首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Potential B epitopes and T-helper epitopes in the N-terminal extracellular domain of the alpha7-subunit of human acetylcholine receptor (AChR) were theoretically calculated in order to reveal peptides that can induce the formation of specific antibodies to this domain. Four peptides structurally corresponding to four alpha7-subunit regions containing 16-23 aa and three of their truncated analogues were synthesized. Rabbits were immunized with both free peptides and protein conjugates of their truncated analogues, and a panel of antibodies to various exposed regions of the N-terminal extracellular domain of the AChR alpha7-subunit was obtained. All of the four predicted peptides were shown to induce the production of antipeptide antibodies in free form, without conjugation with any protein carrier. The free peptides and the protein conjugates of truncated analogues induced the formation of almost equal levels of antibodies. Most of the obtained antisera contained antibodies that bind to the recombinant extracellular N-terminal domain of the rat AChR alpha7-subunit and do not react with the analogous domain of the alpha1-subunit of the ray Torpedo californica AChR.  相似文献   

2.
We have compared specificity of a panel of polyclonal antibodies against synthetic fragments of the alpha7 subunit of homooligomeric acetylcholine receptor (AChR) and some subunits of heteromeric AChRs. The antibody interaction with extracellular domain of alpha7 subunit of rat AChR (residues 7-208) produced by heterologous expression in E. coli and rat adrenal membranes was investigated by the ELISA method. For comparison, membranes from the Torpedo californica ray electric organ enriched in muscle-type AChR and polyclonal antibodies raised against the extracellular domain (residues 1-209) of the T. californica AChR alpha1 subunit were also used. Antibody specificity was also characterized by Western blot analysis using rat AChR extracellular domain alpha7 (7-208) and the membrane-bound T. californica AChR. Epitope localization was analyzed within the framework of AChR extracellular domain model based on the crystal structure of acetylcholine-binding protein available in the literature. According to this analysis, the 179-190 epitope is located on loop C, which is exposed and mobile. Use of antibodies against alpha7 (179-190) revealed the presence of alpha7 AChR in rat adrenal membranes.  相似文献   

3.
Antibodies were raised to the amino- and car?y-terminal decapeptides of Torpedo californica acetylcholine receptor. Structural studies of the native receptor using the antipeptide antibodies as probes proved the existence of the car?y terminal sequence in the α subunit predicted from its cDNA sequence and supported structural models of the native receptor that place the car?y termini on the intracellular side. The amino termini of the subunits were not accessible on the surface of native receptor.  相似文献   

4.
5.
The nicotinic acetylcholine receptor (nAChR) belongs to a family of five channel-forming proteins that regulate communication between the approximately 10(12) cells of the nervous system. A minimum mechanism of inhibition of the muscle-type nAChR (1) by the noncompetitive inhibitors cocaine and MK-801 [(+)-dizocilpine, an anticonvulsant] indicated they bind to a regulatory site, with higher affinity for the closed-channel form than for the open-channel form, thus shifting the equilibrium toward the closed-channel form and inhibiting receptor function. The mechanism predicts that compounds that bind to this regulatory site with equal or higher affinity for the open-channel conformation than for the closed-channel conformation will prevent receptor inhibition (1). Does a neuronal form of the receptor behave similarly? The mechanism of inhibition of the neuronal nAChR by cocaine and MK-801 using rapid chemical kinetic techniques was investigated. The alpha3beta4 nAChR stably expressed in HEK 293 cells was used in these investigations. Whole-cell currents originated from a major and minor nAChR isoform. Only the major isoform has been characterized. For the dominant, rapidly desensitizing isoform, the carbamoylcholine dissociation constant for the site controlling receptor activation, Kd, is 2 mM; the channel-opening equilibrium constant, Phi(-1), is 4; and the dominant desensitization rate constant, k34, is 20 s(-1). Cocaine inhibits the receptor noncompetitively, with an apparent KI of 84 and 26 microM at high and low carbamoylcholine concentrations, at which concentrations the receptor is mainly in the open- or closed-channel form, respectively. Similar results were obtained with MK-801. A combinatorially synthesized RNA ligand and a cocaine analogue alleviated cocaine inhibition of this neuronal receptor.  相似文献   

