首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
2.
3.
A Twist in fate: evolutionary comparison of Twist structure and function   总被引:10,自引:0,他引:10  
Castanon I  Baylies MK 《Gene》2002,287(1-2):11-22
The general requirement to induce mesoderm and allocate cells into different mesodermal tissues such as body muscle or heart is common in many animal embryos. Since the discovery of the twist gene, there has been great progress toward unraveling the molecular mechanisms that control mesoderm specification and differentiation. Twist was first identified in Drosophila as a gene crucial for proper gastrulation and mesoderm formation. In the fly embryo, Twist continues to play additional roles, allocating mesodermal cells into the body wall muscle fate and patterning a subset of these muscles. Twist is also required for proper differentiation of the adult musculature. Twist homologues have been identified in a great variety of organisms, which span the phylogenetic tree. These organisms include other invertebrates such as jellyfish, nematode, leech and lancelet as well as vertebrates such as frog, chick, fish, mouse and human. The Twist family shares both homology in structure across the basic helix-loop-helix domain and in expression during mesoderm and muscle development in most species. Here we review the current state of knowledge of the Twist family and consider how Twist functions during development. Moreover, we highlight experimental evidence that shows common themes that Twist employs during specification and patterning of the mesoderm among evolutionarily distant organisms. Conserved principles and the molecular mechanisms underlying them are discussed.  相似文献   

4.
The evolution of mesoderm was important for the development of complex body plans as well as key organ systems. Genetic and molecular studies in the fruitfly, Drosophila melanogaster, have provided the majority of information concerning mesoderm development in arthropods. In Drosophila, twist is necessary for the specification and correct morphogenesis of mesoderm and myocyte enhancing factor 2 (mef2) is involved downstream of twist to activate muscle differentiation. In Drosophila, mesoderm is defined by positional cues in the blastoderm embryo, while in another arthropod group, the amphipod crustaceans, cell lineage plays a greater role in defining the mesoderm. It is not known how different mechanistic strategies such as positional information vs. cell-lineage-dependent development affect the timing and use of gene networks. Here we describe the development of the mesoderm in a malacostracan crustacean, Parhyale hawaiensis, and characterize the expression of Parhyale twist and mef2 orthologues. In Parhyale, the mesoderm of the post-mandibular segments arises mainly through the asymmetric division of mesoteloblasts as the germband elongates. Ph-twist expression is seen in a subset of segmental mesoderm during germband development, but not during early cleavages when the specific mesodermal cell lineages first arise. ph-mef2 expression starts after the segmental mesoderm begins to proliferate and persists in developing musculature. While the association of these genes with mesoderm differentiation appears to be conserved across the animal kingdom, the timing of expression and relationship with different mechanisms of mesoderm development may give us greater insight into the ancestral use of these genes during mesoderm differentiation.  相似文献   

5.
During embryogenesis, the beta 3 tubulin gene of Drosophila is transcribed predominantly in the mesoderm. We have raised antibodies specific to the C-terminal domain of the beta 3 tubulin and analysed by immunostaining the distribution of this tubulin isotype during Drosophila embryogenesis. The protein is first detectable in the cephalic mesoderm at maximal germband extension. Shortly afterwards, beta 3 tubulin is expressed in single cells at identical positions of the thoracic and abdominal segments. We suggest that these cells represent muscle pioneer cells of Drosophila. During later embryonic development the somatic musclature, visceral musculature, dorsal vessel and macrophages contain beta 3 tubulin. In dorsalizing mutants dorsal, snail and twist, which do not form a ventral furrow during gastrulation, beta 3 expression is greatly reduced but not completely abolished. Our analysis shows that beta 3 tubulin immunostaining characterizes the differentiation of mesodermal derivatives during embryogenesis.  相似文献   

