首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structure and immunological characteristics of the pectic arabinogalactan Vk2a (previously reported as Vk100A2a) from the roots of Vernonia kotschyana Sch. Bip. ex Walp. were investigated after enzymatic digestion of the galacturonan moiety and the side chains of the rhamnogalacturonan structure of Vk2a. endo-alpha-D-(1-->4)-Polygalacturonase digestion released the high molecular weight 'hairy region' (Vk2a-HR) and oligogalacturonides. Vk2a-HR consisted of GalA (4-linked) and Rha (2- or 2,4-linked) in a 1:1 ratio, with 60% of Rha branched at C-4. The Rha located in the rhamnogalacturonan core was branched randomly by Gal units. Vk2a-HR was rich in neutral sugars such as Araf 5- (12.2%) and 3,5-substituted (12.8%) and terminally- (14.1%) linked and Gal 4- (13.0%), 3- (0.9%), 6- (2.2%) and 3,6- (1.1%) substituted. Arabinans with chain lengths up to 11 units were identified. Araf residues were attached to C-3 of alpha-L-(1-->5)-Araf chains and to C-4 of Gal residues. Single Gal units and chains of beta-D-(1-->6)-linked galacto di- to penta-saccharides were attached to a beta-D-(1-->3)-galactan core. All the enzyme resistant fractions expressed potent complement fixation and induction of B-cell mitogenic activity, and the present study indicates that there may be several and possibly structurally different active sites involved in the bioactivity of Vk2a. The bioactive sites may be located both in the more peripheral parts of the molecule but also in the inner core of the 'hairy region' or in larger enzyme-resistant chains.  相似文献   

2.
An immunomodulating pectic polymer, GOA1, obtained from the aerial parts of the Malian medicinal plant Glinus oppositifolius (L.) Aug. DC. (Aizoaceae) has previously been reported to consist of arabinogalactans type I and II, probably linked to a rhamnogalacturonan backbone. To further elucidate the structure of the polymer GOA1, enzymatic degradation studies and weak acid hydrolysis were performed. Five different glycosidases were used, endo-alpha-D-(1-->4)-polygalacturonase, exo-alpha-L-arabinofuranosidase, endo-alpha-L-(1-->5)-arabinanase, endo-beta-D-(1-->4)-galactanase and exo-beta-D-galactosidase. It appears that GOA1 may contain a structural moiety consisting of a 1,3-linked galactopyranosyl (Galp) main chain with 1,6-linked Galp side chains attached to position 6 of the main chain. The 1,6-linked Galp side chain may be branched in position 3 with arabinofuranosyl (Araf) side chains. A 1,4-linked Galp backbone which might carry side chains or glycosyl units attached to position 3 is also a structural element in the polymer. We further show that GOA1 induce proliferation of B cells and the secretion of IL-1beta by macrophages, in addition to a marked increase of mRNA for IFN-gamma in NK-cells. To elucidate structure-activity relations the native polymer and the digested fractions were tested for complement fixing activity and intestinal immune stimulating activity. The partial removal of Araf residues after enzymatic degradations did not affect the bioactivities, while the acid hydrolysed fraction showed reduced complement fixing activity. A decrease in Araf units, 1,3,6-linked Galp units and a partial hydrolysed rhamnogalacturonan backbone, in addition to a reduction in molecular weight are factors that might have contributed to reduced bioactivity.  相似文献   