6.
Five synthetic fragments of the N-terminal domain of the alpha7 subunit of the human nicotinic acetylcholine receptor (alpha7 nAChR) that correspond to theoretically calculated B epitopes and T helper epitopes of the protein and contain from 16 to 29 amino acid residues were tested for the ability to stimulate the formation of antibodies in mice of three lines having H-2d, H-2b, and H-2k haplotypes of the major histocompatibility complex. It was shown that, in the free (unconjugated) form, all the peptides stimulate the formation of antibodies at least in one mouse line. Most of the peptides induced the formation of antibodies in BALB/c mice (haplotype H-2d); therefore, more detailed studies were carried out on these animals. The free peptides and/or their conjugates with keyhole limpet hemocyanin were demonstrated to be capable of stimulating the formation in BALB/c mice of antibodies that bind to the recombinant extracellular N-terminal domain of (alpha7 nAChRalpha). The epitope mapping of antipeptide antibodies carried out using truncated fragments helped reveal antipeptide antibodies to four regions of the alpha7 subunit: 1-23, 98-106, 159-168, and 173-188 (or 179-188).  相似文献   

7.
We have previously shown that two histidine residues of the nicotinic acetylcholine receptor are relevant for alpha-bungarotoxin binding. This paper studies: (1) the interaction between alpha-bungarotoxin and the peptide alpha173-202--synthesized according to the sequence of the Torpedo californica receptor alpha subunit--and between the toxin and the same peptide containing His186 modified with ethoxyformic anhydride or substituted by Ala; (2) the influence of the presence of Cys192-Cys193 disulfide bridge on such interactions. Solid-phase and in-solution competition assays were performed: ethoxyformylation of His186 or its substitution by Ala led to a significant drop in the toxin binding capacity only for peptides containing the bridge. Circular dichroism and fourth derivate spectra of all peptides were also analyzed. Results strongly indicate the involvement of His186 in the toxin binding to those peptides with the bridge--also present in the native receptor molecules--but not to their reduced forms; on the other hand, they give further support to the already established premise that, though the bridge does not participate directly in receptor-toxin binding, its presence is relevant to define the appropriate conformation of the interaction area.  相似文献   

8.
Monoclonal antibodies (mAbs) to the main immunogenic region (MIR) bind to fusion proteins containing region 37-200 of the alpha chain of Torpedo, mouse, and chicken nicotinic acetylcholine receptor. In the case of the mouse alpha chain, these mAbs react with sequence 61-216 but not with 74-216. A synthetic peptide M1, containing residues 61-76 of the mouse alpha chain, also binds these anti-MIR mAbs, showing that all or part of their binding site is included in this region. The conformational dependence and epitope specificity of the mAbs are discussed.  相似文献   

9.
Neuronal nicotinic acetylcholine receptor (AChR) subtypes have been defined pharmacologically, immunologically, and by DNA cloning, but the correlations between these approaches are incomplete. Vertebrate neuronal AChRs that have been isolated are composed of structural subunits and ACh-binding subunits. A single kind of subunit can be used in more than one AChR subtype. Monoclonal antibody (mAb) 35 binds to structural subunits of subtypes of AChRs from both chicken brain and ganglia. By using antisera to a unique sequence of alpha 3 ACh-binding subunits expressed in bacteria, we show that ganglionic AChRs contain alpha 3 ACh-binding subunits, whereas the brain AChR subtype that binds mAb 35 does not. Subunit-specific antisera raised against recombinant proteins should be a valuable approach for identifying the subunit composition of receptors in multigene, multisubunit families.  相似文献   

