首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
It is well known that adrenalectomy (ADX) reverses the eating and energy balance disturbances in a variety of models of obesity associated with elevated food intake. We have previously demonstrated enhanced functional activity in the small intestine of neonatally monosodium glutamate-treated (MSG) obese rats despite the absence of overeating and we concluded that these changes might also contribute to the development of MSG obesity. The objective of the present experiments was to investigate whether ADX would affect the small intestinal functions and whether their changes would counteract attenuation or prevention of obesity development in MSG rats. Therefore the investigation was carried out in MSG-obese Wistar male rats and untreated intact rats adrenalectomized on day 40, as well as in lean littermates of MSG rats and intact rats subjected to Sham-ADX surgery. All animals had free access to a standard pellet diet after weaning. At the age of 80 days, body mass, body fat content and food consumption as well as changes of the brush-border-bound duodenal and jejunal alkaline phosphatase (AP), the dipeptidyl(amino)peptidase IV (DPP IV) and maltase activity were measured. During the postoperative period, ADX resulted in a significant decrease of mass gain in both MSG and control rats (P<0.05). ADX fully prevented the development of obesity in MSG rats (significantly decreased epididymal+retroperitoneal fat pad mass, P<0.05) and increased mean daily food intake (P<0.001). These effects were only minimal in the ADX controls suggesting that enhanced adrenal secretion is involved in the expression of MSG obesity and its complications. The AP activity in obese MSG rats was increased by about 21 % (P<0.01) in both intestinal segments when compared to the lean controls, whereas no parallel variations in the activities of DPP IV and maltase were observed in the intestinal parts mentioned. In MSG rats, ADX significantly reduced the AP activity in the duodenum and jejunum (P<0.01). A similar tendency was also seen in the DPP IV activity of adrenalectomized MSG rats as well as in lean control rats. Nevertheless, no significant effect of adrenal withdrawal on maltase activity was found. These results indicate that the decrease of enzyme activities in the small intestine and the different effectiveness of nutrient absorption might be a significant factor preventing the development of excess adiposity in glutamate-treated rats. This information contributes to a better understanding of the importance of small intestinal function for the development of obesity and its maintenance in later life.  相似文献   

2.
To investigate the relationship between development of obesity and the small intestinal functions two experimental models of male Wistar rats were used in the present work: 1) early postnatally overfed rats, nursed from birth to weaning in small litters (SL, 4 pups/nest), and 2) neonatally monosodium glutamate treated rats (MSG 2 mg/g b.w. administered s.c. for 4 days after birth) submitted to the same early nutritional manipulation. After weaning, all animals had free access to a standard pellet diet and at 40 and 80 days of age their body weight, body fat content and food consumption as well as changes of the brush-border-bound duodenal and jejunal alkaline phosphatase (AP) activity were compared with parameters of the offsprings raised under normal feeding conditions (NL, 8 pups/nest). At 40 and 80 days of age the postnatally overfed pups from SL nests became heavier, displayed a significantly increased epididymal plus retroperitoneal fat pad weight (P<0.01) and significantly higher AP activity in both segments of the small intestine (P<0.01) in comparison with rats nursed in NL nests, although their mean daily food intake did not differ from that of non-obese rats during the postweaning periods examined. In contrast, the same treatment of MSG rats had only a small effect on late appearance of obesity, i.e. in early postnatally overfed and normally fed MSG rats a similar pattern of body weight, food intake, adiposity and AP activity was found after weaning. The effect of MSG-treatment was also accompanied by the appearance of normophagia, hypophagia and stunted growth on day 40 and day 80, respectively. Moreover, the size of fat depots and the increase of brush-border-bound AP activity in MSG rats belonging to the SL and NL groups was quantitatively similar to the values size of these parameters observed in SL obese rats subjected to early postnatal overnutrition. These results indicate that postnatal nutritional experience (overnutrition) may represent a predisposing factor in control rats from small litters for the development of obesity in later life. Permanently increased small intestinal AP activity observed after weaning in both models of obesity when hyperphagia is not present suggest that these functional changes and associated alterations in food digestion could be a component of regulatory mechanisms contributing to the maintenance of their elevated body fat weight.  相似文献   