3.
We investigated a galactosyltransferase (GalT) involved in the synthesis of the carbohydrate portion of arabinogalactan-proteins (AGPs), which consist of a beta-(1-->3)-galactan backbone from which consecutive (1-->6)-linked beta-Gal p residues branch off. A membrane preparation from 6-day-old primary roots of radish ( Raphanus sativus L.) transferred [(14)C]Gal from UDP-[(14)C]Gal onto a beta-(1-->3)-galactan exogenous acceptor. The reaction occurred maximally at pH 5.9-6.3 and 30 degrees C in the presence of 15 mM Mn(2+) and 0.75% Triton X-100. The apparent K(m) and V(max) values for UDP-Gal were 0.41 mM and 1,000 pmol min(-1) (mg protein)(-1), respectively. The reaction with beta-(1-->3)-galactan showed a bi-phasic kinetic character with K(m) values of 0.43 and 2.8 mg ml(-1). beta-(1-->3)-Galactooligomers were good acceptors and enzyme activity increased with increasing polymerization of Gal residues. In contrast, the enzyme was less efficient on beta-(1-->6)-oligomers. The transfer reaction for an AGP from radish mature roots was negligible but could be increased by prior enzymatic or chemical removal of alpha- l-arabinofuranose (alpha- l-Ara f) residues or both alpha- l-Ara f residues and (1-->6)-linked beta-Gal side chains. Digestion of radiolabeled products formed from beta-(1-->3)-galactan and the modified AGP with exo-beta-(1-->3)-galactanase released mainly radioactive beta-(1-->6)-galactobiose, indicating that the transfer of [(14)C]Gal occurred preferentially onto consecutive (1-->3)-linked beta-Gal chains through beta-(1-->6)-linkages, resulting in the formation of single branching points. The enzyme produced mainly a branched tetrasaccharide, Galbeta(1-->3)[Galbeta(1-->6)] Galbeta(1-->3)Gal, from beta-(1-->3)-galactotriose by incubation with UDP-Gal, confirming the preferential formation of the branching linkage. Localization of the GalT in the Golgi apparatus was revealed on a sucrose density gradient. The membrane preparation also incorporated [(14)C]Gal into beta-(1-->4)-galactan, indicating that the membranes contained different types of GalT isoform catalyzing the synthesis of different types of galactosidic linkage.  相似文献   

4.
Cryptococcus flavescens, a strain originally identified as C. laurentii, was isolated from the cerebrospinal fluid of an AIDS patient, and the soluble capsular polysaccharide of the yeast was investigated. Glucuronoxylomannan (GXM) was obtained from C. flavescens under conditions similar to those used to obtain C. neoformans polysaccharide. However, the GXM differed from C. neoformans polysaccharide in the decreased O-acetyl group content. The structure of GXM was determined by methylation analysis, partial acid hydrolysis, NMR analyses, and controlled Smith degradation. These analyses indicated that GXM has the following structure: an alpha-(1-->3)-D-mannan backbone with side chains of beta-D-glucuronic acid residues bound to the C-2 position of the mannose residue. The C-6 position of the mannose is substituted with D-man-beta-(1-->4)-D-xyl-beta-(1--> disaccharide. Furthermore, the existence of side chains containing more than two xylose residues was suggested. This mannosylxylose side chain is a novel structure in polysaccharides of C. neoformans and other Cryptococcus species.  相似文献   

5.
Duan J  Wang X  Dong Q  Fang Jn  Li X 《Carbohydrate research》2003,338(12):1291-1297
A water-soluble acidic heteroglycan, DL-3Bb, isolated from the leaves of Diospyros kaki, had [alpha](D)(20) -19.9 degrees (c 0.30, water), and contained rhamnose, arabinose, xylose, galactose and galacturonic acid in the molar ratio of 1.0:4.5:0.7:1.5:1.0. About 44% of the galacturonic acid existed as its methyl ester, and O-acetyl groups (approx 5.7%) were also identified. Its molecular weight was determined to be 9.0x10(5) Da by high-performance gel-permeation chromatography. Its structural features were elucidated by a combination of methylation analysis, periodate oxidation, two steps of partial acid hydrolysis, and 1H and 13C NMR spectroscopy and ESI mass spectrometry. The data obtained indicated that DL-3Bb possessed a backbone of a disaccharide of [-->4)-alpha-GalAp-(1-->2)-alpha-Rhap-(1-->], with approx 58.7% substitution at O-4 of the rhamnopyranosyl residues by beta-(1-->4)-linked xylopyranosyl residues, and by beta-(1-->3) and beta-(1-->6)-linked galactopyranosyl (galactan) residues. The side chains were further substituted by arabinofuranosyl residues at O-2 by beta-(1-->4)-linked xylopyranosyl residues and at O-3 by beta-(1-->6)-linked galactopyranosyl residues. Preliminary tests in vitro revealed that it could stimulate LPS-induced B lymphocyte proliferation, but not for ConA-induced T lymphocyte proliferation. It was proposed that the acid-labile arabinofuranosyl residues in the side chains would not be needed for the expression of the enhancement of the immunological activity, and that the presence of GalAp in the backbone has an important, but not crucial effect on the expression of the activity.  相似文献   