10.
Four stable, hybrid-cell lines secreting monoclonal antibodies to distinct determinants on the nicotinic acetylcholine receptor from chick muscle have been established. These were characterised by the following criteria: immunoglobulin isotype, ability to produce experimental autoimmune myasthenia gravis in mice and reactivity towards homologous and heterologous acetylcholine receptor proteins. Two monoclonal antibodies were found to inhibit the reaction of alpha-bungarotoxin with homologous acetylcholine receptor; in addition one of these, on binding to receptor-toxin, induced a rapid dissociation of the complex (t1/2 = 0.5 h at 23 degrees C). Three of the antibody preparations recognised epitopes on this receptor from muscle of other species and two of these caused experimental autoimmune myasthenia gravis in BALB/c mice following passive transfer. The latter two recognised to significant extents the alpha-bungarotoxin binding component purified from chick optic lobe and brain cortex. Sedimentation analysis demonstrated that two of the monoclonal antibodies form a distinct size (s20, w = 12S) of complex with the receptor of chick muscle which most probably corresponds to a 1:1 attachment of antibody and receptor; this may involve cross-linking of two determinants within the same oligomer. A similar observation was made with the alpha-bungarotoxin binding component from optic lobe using one of the cross-reacting antibodies. Another monoclonal antibody was found to be capable of forming much heavier complexes with the receptor from chick muscle, these are thought to involve inter-molecular cross-linking of oligomers. The observed properties of these antibodies are discussed in relation to their myasthenogenicity and with reference to the extent of structural similarities between the peripheral nicotinic acetylcholine receptor and the alpha-bungarotoxin binding protein from brain.  相似文献   

11.
The alpha3beta4 subtype of the neuronal nicotinic acetylcholine receptor (nAChR) subtype was immobilized on a liquid chromatographic support and the resulting column used for the rapid and direct on-line screening for nAChR ligands. A multidimensional chromatographic system was developed consisting of the immobilized receptor column (NR column) connected via a switching valve to a C(18) column that was, in turn, connected to a single quadrupole mass spectrometer. A mixture of 18 compounds, containing alpha3beta4 nAChR (7) and compounds that are not alpha3beta4 nAChR ligands (11), was injected onto the NR column. The mobile phase consisted of ammonium acetate (10 mM, pH 7.4)-methanol (95:5, v/v) and the flow-rate was 0.2 ml/min. For the first 8 min the eluent was directed to waste. At t=8 min, the switching valve was rotated and the NR column connected to the C(18) column. The eluent from the NR column was directed to the C(18) column for 12 min. At t=20 min, the switching valve was rotated and the NR column was disconnected from the C(18) column. The compounds trapped on the C(18) column were separated and eluted onto the mass spectrometer using a mobile phase of ammonium acetate (10 mM, pH 7.4)-methanol (40:60, v/v) at a flow-rate of 1.0 ml/min. Detection was accomplished using total ion monitoring. The multidimensional system correctly isolated six of the seven alpha3beta4 nAChR ligands and only one of the 11 non-ligands was found with the alpha3beta4 nAChR ligands. The results indicate that the multidimensional liquid chromatographic system can be used for the on-line screening of chemical mixtures for alpha3beta4 nAChR ligands.  相似文献   

12.
The neuronal nicotinic acetylcholine receptors constitute a highly diverse group, with subtypes consisting of pentameric combinations of alpha and beta subunits. alpha-Conotoxins are a homologous series of small peptides that antagonize these receptors. We present the three-dimensional solution structure of alpha-conotoxin AuIB, the first 15-residue alpha-conotoxin known to selectively block the alpha(3)beta(4) nicotinic acetylcholine receptor subtype. The pairwise backbone and heavy-atom root mean square deviation for an ensemble of 20 structures are 0.269 and 0.720 A, respectively. The overall fold of alpha-conotoxin AuIB closely resembles that of the alpha4/7 subfamily alpha-conotoxins. However, the absence of Tyr(15), normally present in other alpha4/7 members, results in tight bending of the backbone at the C terminus and effectively renders Asp(14) to assume the spatial location of Tyr(15) present in other neuronal alpha4/7 alpha-conotoxins. Structural comparison of alpha-conotoxin AuIB with the alpha(3)beta(2) subtype-specific alpha-conotoxin MII shows different electrostatic surface charge distributions, which may be important in differential receptor subtype recognition.  相似文献   