3.
In the present work the effects of fasting and refeeding on fat pad weight and alkaline phosphatase activity in the brush border of individual duodenal enterocytes have been evaluated in male Wistar rats with obesity induced by monosodium glutamate (MSG) treatment during the early postnatal period. Neonatal rats were treated subcutaneously with MSG (2 mg/g b.w.) or saline (controls) for 4 days after birth. At 4 months of age, two types of experiments were performed. In the first experiment rats, were submitted to 3 or 6 days lasting food deprivation. In the second experiment the rats were refed for 3 or 6 days ad libitum or restrictedly (60% of pre-fasting intake) after a 6 day-fasting period. Fasting and refeeding influenced the body fat and function of the duodenum in MSG-treated rats differently as compared to the controls. However, alkaline phosphatase activity and the weight of epididymal and retroperitoneal fat depots were significantly increased in MSG obese rats (P<0.001) during all the periods examined. While 3 days of food deprivation resulted in both groups in a similar loss of adipose tissue weight and alkaline phosphatase activity, the decrements of these parameters after 6 days of fasting were lower in obese rats suggesting that their capacity to spare body fat stores was enhanced. After 3 days of ad libitum refeeding, a more marked adaptational increase of food consumption and also a significantly increased alkaline phosphatase activity above the pre-fasting level (P<0.01) was observed in the MSG-treated rats. Consequently, a more rapid body fat restoration was demonstrated in these animals. Refeeding of rats at 60% of the pre-fasting intake level resulted in a significant increase of alkaline phosphatase activity in both the MSG and control group; moreover, as food restriction continued, MSG-treated rats tended to further increase the enzyme activity. Our results revealed that MSG treatment of neonatal rats may significantly change the intestinal functions. Permanently increased alkaline phosphatase activity observed in MSG obese rats during all investigated periods suggests that this functional alteration is probably not a consequence of actual nutritional variation but could be a component of regulatory mechanisms maintaining their obesity at critical values.  相似文献   

4.
In this study, susceptibility of inbred C57BL/6 and outbred NMRI mice to monosodium glutamate (MSG) obesity or diet-induced obesity (DIO) was compared in terms of food intake, body weight, adiposity as well as leptin, insulin and glucose levels. MSG obesity is an early-onset obesity resulting from MSG-induced lesions in arcuate nucleus to neonatal mice. Both male and female C57BL/6 and NMRI mice with MSG obesity did not differ in body weight from their lean controls, but had dramatically increased fat to body weight ratio. All MSG obese mice developed severe hyperleptinemia, more remarkable in females, but only NMRI male mice showed massive hyperinsulinemia and an extremely high HOMA index that pointed to development of insulin resistance. Diet-induced obesity is a late-onset obesity; it developed during 16-week-long feeding with high-fat diet containing 60 % calories as fat. Inbred C57BL/6 mice, which are frequently used in DIO studies, both male and female, had significantly increased fat to body weight ratio and leptin and glucose levels compared with their appropriate lean controls, but only female C57BL/6 mice had also significantly elevated body weight and insulin level. NMRI mice were less prone to DIO than C57BL/6 ones and did not show significant changes in metabolic parameters after feeding with high-fat diet.  相似文献   

5.
The reversal of obesity is a difficult feat at best and is a growing problem as the obesity epidemic increases worldwide. Considerable focus has been made on the arcuate nucleus (Arc) in the control of body and lipid mass and food intake. To test the role of the Arc in body fat mobilization, we compared the effects of food deprivation on white adipose tissue (WAT) mass in adult Siberian hamsters by making exocytotic lesions of the Arc via neonatal subcutaneous injections of monosodium glutamate (MSG). MSG-treated hamsters had significantly increased body mass, total and individual WAT pad masses, and serum leptin concentrations compared with their vehicle-injected counterparts. MSG produced marked reductions in Arc Nissl staining, tyrosine hydroxylase-immunoreactive (ir) neurons, and neuropeptide Y (NPY)- and agouti-related protein (AgRP)-ir fibers compared with controls. MSG significantly decreased hypothalamic paraventricular nucleus (PVN) NPY- and AgRP fiber-ir compared with controls, likely because of Arc projections to this nucleus. MSG treatment also reduced area postrema (AP) tyrosine hydroxylase (TH)-ir fibers compared with controls. MSG treatment did not, however, block food deprivation-induced decreases in WAT pad mass compared with controls. Thus, despite considerable damage to the Arc and some of its projections to the PVN, as well as the AP, body fat was mobilized apparently normally, bringing into question the necessity of these structures for food deprivation-induced lipid mobilization. These data support recent evidence that chronically decerebrate rats, in which the forebrain is surgically isolated from the caudal brainstem, show normal food deprivation responses, including lipid mobilization.  相似文献   