6.
Arabinan and galactan side chains of sugar beet pectins are esterified by ferulic acid residues that can undergo in vivo oxidative reactions to form dehydrodiferulates. After acid and enzymatic degradation of sugar beet cell walls and fractionation of the solubilized products by hydrophobic interaction chromatography, three dehydrodiferulate-rich fractions were isolated. The structural identification of the different compounds present in these fractions was performed by electrospray-ion trap-mass spectrometry (before and after (18)O labeling) and high-performance anion-exchange chromatography. Several compounds contained solely Ara (terminal or alpha-1-->5-linked-dimer) and dehydrodiferulate. The location of the dehydrodiferulate was assigned in some cases to the O-2 and in others to the O-5 of non-reducing Ara residues. One compound contained Gal (beta-1-->4-linked-dimer), Ara (alpha-1-->5-linked-dimer) and dehydrodiferulate. The location of the dehydrodiferulate was unambiguously assigned to the O-2 of the non-reducing Ara residue and O-6 of the non-reducing Gal residue. These results provide direct evidence that pectic arabinans and galactans are covalently cross-linked (intra- or inter-molecularly) through dehydrodiferulates in sugar beet cell walls. Molecular modeling was used to compute and structurally characterize the low energy conformations of the isolated compounds. Interestingly, the conformations of the dehydrodiferulate-bridged arabinan and galactan fragments selected from an energetic criterion, evidenced very nice agreement with the experimental occurrence of the dehydrodiferulated pectins. The present work combines for the first time intensive mass spectrometry data and molecular modeling to give structural relevance of a molecular cohesion between rhamnogalacturonan fragments.  相似文献   

7.
The antigenicity of Candida lusitaniae cells was found to be the same as that of Candida albicans serotype A cells, i.e. both cell wall mannans react with factors 1, 4, 5, and 6 sera of Candida Check. However, the structure of the mannan of C. lusitaniae was significantly different from that of C. albicans serotype A, and we found novel beta-1,2 linkages among the side-chain oligosaccharides, Manbeta1-->2Manbeta1--> 2Manalpha1-->2Manalpha1-->2Man (LM5), and Manbeta1-->2Man-beta1-->2Manbeta1-->2Manalpha1-->2Manalpha1-->2Man (LM6). The assignment of these oligosaccharides suggests that the mannoheptaose containing three beta-1,2 linkages obtained from the mannan of C. albicans in a preceding study consisted of isomers. The molar ratio of the side chains of C. lusitaniae mannan was determined from the complete assignment of its H-1 and H-2 signals and these signal dimensions. More than 80% of the oligomannosyl side chains contained beta-1,2-linked mannose units; no alpha-1,3 linkages or alpha-1,6-linked branching points were found in the side chains. An enzyme-linked immunosorbent inhibition assay using oligosaccharides indicated that LM5 behaves as factor 6, which is the serotype A-specific epitope of C. albicans. Unexpectedly, however, LM6 did not act as factor 6.  相似文献   