13.
M K Das  J Lindstrom 《Biochemistry》1991,30(9):2470-2477
Concurrent synthesis of overlapping octameric peptides corresponding to the sequence of the Torpedo acetylcholine receptor (AChR) alpha subunit has been carried out on polypropylene supports functionalized with primary amino groups according to a method developed by M. Geysen [(1987) J. Immunol. Methods 102, 259-274]. The peptides on the solid supports have been used in an enzyme-linked immunosorbent assay. Interactions of the synthetic peptides with antibodies are then detected without removing them from the solid support. By this procedure, epitopes of both antisera and monoclonal antibodies to the Torpedo acetylcholine receptor, its subunits, and synthetic peptide fragments have been mapped. Both rat and rabbit antisera to the alpha subunit show major epitopes spanning the residues 150-165, 338-345, and 355-366 on the Torpedo AChR alpha subunit. Epitopes of monoclonal antibodies to these major epitopes and to others have been rather precisely mapped by using this technique with peptides of varying lengths. The specificity of several of these mAbs are of interest because they have been used in mapping the transmembrane orientation of the AChR alpha-subunit polypeptide chain.  相似文献   

14.
Interactions between two alpha-toxins and the synthetic peptides alpha 179-191 from both calf and human acetylcholine receptor alpha-subunit sequences have been studied by measurements of quenching of intrinsic fluorescence after toxin addition. Dissociation constants of approx. 5 x 10(-8) M for binding of calf peptide by both alpha-cobratoxin and erabutoxin a have been estimated. The binding of alpha-cobratoxin to calf peptide, which leads to marked quenching of fluorescence intensity, is inhibited by a 10(4) molar excess of acetylcholine. The human alpha 179-191 peptide binds to alpha-cobratoxin, but not, under comparable conditions, to erabutoxin a.  相似文献   

15.
Though the nicotinic acetylcholine receptor (nAChR) subunits alpha9 and alpha 10 have been thoroughly characterized within hair cells of the organ of Corti in the inner ear, prior studies have shown that they are also expressed in lymphocytes. In this report, we sought to more definitively characterize the nAChR subunits alpha9 and alpha10 within various populations of human lymphocytes. Using a combination of techniques, including RT-PCR, single-cell RT-PCR, Northern and western blot analysis, and immunofluorescence, expression of both alpha9 and alpha 10 was demonstrated in purified populations of T-cells (CD3+, CD4+, CD8+ and the Jurkat, MT2 and CEM T-cell lines) and B-cells (CD19+, CD80+ and EBV-immortalized B-cells). Single-lymphocyte recording techniques failed to identify an ionic current in response to applied acetylcholine in either T-cells or B-cells. These results clearly demonstrate the presence of these nicotinic receptor subunits within several populations of human lymphocytes, implicating their role in the immune response. However, a lack of demonstrated response to applied acetylcholine using standard single-cell recording techniques suggests a physiology different than that seen in hair cells of the inner ear.  相似文献   

16.
Valor LM  Mulet J  Sala F  Sala S  Ballesta JJ  Criado M 《Biochemistry》2002,41(25):7931-7938
The role of the large intracellular loop of the nicotinic acetylcholine receptor (nAChR) alpha7 subunit in the expression of functional channels was studied. For this purpose, systematic deletions and substitutions were made throughout the loop and the ability of the mutated alpha7 subunits to support expression of functional nAChRs at the Xenopus oocyte membrane was tested. Surface nAChR expression was abolished upon removal of sequences at two regions, a 29-amino acid segment close to the N-terminus of the loop (amino acids 297-325) and adjacent to the third transmembrane region and an 11-amino acid segment near the fourth transmembrane region. Some residues (amino acids 317-322) within the 29 amino acids N-terminal segment could be substituted by others but not deleted without loss of expression, suggesting that a certain structure, determined by the number of amino acids rather than by their identity, has to be maintained in this region. The contiguous sequence M323 K324 R325 did not tolerate deletions and substitutions. Removal of the rest of the cytoplasmic loop was not deleterious; even higher expression levels (2-4-fold) were obtained upon large deletions of the loop (Delta399-432 and Delta339-370). High expression levels were observed provided that a minimal sequence of three amino acids (E371, G372, and M373) was present. In addition, some electrophysiological properties of mutant nAChRs were modified. Substitution of the EGM sequence by other protein segments produced a variety of effects, but, in general, insertions were not well tolerated, suggesting the existence of tight structural restrictions in the large cytoplasmic region of the rat alpha7 subunit.  相似文献   