6.
To investigate the relationship between early nutritional experience, ontogeny of the small intestinal functions and predisposition to obesity development, the following experimental models of male Sprague-Dawley rats were used: 1) rats in which the quantity of nutrition was manipulated from birth to weaning (day 30) by adjusting the number of pups in the nest to 4 (SL), 10 (NL) and 16 pups (LL) and 2) littermates of SL, NL and LL rats fed either a standard or a hypercaloric diet from days 80 to 135 of age. The overfed SL pups were overweight after day 15 and became permanently obese, whereas the underfed smaller LL pups, due to accelerated growth and enhanced food intake from day 30 to day 35, attained a body fat level that did not differ from normally fed NL rats. Moreover, a significantly increased duodenal and jejunal alkaline phosphatase (AP) activity was found in SL and LL rats and these acquired somatic and intestinal characteristics persisted from weaning throughout life. Eight weeks of high-energy diet feeding elicited a similar pattern of intestinal response in SL and LL rats that was clearly different from NL rats. Despite energy over-consumption in these three groups, both SL and LL rats still displayed enhanced AP activity and showed a significant increase in protein/DNA ratio accompanied with a significant body fat accretion. These results indicate that the postnatally acquired small intestinal changes induced by over- and undernutrition could be involved in the similar predisposition to obesity risk in later life when caloric density of the diet is raised.  相似文献   

7.
The day-night variation of food intake and alkaline phosphatase (AP) activity was studied in the duodenum of rats neonatally treated with monosodium glutamate (MSG) and saline-treated (control) rats. The animals were kept under light-dark conditions (light phase from 09:00 h to 21:00 h) with free access to food. AP activity was cytophotometrically analyzed in the brush-border of enterocytes separated from the tip, middle and cryptal part of the villi every 6 h over a 24-hour period. In comparison with the controls, MSG-treated rats consumed about 40% less food during the dark period and their 24-hour food intake was thus significantly lowered (P<0.001). On the other hand, the nocturnal feeding habit showed a similar pattern: food consumption was high during the night (65% vs. 75%) and the lowest consumption was found during the light phase (35% vs. 25%) in MSG-treated and control rats, respectively. In agreement with the rhythm of food intake, the highest AP activity was observed during the dark phase and was lowest during the light phase in both groups of animals. These significant day-night variations showed nearly the same pattern in the enterocytes of all observed parts along the villus axis. In comparison with the controls, a permanent increase of AP activity was observed in neonatal MSG-treated rats. This increase was more expressive during the dark phase of the day in the cryptal (P<0.001) and middle part of the villus (P<0.01). From the viewpoint of feeding, this enzyme in MSG-treated rats was enhanced in an inverse relation to the amount of food eaten i.e. despite sustained hypophagia the mean AP activity in the enterocytes along the villus axis was higher than in the control animals during all investigated periods. The present results suggest that the increased AP activity in MSG-treated rats is probably not a consequence of actual day-night eating perturbations but could be a component of a more general effect of MSG. This information contributes to better understanding of the function of intestinal AP and its relation to day-night feeding changes especially in connection with the MSG syndrome.  相似文献   

