggrecan depletion, it had no effect on collagen breakdown, ruling out a direct effect through inhibition of collagenase. These data suggest that aggrecan plays a protective role in preventing degradation of collagen fibrils, and that an aggrecanase inhibitor may impart overall cartilage protection.  相似文献   

7.
During aging, non-enzymatic glycation results in the formation and accumulation of the advanced glycation endproduct pentosidine in long-lived proteins, such as articular cartilage collagen. In the present study, we investigated whether pentosidine accumulation also occurs in cartilage aggrecan. Furthermore, pentosidine levels in aggrecan subfractions of different residence time were used to explore pentosidine levels as a quantitative measure of aggrecan turnover. In order to compare protein turnover rates, protein residence time was measured as racemization of aspartic acid. As has previously been shown for collagen, pentosidine levels increase with age in cartilage aggrecan. Consistent with the faster turnover of aggrecan compared to collagen, the rate of pentosidine accumulation was threefold lower in aggrecan than in collagen. In the subfractions of aggrecan, pentosidine levels increased with protein residence time. These pentosidine levels were used to estimate the half-life of the globular hyaluronan-binding domain of aggrecan to be 19.5 years. This value is in good agreement with the half-life of 23.5 years that was estimated based on aspartic acid racemization. In aggrecan from osteoarthritic (OA) cartilage, decreased pentosidine levels were found compared with normal cartilage, which reflects increased aggrecan turnover during the OA disease process. In conclusion, we showed that pentosidine accumulates with age in aggrecan and that pentosidine levels can be used as a measure of turnover of long-lived proteins, both during normal aging and during disease.  相似文献   

8.
The nanostructure and nanomechanical properties of aggrecan monomers extracted and purified from human articular cartilage from donors of different ages (newborn, 29 and 38 year old) were directly visualized and quantified via atomic force microscopy (AFM)-based imaging and force spectroscopy. AFM imaging enabled direct comparison of full length monomers at different ages. The higher proportion of aggrecan fragments observed in adult versus newborn populations is consistent with the cumulative proteolysis of aggrecan known to occur in vivo. The decreased dimensions of adult full length aggrecan (including core protein and glycosaminoglycan (GAG) chain trace length, end-to-end distance and extension ratio) reflect altered aggrecan biosynthesis. The demonstrably shorter GAG chains observed in adult full length aggrecan monomers, compared to newborn monomers, also reflects markedly altered biosynthesis with age. Direct visualization of aggrecan subjected to chondroitinase and/or keratanase treatment revealed conformational properties of aggrecan monomers associated with chondroitin sulfate (CS) and keratan sulfate (KS) GAG chains. Furthermore, compressive stiffness of chemically end-attached layers of adult and newborn aggrecan was measured in various ionic strength aqueous solutions. Adult aggrecan was significantly weaker in compression than newborn aggrecan even at the same total GAG density and bath ionic strength, suggesting the importance of both electrostatic and non-electrostatic interactions in nanomechanical stiffness. These results provide molecular-level evidence of the effects of age on the conformational and nanomechanical properties of aggrecan, with direct implications for the effects of aggrecan nanostructure on the age-dependence of cartilage tissue biomechanical and osmotic properties.  相似文献   

9.
Bovine joint capsule was maintained in explant culture in the presence of bovine aggrecan monomer and it was shown that the aggrecan monomer was degraded. Amino-terminal sequence analysis of the resulting aggrecan core protein fragments revealed that the core protein was cleaved at five specific sites attributed to glutamyl endopeptidases referred to as aggrecanase activity. Fibroblast cultures were established from explant cultures of joint capsule and when these cells were exposed to aggrecan, cleavage of the core protein of aggrecan at the aggrecanase sites was observed. Inclusion of either retinoic acid or interleukin-1alpha in medium of either joint capsule explant cultures or fibroblast cultures did not increase the rate of cleavage of exogenous aggrecan present in the culture medium. When aggrecan monomer was incubated with conditioned medium from explant cultures of joint capsule maintained in medium, degradation could be detected after 10 min. After a 6-h incubation period the same fragments of aggrecan core protein were observed as those for tissue or cells incubated directly with aggrecan monomer. RT-PCR analysis of mRNA extracted from joint capsule fibroblasts showed that these cells express both aggrecanase-1 and -2 [ADAMTS-2 (Tang) and ADAMTS-5].  相似文献   