8.
After removal of the mucilage with water at room temperature, pectic polysaccharides were solubilized from Opuntia ficus-indica fruit skin, by sequential extraction with water at 60 degrees C (WSP) and EDTA solution at 60 degrees C (CSP). Polysaccharides with neutral sugar content of 0.48 and 0.36 mol/mol galacturonic acid residue were obtained, respectively, in the WSP and CSP extracts. These pectic polysaccharides were de-esterified and fractionated by anion-exchange chromatography, yielding for each extract five fractions, which were thereafter purified by size-exclusion chromatography. Two of these purified fractions were characterized by sugar analysis combined with methylation and reduction-methylation analysis. The study was then supported by (1)H and (13)C NMR spectroscopy. The results showed that the water-soluble fraction WSP3 and the EDTA soluble fraction CSP3, consisted of a disaccharide repeating unit -->2)-alpha-l-Rhap-(1-->4)-alpha-d-GalpA-(1--> backbone, with side chains attached to O-4 of the rhamnosyl residues. The side chains contained highly branched alpha-(1-->5)-linked arabinan and short linear beta-(1-->4)-linked galactan.  相似文献   

9.
Structural studies of the pectic polysaccharide from duckweed Lemna minor L   总被引:7,自引:0,他引:7  
The pectic polysaccharide of duckweed Lemna minor L. termed lemnan (LM) was shown to contain the ramified, "hairy" region. Using partial acid hydrolysis and Smith degradation followed by NMR spectroscopy of the fragments obtained, some structural features of the hairy region of LM were elucidated. Partial acid hydrolysis of LM afforded the crude polysaccharide fraction LMH that was separated into two polysaccharide fractions: LMH-1 and LMH-2. In addition, the oligosaccharide fraction LMH-3 contained 97% D-apiose was obtained from the supernatant. A further more rigorous acidic hydrolysis of LMH led to the crude polysaccharide fraction LMHR which was separated in to two fractions: LMHR-1 and LMHR-2. Smith degradation of LMH afforded the polysaccharide fragment LMHS differed in low contents of apiose residues. Unfortunately, NMR-spectroscopy failed to provide significant evidence concerning the structure of LMH-1 due to the complexity of the macromolecule. The structure of the 1H/13C-NMR spectroscopy including the correlation 2D NMR spectroscopy. As a result, alpha-1,4-D-galactopyranosyluronan was confirmed to be the main constituent of the LM backbone. In addition, the ramified, "hairy" region of the macromolecule appeared to contain segments consisting of residues of terminal and beta-1,5-linked apiofuranose, terminal and alpha-1,5-linked arabinofuranose, terminal and beta-1,3- and beta-1,4- linked galactopyranose, the terminal and beta-1,4-linked xylopyranose, and beta-1,4-linked 2-mono-O-methyl xylopyranose. Analytical and NMR-spectral data of LMHS confirmed the presence of considerable amounts of the non-oxidized of 1,4-linked D-galactopyranosyl uronic acid residues. Thus, some side chains of the ramified region of lemnan appeared to attach to D-galactopyranosyl uronic acid residues of the backbone.  相似文献   

10.
Several structurally different glucans (alpha- and beta-) and galactomannans were characterized as components of four species of the genus Ramalina, namely R. dendriscoides, R. fraxinea, R. gracilis and R. peruviana. Freeze-thawing treatment of hot aqueous extracts furnished as precipitates (PW) linear alpha-D-glucans of the nigeran type, with regularly distributed (1-->3)- and (1-->4)-linkages in a 1:1 ratio. The supernatants (SW) contained alpha-D-glucans with (1-->3)- and (1-->4)-linkages in a molar ratio of 3:1. The lichen residues were then extracted with 2% aq. KOH, and the resulting extracts submitted to the freeze-thawing treatment, giving rise to precipitates (PK2) of a mixture of alpha-glucan (nigeran) and beta-glucan, which were suspended in aqueous 0.5% NaOH at 50 degrees C, dissolving preferentially the beta-glucan. These were linear with (1-->3)-linkages (laminaran). The mother liquor of the KOH extractions (2% and 10% aq. KOH) was treated with Fehling's solution to give precipitates (galactomannans). The galactomannans are related, having (1-->6)-linked alpha-D-mannopyranosyl main chains, substituted at O-4 and in a small proportion at O-2,4 by beta-D-galactopyranosyl units. Despite the different habitats of these lichenized fungi, all species studied in this investigation have a similar pool of polysaccharides.  相似文献   