8.
The effects of neonatal administration of monosodium glutamate (MSG) and castration on hypothalamic and anterior pituitary levels of neurokinin A (NKA) were studied in male and female rats killed at 46 days of age. In male rats treated neonatally with MSG, body, anterior pituitary, testis, ventral prostate, and seminal vesicle weights and serum testosterone levels were significantly lower than in saline-injected controls. Hypothalamic NKA was significantly lower in MSG-treated male rats as compared with the controls, and no apparent changes were recorded in anterior pituitary NKA. Orchidectomy was followed by a significant decrease in hypothalamic NKA in saline controls, but not in MSG-treated rats. In female rats treated with MSG, there was a significant decrease in body, anterior pituitary, and ovarian weights, as compared with saline-injected controls, but no significant differences were observed in uterine weights and serum estradiol levels. Hypothalamic NKA was lower, although not significantly, in MSG-treated rats as compared with the respective controls, and no differences were recorded in anterior pituitary NKA levels. Ovariectomy was followed by a significant decrease in hypothalamic NKA in both MSG-treated and control rats, but NKA in the anterior pituitary was significantly increased after ovariectomy only in saline-treated controls, whereas MSG-treated females failed to show this response. It is concluded that neonatal MSG treatment resulted in a decrease of hypothalamic NKA, which was particularly pronounced in male rats without any significant change in anterior pituitary NKA levels. The response of hypothalamic NKA to castration and the response of anterior pituitary NKA to ovariectomy were also altered in MSG-treated rats; this may reflect a functional block of some neuroendocrine functions of the hypothalamus that resulted from the neuronal lesions induced by MSG.  相似文献   

9.
Despite resistance exercises being associated with health outcomes, numerous issues are still unresolved and further research is required before the exercise can faithfully be prescribed as medicine. The goal of this study was to investigate whether there are sex differences in resistance training effects on metabolic alterations induced by monosodium glutamate (MSG), a model of obesity, in male and female rats. Male and female Wistar rats received MSG (4 g/kg body weight/day, s.c.) from postnatal day 1 to 10. After 10 days from MSG administration, the rats were separated into two groups: MSG-sedentary and MSG-exercised. At postnatal day 60, the animals started a resistance training protocol in an 80 degrees inclined vertical ladder apparatus and performed it for 7 weeks. Control rats received saline solution and were divided in saline-sedentary and saline-exercised. Resistance training restored all plasma biochemical parameters (glucose, cholesterol, triglycerides, aspartate aminotransferase, and alanine aminotransferase) increased in male and female rats treated with MSG. The MSG administration induced hyperglycemia associated with a decrease in the skeletal muscle glucose transporter 4 (GLUT4) levels and accompanied by deregulation in proteins, G-6Pase, and tyrosine aminotransferase, involved in hepatic glucose metabolism of male and female rats. MSG induced dyslipidemia and lipotoxicity in the liver and skeletal muscle of male rats. Regarding female rats, lipotoxicity was found only in the skeletal muscle. The resistance training had beneficial effects against metabolic alterations induced by MSG in male and female rats, through regulation of proteins (GLUT2, protein kinase B, and GLUT4) involved in glucose and lipid pathways in the liver and skeletal muscle.  相似文献   

10.
Suckling-age rats display endogenous circadian rhythmicity of metabolic rate (MR) with energy-saving, torpor-like decreases, which are sympathetically controlled and suppressed by leptin treatment. We investigated whether neonatal monosodium glutamate (MSG) treatment, known to cause arcuate nucleus damage and adult-age obesity, alters energy balance in the first two postnatal weeks. Continuously recorded MR and core temperatures (T(c)) show that MSG treatment disinhibits the periodic, sympathetically controlled, energy-saving drops of T(c) and MR. Increased energy expenditure thus explains reduced body fat at normal lean body mass found in MSG-treated pups artificially nourished identically to controls. In MSG-treated mother-reared pups, lean body mass is additionally reduced, suggesting that MSG also reduces suckling. Plasma leptin levels are similar in controls and MSG-treated pups but higher per unit of fat mass in the latter. We conclude that the postweaning development of MSG obesity and depressed thermogenesis are preceded by an early phase of increased energy expenditure with decreased fat deposition during suckling age and hypothesize cell damage in the arcuate nucleus to be involved in both.  相似文献   