10.
Aggrecan loss from mouse cartilage is predominantly because of ADAMTS-5 activity; however, the relative contribution of other proteolytic and nonproteolytic processes to this loss is not clear. This is the first study to compare aggrecan loss with aggrecan processing in mice with single and double deletions of ADAMTS-4 and -5 activity (Deltacat). Cartilage explants harvested from single and double ADAMTS-4 and -5 Deltacat mice were cultured with or without interleukin (IL)-1alpha or retinoic acid and analyzed for (i) the kinetics of (35)S-labeled aggrecan loss, (ii) the pattern of (35)S-labeled aggrecan fragments released into the media and retained in the matrix, (iii) the pattern of total aggrecan fragments released into the media and retained in the matrix, and (iv) specific cleavage sites within the interglobular and chondroitin sulfate-2 domains. The loss of radiolabeled aggrecan from ADAMTS-4/-5 Deltacat cartilage was less than that from ADAMTS-4, ADAMTS-5, or wild-type cartilage under nonstimulated conditions. IL-1alpha and retinoic acid stimulated radiolabeled aggrecan loss from wild-type and ADAMTS-4 Deltacat cartilage, but there was little effect on ADAMTS-5 cartilage. Proteolysis of aggrecan contributed most to its loss in wild-type, ADAMTS-4, and ADAMTS-5 Deltacat cartilage explants. The pattern of proteolytic processing of aggrecan in these cultures was consistent with that occurring in cartilage pathologies. Retinoic acid, but not IL-1alpha, stimulated radiolabeled aggrecan loss from ADAMTS-4/-5 Deltacat cartilage explants. Even though there was a 300% increase in aggrecan loss from ADAMTS-4/-5 Deltacat cartilage stimulated with retinoic acid, the loss was not associated with aggrecanase cleavage but with the release of predominantly intact aggrecan consistent with the phenotype of the ADAMTS-4/-5 Deltacat mouse. Our results show that chondrocytes have additional mechanism for the turnover of aggrecan and that when proteolytic mechanisms are blocked by ablation of aggrecanase activity, nonproteolytic mechanisms compensate to maintain cartilage homeostasis.  相似文献   

11.
Atomic force microscopy was used in ambient conditions to directly image dense and sparse monolayers of bovine fetal epiphyseal and mature nasal cartilage aggrecan macromolecules adsorbed on mica substrates. Distinct resolution of the non-glycosylated N-terminal region from the glycosaminoglycan (GAG) brush of individual aggrecan monomers was achieved, as well as nanometer-scale resolution of individual GAG chain conformation and spacing. Fetal aggrecan core protein trace length (398+/-57 nm) and end-to-end length (257+/-87 nm) were both larger than that of mature aggrecan (352+/-88 and 226+/-81 nm, respectively). Similarly, fetal aggrecan GAG chain trace length (41+/-7 nm) and end-to-end (32+/-8 nm) length were both larger than that of mature aggrecan GAG (32+/-5 and 26+/-7 nm, respectively). GAG-GAG spacing along the core protein was significantly smaller in fetal compared to mature aggrecan (3.2+/-0.8 and 4.4+/-1.2nm, respectively). Together, these differences between the two aggrecan types were likely responsible for the greater persistence length of the fetal aggrecan (110 nm) compared to mature aggrecan (82 nm) calculated using the worm-like chain model. Measured dimensions and polymer statistical analyses were used in conjunction with the results of Western analyses, chromatographic, and carbohydrate electrophoresis measurements to better understand the dependence of aggrecan structure and properties on its constituent GAG chains.  相似文献   

12.
Monoclonal antibody (MAb) technology was used to examine aggrecan metabolites and the role of aggrecanases and matrix metalloproteinases (MMPs) in proteolysis of the interglobular domain (IGD) and C-terminus of aggrecan. An in vitro model of progressive cartilage degradation characterized by early proteoglycan loss and late stage collagen catabolism was evaluated in conjunction with a broad-spectrum inhibitor of MMPs. We have for the first time demonstrated that IGD cleavage by MMPs occurs during this late stage cartilage degeneration, both as a primary event in association with glycosaminoglycan (GAG) release from the tissue and secondarily in trimming of aggrecanase-generated G1 metabolites. Additionally, we have shown that MMPs were responsible for C-terminal catabolism of aggrecan and generation of chondroitin sulfate (CS) deficient aggrecan monomers and that this aggrecan truncation occurred prior to detectable IGD cleavage by MMPs. The onset of this later stage MMP activity was also evident by the generation of MMP-specific link protein catabolites in this model culture system. Recombinant MMP-1, -3 and -13 were all capable of C-terminally truncating aggrecan with at least two cleavage sites N-terminal to the CS attachment domains of aggrecan. Through analysis of aggrecan metabolites in pathological synovial fluids from human, canine and equine sources, we have demonstrated the presence of aggrecan catabolites that appear to have resulted from similar C-terminal processing of aggrecan as that induced in our in vitro culture systems. Finally, by developing a new MAb recognizing a linear epitope in the IGD of aggrecan, we have identified two novel aggrecan metabolites generated by an as yet unidentified proteolytic event. Collectively, these results suggest that C-terminal processing of aggrecan by MMPs may contribute to the depletion of cartilage GAG that leads to loss of tissue function in aging and disease. Furthermore, analysis of aggrecan metabolites resulting from both C-terminal and IGD cleavage by MMPs may prove useful in monitoring different stages in the progression of cartilage degeneration.  相似文献   