11.
A pectic polysaccharide named silenan, [alpha]D20 +148.6 degrees (c 0.1; H2O), was isolated earlier from the aerial part of campion, Silene vulgaris (Moench) Garcke. Silenan has been shown to contain homogalacturonan segments as "smooth regions" and rhamnogalacturonan fragments as "hairy regions". The present study reveals a generalization of structural features of silenan. Silenan was subjected to enzymic digestion with pectinase, to Smith degradation, and to lithium-degradation to determine the conforming poly- and oligosaccharide fragments of "hairy regions" of silenan. The NMR-spectral data and mass-spectrometry confirmed that the core of the ramified region of silenan consisted of residues of alpha-rhamnopyranose 2-O-glycosylated with the residues of alpha-1,4-D-galactopyranosyl uronic acid. The part of the alpha-rhamnopyranose residues of the backbone are branched at O-4. On the basis of the data, the hairy regions of silenan proved to contain mainly linear chains of beta-1,3-, beta-1,4-, and beta-1,6-galactopyranan and alpha-1,5-arabinofuranan. The side chains of the ramified region were shown to have branching points represented 2,3-, 3,6-, 4,6-di-O-substituted beta-galactopyranose residues.  相似文献   

12.
An intestinal immune system modulating arabino-3,6-galactan (ALR-5IIa-1-1) has been found in rhizomes of Atractylodes lancea DC. [Planta Medica 1998, 64, 714-719; Carbohydr. Polyms. 2001, 46, 147-156], however other arabino-3,6-galactans from Larix and Acacia failed to express the modulating activity. Degradation of the galactosyl side chains in Araf-side chain-trimmed ALR-5IIa-1-1 (AF-ALR-5IIa-1-1) with an endo-beta-D-(1-->6)-galactanase remarkably decreased the activity of AF-ALR-5IIa-1-1. Structural analysis indicated that the major endo-beta-D-(1-->6)-galactanase-digestable side chains in ALR-5IIa-1-1 are composed of beta-D-(1-->6)-galactopyranosyl oligosaccharides having d.p. 1-8. Because degradation of the beta-D-(1-->3)-galactan backbone in AF-ALR-5IIa-1-1 also significantly reduced its activity, some of these galactosyl side chains attached to beta-D-(1-->3)-galactan backbone are suggested to be responsible for expression of the activity of ALR-5IIa-1-1.  相似文献   

13.
Glucans of basidiomycetes are considered to be an important class of polysaccharides, as they can act as biological response modifiers. We now isolate a gel-forming, water-soluble beta-glucan, with a molecular mass of 1.2 x 10(6)g/mol (HPSEC), from the fruit bodies of the edible mushroom Pleurotus florida, via alkaline extraction, followed by fractionation by freeze-thawing. Structural assignments were carried out using mono- and bi-dimensional nuclear magnetic resonance spectroscopy, monosaccharide composition, methylation analyses, and a controlled Smith degradation. It was a branched beta-glucan, with a main chain of (1-->3)-linked-Glcp residues, substituted at O-6 by single-unit Glcp side chains, on average to every fourth residue of the backbone.  相似文献   