6.
7.
8.
The twist gene is involved in the establishment of germ layers in Drosophila embryos: twist homozygous mutant embryos fail to form the ventral furrow at gastrulation and lack mesoderm and all internal organs. We have determined the sequence of the twist gene, that contains 'CAX' repeats in its 5' moiety, and codes for a protein of 490 amino acids. We have raised anti-twist antibodies that were used to study the distribution of the twist protein in whole mounts and tissue sections of wild-type embryos. Twist protein appears to be a nuclear protein at all developmental stages. It is present over both poles and in the midventral region (endoderm and mesoderm anlagen) at cellular blastoderm stage; later in development, it is detected within the mesodermal layer until its differentiation into somatopleura and splanchnopleura in which some cells are still labelled by anti-twist antibodies.  相似文献   

9.
A role for the Drosophila neurogenic genes in mesoderm differentiation   总被引:9,自引:0,他引:9  
The neurogenic genes of Drosophila have long been known to regulate cell fate decisions in the developing ectoderm. In this paper we show that these genes also control mesoderm development. Embryonic cells that express the muscle-specific gene nautilus are overproduced in each of seven neurogenic mutants (Notch, Delta, Enhancer of split, big brain, mastermind, neuralized, and almondex), at the apparent expense of neighboring, nonexpressing mesodermal cells. The mesodermal defect does not appear to be a simple consequence of associated neural hypertrophy, suggesting that the neurogenic genes may function similarly and independently in establishing cell fates in both ectoderm and mesoderm. Altered patterns of beta 3-tubulin and myosin heavy chain gene expression in the mutants indicate a role for the neurogenic genes in development of most visceral and somatic muscles. We propose that the signal produced by the neurogenic genes is a general one, effective in both ectoderm and mesoderm.  相似文献   

10.
11.
12.
The visceral muscles of the Drosophila midgut consist of syncytia and arise by fusion of founder and fusion-competent myoblasts, as described for the somatic muscles. A single-step fusion results in the formation of binucleate circular midgut muscles, whereas a multiple-step fusion process produces the longitudinal muscles. A prerequisite for muscle fusion is the establishment of myoblast diversity in the mesoderm prior to the fusion process itself. We provide evidence for a role of Notch signalling during establishment of the different cell types in the visceral mesoderm, demonstrating that the basic mechanism underlying the segregation of somatic muscle founder cells is also conserved during visceral founder cell determination. Searching for genes involved in the determination and differentiation of the different visceral cell types, we identified two independent mutations causing loss of visceral midgut muscles. In both of these mutants visceral muscle founder cells are missing and the visceral mesoderm consists of fusion-competent myoblasts only. Thus, no fusion occurs resulting in a complete disruption of visceral myogenesis. Subsequent characterisation of the mutations revealed that they are novel alleles of jelly belly (jeb) and the Drosophila Alk homologue named milliways (mili(Alk)). We show that the process of founder cell determination in the visceral mesoderm depends on Jeb signalling via the Milliways/Alk receptor. Moreover, we demonstrate that in the somatic mesoderm determination of the opposite cell type, the fusion-competent myoblasts, also depends on Jeb and Alk, revealing different roles for Jeb signalling in specifying myoblast diversity. This novel mechanism uncovers a crosstalk between somatic and visceral mesoderm leading not only to the determination of different cell types but also maintains the separation of mesodermal tissues, the somatic and splanchnic mesoderm.  相似文献   

13.
14.
15.
16.
17.
18.
During the development of any organism, care must be given to properly pattern gene expression in temporally and spatially regulated manners. This process becomes more complex when the signals that regulate a target tissue are produced in an adjacent tissue and must travel to the target tissue to affect gene expression. We have used the developing somatic mesoderm in Drosophila as a system in which to examine this problem. Our investigation uncovered a novel mechanism by which Wingless (Wg) can travel from its source in the ectoderm to regulate the expression of the somatic muscle founder identity gene, slouch, in the ventral mesoderm. Delivery of Wg to the mesoderm by the developing Central Nervous System (CNS) exploits the stereotypic formation of this tissue to provide high Wg levels to Slouch founder cell cluster II in a temporally specific manner. Coordinated development of these tissues provides a reliable mechanism for delivering high Wg levels to a subset of mesodermal cells. It also provides a means for one signaling pathway to be used reiteratively throughout development to impart unique positional and character information within a target field.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号