13.
Reactive oxygen species (ROS) are implicated in aging of cartilage and in the pathogenesis of osteoarthritis. However, the biological role of chondrocytes-derived ROS has not been elucidated. An in-vitro model was developed to study the role of chondrocyte-derived ROS in cartilage matrix degradation. The primary articular chondrocytes were cultured and the aggrecan matrix was radiolabeled with 35-sulfate. The labeled aggrecan matrix was washed to remove unincorporated label and chondrocytes were returned to serum free balanced salt solution. The cell-monolayer-matrix sensitivity to oxidative damage due to either hydrogen peroxide or glucose oxidase was established by monitoring the release of labeled aggrecan into the medium. Lipopolysaccharide (LPS) treatment of chondrocytemonolayer enhanced the release of labeled aggrecan. Catalase significantly prevented the release of labeled aggrecan in LPS-chondrocyte cultures, suggesting a role for chondrocyte-derived hydrogen peroxide in aggrecan degradation. Superoxide dismutase or boiled catalase had no such inhibitory effect. The effect of several antioxidants on LPS-chondrocyte-dependent aggrecan degradation was examined. Hydroxyl radical scavengers (mannitol and thiourea) significantly decreased aggrecan degradation. A spin trapping agent N-tert-butyl-phenylnitrone (but not its inactive analog tert-butyl-phenylcarbonate) significantly decreased aggrecan degradation. Butylated hydroxytoluene also inhibited aggrecan degradation, whereas the other lipophilic antioxidant tested, propyl gallate, had a marked dose-dependent inhibitory effect. These data indicate that general antioxidants, hydroxyl radical scavengers, antioxidant vitamins, iron chelating agents, lipophilic antioxidants, and spin trapping agents can influence chondrocyte-dependent aggrecan degradation. These studies support the role of a chondrocyte-dependent oxidative mechanism in aggrecan degradation and indicate that antioxidants can prevent matrix degradation and therefore may have a preventive or therapeutic value in arthritis. The enhancement of oxidative activity in chondrocytes and its damaging effect on matrix may be an important mechanism of matrix degradation in osteoarthritis.  相似文献   

14.
In many cells hyaluronan receptor CD44 mediates the endocytosis of hyaluronan and its delivery to endosomes/lysosomes. The regulation of this process remains largely unknown. In most extracellular matrices hyaluronan is not present as a free polysaccharide but often is found in complex with other small proteins and macromolecules such as proteoglycans. This is especially true in cartilage, where hyaluronan assembles into an aggregate structure with the large proteoglycan termed aggrecan. In this study when purified aggrecan was added to FITC-conjugated hyaluronan, no internalization of hyaluronan was detected. This suggested that the overall size of the aggregate prevented hyaluronan endocytosis and furthermore that proteolysis of the aggrecan was a required prerequisite for local, cell-based turnover of hyaluronan. To test this hypothesis, limited C-terminal digestion of aggrecan was performed to determine whether a size range of aggrecan exists that permits hyaluronan endocytosis. Our data demonstrate that only limited degradation of the aggrecan monomer was required to allow for hyaluronan internalization. When hyaluronan was combined with partially degraded, dansyl chloride-labeled aggrecan, blue fluorescent aggrecan was also visualized within intracellular vesicles. It was also determined that sonicated hyaluronan of smaller molecular size was internalized more readily than high molecular mass hyaluronan. However, the addition of intact aggrecan to hyaluronan chains sonicated for 5 and 10 s reblocked their endocytosis, whereas aggregates containing 15-s sonicated hyaluronan were internalized. These data suggest that hyaluronan endocytosis is regulated in large part by the extracellular proteolytic processing of hyaluronan-bound proteoglycan.  相似文献   