11.
Monosodium glutamate (MSG) has been shown to alter several neuroendocrine functions in neonatally treated rats. To evaluate possible alterations in lipogenesis rate and lipoprotein lipase (LPL) activity, male and female rats were injected during the neonatal period with MSG or saline (controls). In male MSG rats, an increase in lipogenesis of liver and retroperitoneal adipose tissues was observed. Triton WR 1339 (an LPL inhibitor) administration decreased retroperitoneal lipogenesis in these animals. In female rats, MSG-treatment increased lipogenesis only in gonadal and retroperitoneal adipose tissues. No change was observed in hepatic lipogenesis and the Triton administration did not change retroperitoneal lipogenesis. LPL activity was increased in the gonadal and retroperitoneal adipose tissues in male and female MSG-treated rats. These data suggest that there is a specific sex-dependent response in the development of MSG-induced obesity.  相似文献   

12.
Effect of administration of different doses (0.25, 0.5, 1 and 2 g/kg, twice daily, po) of a polyherbal preparation, OB-200G and fluoxetine (10 mg/kg, ip) for 21 days was studied on food intake and body weight in male and female Laka mice. The study further investigated the effect of administration of 0.5 g/kg dose of OB-200G for 40 days on body weight, fat pad weights, locomotor activity and biochemical parameters in monosodium glutamate (MSG)-treated male and female Wistar rat pups. Administration of OB-200G produced dose dependent decrease in body weight in both male and female mice. On the other hand, fluoxetine decreased body weight only in female mice. The food intake was significantly (P < 0.05) increased in both fasted male and female mice after treatment with the lower dose (0.25 g/kg, po) of OB-200G. However, significant (P < 0.05) decrease in food intake was recorded with the administration of higher doses (0.5, 1 and 2 g/kg, po) of OB-200G and fluoxetine in fasted female mice on day 1, 7, 14 and 21. But in male mice differential effect on food intake was recorded at different doses on day 1, 7, 14 and 21. Further, OB-200G administration significantly (P < 0.05) decreased body weight and fat pad weights, increased serum glucose levels and ambulatory activity in MSG-treated female rats but not in MSG-treated male rats. The results suggest that OB-200G involves gender differences in mediating its antiobesity effect and may supplement the current armamentarium for the treatment of obesity.  相似文献   

13.
The objective of the present experiment was to assess the involvement of small intestine in expression of susceptibility or resistance to the high-fat/high-energy diet. The investigation was carried out in adult male Sprague-Dawley rats fed either standard laboratory diet (3.2 kcal/g, 9.5 % fat) or high-fat (HF) diet (4.04 kcal/g, 30 % fat) for 4 weeks as well as in HF rats that were retrospectively designated on the bases of their higher or lower weight gain as sensitive (DIO) or resistant (DR) to obesity. Our results revealed in HF group significant increase in energy intake, food efficiency, weight gain and Lee s index of obesity. Moreover, in comparison with controls, a significantly increased duodenal and jejunal alkaline phosphatase (AP) and alpha-glucosidase activity as well as hypertrophy of jejunal mucosa (increased protein/DNA ratio) were observed in HF fed rats. In contrast, intestinal function was inversely related to energy intake or to the development of adiposity in DIO vs. DR rats. The DR rats had significantly greater AP and alpha-glucosidase activity and more pronounced suppression of energy intake than obese DIO rats. It indicates that the increase of enzyme activities and the lowered effectiveness of nutrient absorption might be a significant factor preventing the expression of obesity proneness. This information contributes to a better understanding of a complex interaction between HF diet feeding and small intestinal adaptability, which determines the energy homeostasis and predict the ability to resist or develop obesity in these phenotypes.  相似文献   

14.
Maternal deprivation (MD) during neonatal life has diverse long-term effects, including affectation of metabolism. Indeed, MD for 24 hours during the neonatal period reduces body weight throughout life when the animals are maintained on a normal diet. However, little information is available regarding how this early stress affects the response to increased metabolic challenges during postnatal life. We hypothesized that MD modifies the response to a high fat diet (HFD) and that this response differs between males and females. To address this question, both male and female Wistar rats were maternally deprived for 24 hours starting on the morning of postnatal day (PND) 9. Upon weaning on PND22 half of each group received a control diet (CD) and the other half HFD. MD rats of both sexes had significantly reduced accumulated food intake and weight gain compared to controls when raised on the CD. In contrast, when maintained on a HFD energy intake and weight gain did not differ between control and MD rats of either sex. However, high fat intake induced hyperleptinemia in MD rats as early as PND35, but not until PND85 in control males and control females did not become hyperleptinemic on the HFD even at PND102. High fat intake stimulated hypothalamic inflammatory markers in both male and female rats that had been exposed to MD, but not in controls. Reduced insulin sensitivity was observed only in MD males on the HFD. These results indicate that MD modifies the metabolic response to HFD intake, with this response being different between males and females. Thus, the development of obesity and secondary complications in response to high fat intake depends on numerous factors.  相似文献   