17.
Two monoclonal antibodies (mAb 254 and 255) were obtained against a synthetic peptide corresponding to the sequence 235-242 of the alpha-subunit of Torpedo acetylcholine receptor. These mAbs could bind to receptor in native membrane vesicles only when these vesicles were permeabilized, suggesting that the sequence alpha 235-242 is exposed on the cytoplasmic surface of the receptor. Further evidence for the cytoplasmic localization of this sequence was partial competition for binding between these mAbs and mAbs previously demonstrated to bind to the cytoplasmic part of the receptor. A model is proposed which accounts for all the experimental data obtained thus far on the transmembrane orientation of the subunit polypeptide chains.  相似文献   

18.
19.
Curariform alkaloids competitively inhibit muscle acetylcholine receptors (AChR) by bridging the alpha and non-alpha subunits that form the ligand-binding site. Here we delineate bound orientations of d-tubocurarine (d-TC) and its methylated derivative metocurine using mutagenesis, ligand binding measurements, and computational methods. When tested against a series of lysine mutations in the epsilon subunit, the two antagonists show marked differences in the consequences of the mutations on binding affinity. The mutations epsilon L117K, epsilon Y111K, and epsilon L109K decrease affinity of metocurine by up to 3 orders of magnitude but only slightly alter affinity of d-TC. At the alpha subunit face of the binding site, the mutation alpha Y198T decreases affinity of both antagonists, but alpha Y198F preferentially enhances affinity of d-TC. Computation of antagonist docking orientations, based on our structural model of the alpha-epsilon site of the human AChR, indicates distinct orientations of each antagonist; the flatter metocurine fits into a pocket formed principally by the epsilon subunit, whereas the more compact d-TC spans the narrower crevasse between alpha and epsilon subunits. The side chains of epsilon Tyr-111 and epsilon Thr-117 juxtapose one of two quaternary nitrogens in metocurine but are remote from the equivalent quaternary nitrogen in d-TC, which instead closely approaches alpha Tyr-198. The different docked orientations arise through tilt of the curariform scaffold by approximately 60 degrees normal to the nitrogen-nitrogen axis, together with a 20 degrees rotation about the axis. The overall mutagenesis and computational results show that despite their similar structures, d-TC and metocurine bind in distinctly different orientations to the adult human AChR.  相似文献   

20.
The human nicotinic acetylcholine receptor (nAChR) subunit alpha9 gene (CHRNA9) codes for a component of the AChR in hair cells of the inner ear. While no direct evidence presently links this gene to known hearing disorders, it may underlie individual susceptibility to acoustic inner ear injury, and is associated with the autoimmune skin disorder Pemphigus vulgaris. Future studies will depend upon a thorough characterization of the nAChR alpha9 gene. CHRNA9 was localized to chromosome 4p15.1-->p14 by FISH analysis. Radiation hybrid mapping further localized the gene between markers D4S405 and D4S496 (Stanford G3 panel), and between markers WI-3875 and D4S1231 (Genebridge 4 panel), representing a distance of approximately 3.1 cR. The D4S405 marker has been linked to a non-syndromic form of hereditary hearing loss, DFNB-25. The gene contains five exons, separated by four introns. Exons 1-5 are 78, 145, 154, 532 and 877 bases, respectively. Introns 1-4 are 294, 1239, 11517, and 4571 bases, respectively. The intron-exon splice junction sites correlate identically with those of the rat alpha9 gene and are nearly identical to those of the human alpha10 gene. Sequence promoter analysis reveals a number of potential regulatory elements, including several in common with the nAChR alpha10 gene, whose expressed protein is assumed to combine with alpha9 in the inner ear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号