15.
Aggrecan degradation in articular cartilage occurs predominantly through proteolysis and has been attributed to the action of members of the matrix metalloproteinase (MMP) and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) families. Both families of enzymes cleave aggrecan at specific sites within the aggrecan core protein. One cleavage site within the interglobular domain (IGD), between Glu373-374Ala and five additional sites in the chondroitin sulfate-2 (CS-2) region of aggrecan were characterized as “aggrecanase” (ADAMTS) cleavage sites, while cleavage between Ser341-342Phe within the IGD of bovine aggrecan is attributed to MMP action. The objective of this study was to assess the cleavage efficiency of MMPs relative to ADAMTS and their contribution to aggrecan proteolysis in vitro. The analysis of aggrecan IGD degradation in bovine articular cartilage explants treated with catabolic cytokines over a 19-day period showed that MMP-mediated degradation of aggrecan within the IGD can only be observed following day 12 of culture. This delay is associated with the lack of activation of proMMPs during the first 12 days of culture. Analysis of MMP1, 2, 3, 7, 8, 9, 12, 13 and ADAMTS5 efficiencies at cleaving within the aggrecan IGD and CS-2 region in vitro was carried out by the digestion of bovine aggrecan with the various enzymes and Western blot analysis using aggrecan anti-G1 and anti-G3 antibodies. Of these MMPs, MMP12 was the most efficient at cleaving within the aggrecan IGD. In addition to cleavage in the IGD, MMP, 3, 7, 8 and 12 were also able to degrade the aggrecan CS-2 region. MMP3 and MMP12 were able to degrade aggrecan at the very C-terminus of the CS-2 region, cleaving the Glu2047-2048Ala bond which was previously shown to be cleaved by ADAMTS5. However, in comparison to ADAMTS5, MMP3 was about 100 times and 10 times less efficient at cleaving within the aggrecan IGD and CS-2 regions, respectively. Collectively, our results showed that the delayed activation of proMMPs and the relatively low cleavage efficiency of MMPs can explain the minor contribution of these enzymes to aggrecan catabolism in vivo. This study also uncovered a potential role for MMPs in the C-terminal truncation of aggrecan.  相似文献   

16.
This paper describes temporal changes in the metabolism and distribution of newly synthesized aggrecan and the organization of the extracellular matrix when explant cultures of articular cartilage maintained in the presence of fetal calf serum were exposed to retinoic acid for varying periods of time. Explant cultures of articular cartilage were incubated with radiolabeled sulfate prior to exposure to retinoic acid. The radiolabeled and chemical aggrecan present in the tissue and appearing in the culture medium was studied kinetically. Changes in the localization of radiolabeled aggrecan within the extracellular matrix were monitored by autoradiography in relation to type VI collagen distribution in the extracellular matrix. In control cultures where tissue levels of aggrecan remain constant the newly synthesized aggrecan remained closely associated with the territorial matrix surrounding the chondrocytes. Exposure of cultures to retinoic acid for the duration of the experiment, resulted in the extensive loss of aggrecan from the tissue and the redistribution of the remaining radiolabeled aggrecan from the chondron and territorial matrix into the inter-territorial matrix. These changes preceded alterations in the organization of type VI collagen in the extracellular matrix that involved the remodeling of the chondron and the appearance of type VI collagen in the inter-territorial matrix; there was also evidence of chondrocyte proliferation and clustering. In cartilage explant cultures exposed to retinoic acid for 24 h there was no loss of aggrecan from the matrix but there was an extensive redistribution of the radiolabeled aggrecan into the inter-territorial matrix. This work shows that maintenance of the structure and organization of the extracellular matrix that comprises the chondron and pericellular microenvironment of chondrocytes in articular cartilage is important for the regulation of the distribution of newly synthesized aggrecan monomers within the tissue.  相似文献   

17.
Liu X  Sun JQ  Heggeness MH  Yeh ML  Luo ZP 《Biorheology》2006,43(3-4):183-190
Proteoglycan aggregate is the primary component in articular cartilage responsible for resisting compressive loading. It consists of a core molecule of hyaluronan and a number of side chains of aggrecan bound to hyaluronan non-covalently. The loss of aggrecan from articular cartilage is considered to be a major factor in the development of osteoarthritis. Though enzymatic digestion of aggrecan is believed to be responsible for the release of aggrecan from osteoarthritic cartilage, other mechanisms, such as direct force-mediated detachment of aggrecan from hyaluronan may also be involved. In this study, the rupture force of the single bond between hyaluronan and aggrecan in articular cartilage was directly quantified using experimental measurement and Monte Carlo simulation. Low rupture force of this bond, as determined in this study suggested a possible direct force-mediated detachment of aggrecan from proteoglycan aggregate in osteoarthritic cartilage.  相似文献   