15.
To evaluate whether MTII, a melanocortin receptor 3/4 agonist, is working in hypophagic and hypothermogenic obese model, we measured food intake, body weight, oxygen consumption, and fat mass following intracerebroventricular (i.c.v.) infusion of MTII in monosodium glutamate (MSG)-induced obese rats. MTII, or artificial cerebrospinal fluid (aCSF), was infused into i.c.v. with an osmotic minipump for 1 week. MSG-obese rats were induced by neonatal injection of MSG. Five-month-old MSG rats were characterized by hypophagia, lower oxygen consumption, hyperleptinemia, and obesity compared to age-matched control rats. The infusion of MTII decreased their food intake, visceral fat, and body weight in MSG-obese rats compared with aCSF-infused rats. The oxygen consumption was increased by MTII treatment in MSG-obese rats compared with aCSF as well as pair fed (PF) rats. Interestingly, these leptin-like effects of MTII were greater in MSG-obese rats than in controls, which might be related to the increased expression of melanocortin receptor 4 (MC4R) in the hypothalamus of MSG-obese rats. Our results suggested that both anorexic and thermogenic mechanisms were activated by MTII in the MSG-obese rats and contributed to the decrease in body weight and fat mass. Moreover, there was a sensitization to MTII caused by upregulation of the melanocortin receptor in the MSG-obese rats.  相似文献   

16.
The influence was evaluated of post-weaning normal nutrition and over-nutrition upon the development of the intestinal microbiota, the alkaline phosphatase activity (AP) and occurrence of obesity in male Sprague-Dawley rats (from days 21 to 40 the control rats were submitted to ad libitum intake of a standard laboratory diet whereas overfed rats received the same diet supplemented with milk-based high fat liquid diet). The jejunal numbers of two dominant divisions of bacteria, i.e. Firmicutes (Lactobacillus/ Enterococcus — LAB) and the Bacteroidetes (Bacteroides/Prevotella — BAC), were determined using the fluorescent in situ hybridization (FISH) method, and the jejunal AP activity was assayed histochemically. On day 40, the overfed rats in comparison with control animals displayed increased adiposity accompanied by enhanced AP activity, abundance of LAB, lower amounts of BAC and, thereafter, higher LAB/BAC ratio (L/B). The numbers of LAB and L/B index positively correlated with body fat, energy intake and AP activity, whereas numbers of BAC showed an opposite tendency. These results revealed the significance of nutritional imprint upon the post-weaning development of intestinal microbial and functional axis and contribute to better understanding of their involvement in energy-balance control and in adverse and/or positive regulation of adiposity.  相似文献   

17.
The aim of the study was to assess the impact of preweaning overnutrition upon the ontogeny of intestinal microbiota, alkaline phosphatase activity (AP) and parameters of growth and obesity in male Sprague-Dawley rats. We tested whether intestinal characteristics acquired in suckling pups could programme the development of enhanced fat deposition during normalized nutrition beyond weaning. Postnatal nutrition was manipulated by adjusting the number of pups in the nest to 4 (small litters--SL) and 10 (normal litters--NL). In the postweaning period both groups were fed with a standard diet. The jejunal and colonic Lactobacillus/Enterococcus (LAB) and the Bacteroides/Prevotella (BAC) were determined using the FISH technique, and the jejunal AP activity was assayed histochemically. At 15 and 20 days of age the SL pups became heavier, displayed increased adiposity accompanied by significantly higher LAB and lower numbers of BAC and with higher AP activity in comparison with rats nursed in NL nests. These differences persisted to day 40 and withdrawal of the previous causal dietary influence did not prevent the post-weaning fat accretion. These results reveal the significance of early nutritional imprint upon the gut microbial/functional development and allow better understanding of their involvement in the control of obesity.  相似文献   