18.
The recessive mutation nanomelia blocks the synthesis of a large aggregating proteoglycan (aggrecan) by avian embryo chondrocytes. Lack of aggrecan is associated with short stature, multiple morphological defects in cartilage, and embryo lethality. Bony defects have also been described, but were assumed to be a secondary consequence of the cartilage defect. However, two lines of evidence presented in this paper indicate that the aggrecan deficiency directly affects intramembranous bone. First, the morphology (i.e. projected area and shape) of certain membranous bones of nanomelia embryos was abnormal. Second, membranous bone from nanomelia embryos proved to be significantly stiffer in biomechanical tests that measured functional properties of the extracellular matrix. These findings were unexpected because intramembranous bones normally develop from mesenchyme and not from a cartilage intermediate, and they prompted a search for evidence of aggrecan expression in the bone of normal chick embryos. We report that: 1) aggrecan mRNA was identified by PCR analysis of total RNA isolated from day-13 chick embryo calvarium, 2) the PCR method successfully amplified aggrecan mRNA from primary chick embryo osteoblasts in culture, 3) in situ hybridization of membranous bone tissue sections demonstrated aggrecan expression by chick embryo osteoblasts in vivo, and 4) the aggrecan message was identified in Northern blots of calvarial mRNA probed at high stringency. The results of the molecular and biomechanical studies provide evidence that aggrecan is indeed expressed in membranous bone as well as cartilage. Altogether, these results suggest that aggrecan may contribute to the functional properties and the normal growth and development of avian membranous bone.  相似文献   

19.
The effect of age on the incorporation of newly synthesized aggrecan into the extracellular matrix of human articular cartilage was investigated. This property was measured in a pulse-chase explant culture system by determining the distribution of radiolabeled molecules ([(35)S]sulfate-labeled) between a nondissociating extract (phosphate-buffered saline), which extracts mainly nonaggregated macromolecules, and a dissociating extract (4 M GnHCl) containing mainly aggrecan that was complexed in situ with hyaluronan. The rate of incorporation of aggrecan into aggregates was much slower in mature cartilage than in tissue obtained from younger individuals. Furthermore, autoradiography showed that in mature cartilage, newly synthesized aggrecan is not transported from the pericellular environment within the first 18 h of chase culture, whereas in immature cartilage, it moves into the intercellular space during the same period, i.e. aggrecan is processed in the extracellular space very differently in young and adult articular cartilage. Experiments were also performed to show that the interaction of link protein with newly synthesized aggrecan depends on the maturity of the G(1) domain of aggrecan. This investigation has shown that the extracellular aggregation of aggrecan in adult human articular cartilage involves a number of intermediate structures. These have not been identified in the very young cartilage obtained from laboratory animals or in porcine and bovine articular cartilage obtained from the abattoir.  相似文献   

20.
There has been no structural information about the core protein of salmon nasal cartilage proteoglycan although its physiological activities have been investigated. Internal amino acid sequencing using nano-LC/MS/MS revealed that the salmon proteoglycan was aggrecan. Primer walk sequencing based on the amino acid information determined that the salmon aggrecan cDNA is comprised of 4207 bp nucleotides predicted to encode 1324 amino acids with a molecular mass of 143,276. It exhibited significant similarities to predicted pufferfish aggrecan, zebrafish similar to aggrecan, zebrafish aggrecan, bovine aggrecan and human aggrecan isoform 2 precursor; whose amino acid identities were 56%, 55%, 49%, 31% and 30%, respectively. Salmon cartilage aggrecan had globular domains G1, G2 and G3 as in mammalian aggrecans. Neither the putative keratan sulfate attachment domain enriched with serine, glutamic acid and proline, nor the putative chondroitin sulfate attachment domain with repeating amino acid sequence containing serine–glycine, found in mammalian aggrecans were observed in salmon, however, random serine–glycine (or glycine–serine) sequences predicted to the sugar chain attachment sites were observed. Based on cDNA analysis and amino acid analysis after β-elimination, the ratio of serine attached to sugar chains was calculated to be approximately 37.7% of total serine, that is, 46 of 123 serine residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号