18.
The aim of this study was to investigate the effect of a high-fat (HF)/energy diet on the intestinal microbiota, the alkaline phosphatase (AP) activity, and related parameters of growth and obesity during the suckling and weaning periods in male Sprague-Dawley rats. From birth, nutrition in suckling pups was manipulated by feeding rat dams either HF or a standard diet, and then after weaning, by exposure of experimental pups to the HF, and control rats to normal diet. On days 15, 20, 40 the numbers of 2 microbial groups, i.e., Bacteroides/Prevotella (BAC) and the Lactobacillus/Enterococcus (LAB) in the jejunum, were determined by fluorescent in situ hybridization technique, and the AP activity was assayed histochemically. During all investigated periods HF pups gained body fat more rapidly than control animals, but from weaning they displayed significantly stunted growth resulting in final body weight loss. Obesity in HF rats was also accompanied by higher LAB and lower numbers of BAC and with permanently higher AP activity. Correlation of these data showed significant negative correlation between LAB, AP, and weight gain and energy efficiency, and significant positive correlation of BAC and AP activity with body fat. These data support the concept that postnatal nutritional experience represents an important factor affecting the ontogeny of intestinal microbial communities and intestinal function. These acquired changes could be a component of regulatory mechanisms involved in adverse and/or positive consequences of HF diet for adiposity, body weight, and energy-balance control in later life.  相似文献   

19.
The effect of fasting on hormonal and metabolic variables was evaluated in normal rats and in rats with obesity induced by neonatal treatment with monosodium glutamate (MSG). The hyperinsulinemia of the fed obese rats was reversed by fasting. Plasma corticosterone was also high in the fed obese and decreased to levels similar to fed controls, while it increased in the latter group during fasting. In contrast, thyroid hormone levels decreased in controls but increased in the obese rats in response to fasting. The fed obese group had lower carcass protein and higher carcass lipid contents than controls. In response to fasting, the decrements of the initial amount of both protein and fat were lower in MSG than in controls. Fasting induced a sustained increase in plasma free fatty acids only in the obese rats, although a single 100 μmol · l−1 dose of norepinephrine stimulated in vitro glycerol release more pronouncedly in epididymal adipocytes from control than obese rats. The results indicate that MSG-obese rats were able to mobilize fat stores during prolonged fasting. The high availability of lipid fuels and the sharp and sustained decrease in circulating corticosterone in the MSG group were probably important in diminishing body protein consumption during fasting. Accepted: 20 March 1997  相似文献   

20.
Exercise has been recommended as a remedy against a worldwide obesity epidemic; however, the onset of excessive weight gain is not fully understood, nor are the effects of exercise on body weight control. Activity deficits of the sympathetic nervous system, including the sympathoadrenal axis, have been suggested to contribute to high fat accumulation in obesity. In the present work, swim training was used to observe fat accumulation and adrenal catecholamine stocks in hypothalamic-obese mice produced by neonatal treatment with monosodium L-glutamate (MSG). MSG-treated and normal mice swam for 15 min/day, 3 days a week, from weaning up to 90 days old (EXE 21-90); from weaning up to 50 days old (EXE 21-50) and from 60 up to 90 days old (EXE 60-90). Sedentary MSG and normal mice (SED groups) did not exercise at all. Animals were sacrificed at 90 days of age. MSG treatment induced obesity, demonstrated by a 43.08% increase in epididymal fat pad weight; these adult obese mice presented 27.7% less catecholamine stocks in their adrenal glands than untreated mice (p<0.001). Exercise reduced fat accumulation and increased adrenal catecholamine content in EXE 21-90 groups. These effects were more pronounced in MSG-mice than in normal ones. Halting the exercise (EXE 21-50 groups) still changed fat accretion and catecholamine stocks; however, no effects were recorded in the EXE 60-90 groups. We conclude that metabolic changes imposed by early exercise, leading to an attenuation of MSG-hypothalamic obesity onset, are at least in part due to sympathoadrenal activity modulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号