14.
Soybean soluble polysaccharides (SSPS) extracted from soybean cotyledons have a pectin-like structure. The core polysaccharides after treatments with four kinds of hemicellulases and a pectinase contained approximately equal numbers of L-rhamnose and D-galacturonate residues, suggesting the presence of the rhamnogalacturonan (RG) I structure consisting of the diglycosyl repeating unit, -4)-alpha-D-GalpA-(1-->2)-alpha-L-Rhap-(1-. The lengths of RG chains were calculated as approximately 15, 28, and 100 diglycosyl repeats. The RG components linked to each other by intervention of galacturonan (GN) chains, constituting the backbone of SSPS. All arabinose residues, which constitute 21% of total SSPS sugars, were found to be in side chains from RG regions, and this was also true for galactose residues, which constitute 50% of total sugars. Of arabinose residues, 94% are present as alpha-1,3- or alpha-1,5-arabinans, and 89% of galactose residues were present as beta-1,4-galactans. Galactan chains are modified with arabinose, xylose, fucose, and glucose at the sites close to the RG regions.  相似文献   

15.
The chrysolaminaran from the marine diatom Chaetoceros debilis was isolated and characterized by NMR spectroscopy. Cells were harvested in the stationary phase of growth after the medium had been depleted of nitrate when the chrysolaminaran content was expected to be at its highest. The chrysolaminaran was isolated with an yield of 17.5 mg/L, which corresponds to 15.8 pg/cell. 1H NMR indicated that the structure was similar to that of a beta-(1-->3) main chain with beta-(1-->6)-linked side chains. The degree of polymerization was found to be 30, corresponding to a molecular weight of approximately 4900. Thirty-three percent of the residues were found to be beta-(1-->6)-linked branches. The characteristics of the beta-(1-->6) branching were examined by NOESY NMR, which suggested pustulan-like branches, being beta-(1-->6) linked chains connected to the main chain with few branch points. Confirmation of the 1H NMR data was done by 13C-DEPT, TOCSY, COSY and HMQC NMR spectroscopy. The assignment of the resonances of the main beta-(1-->3) and beta-(1-->6) chains is presented. The structure proposed from our analyses is compared against other chrysolaminaran structures.  相似文献   

16.
Duan J  Zheng Y  Dong Q  Fang J 《Phytochemistry》2004,65(5):609-615
A pectic polysaccharide DL-2A with a molar mass of 8.5 x 10(5), was obtained from the boiling water extract of Diospyros kaki leaves. It had [alpha]20D -21.8 degrees (c 0.22, H2O) and consisted of rhamnose, arabinose, galactose, xylose and galacturonic acid units in the molar ratio of 0.4:3.4:2.4:1.0:0.8, along with traces of glucuronic acid. About 16.7% of galacturonic acid existed as the methyl ester. A combination of linkage analyses, periodate oxidation, partial acid hydrolysis, selective lithium-degraded reaction, ESIMS, 1H- and 13C- NMR spectral analyses revealed its structural features. It was found that DL-2A possessed an alpha-(1-->4)-galacturonan backbone with some insertions of alpha-1,2-Rhap residues. The side-chains of arabino-3,6-galactan were attached to the backbone via O-4 of Rhap residues and O-3 of GalAp residues, while 4-linked xylose residues (forming short linear chains) were directly linked to O-4 of rhamnose residues, not as part of the xylogalacturonan. These novel structural features enlarge the knowledge on the fine structure of pectic substances in the plant kingdom.  相似文献   

17.
Two galacturonic-acid-containing polysaccharide fractions (ChSS and P) were isolated from soybean meal and subjected to lithium treatment. The fragments obtained were analyzed by using monosaccharide and methylation analyses, and NMR spectroscopy. Lithium degradation of ChSS, followed by sodium borodeuteride reduction, hydrolysis, sodium borohydride reduction, and acetylation afforded alditol acetates, of which the labeled ones reflected residues linked to GalA. As followed from quantifications of the labeled and non-labeled alditols from each constituent monosaccharide by GLC-EIMS, 6 mol% of Ara, 22 mol% of Fuc, 13 mol% of Gal, 53 mol% of Rha, and 57 mol% of Xyl are glycosidically linked to GalA. Analysis of the lithium-treated polymer revealed that it contains arabinogalactan side chains linked to Rha O-4, which consist of a beta-(1 --> 4)-linked galactan substituted with highly branched arabinan chains. On average, an arabinogalactan chain contains up to 29 Gal and 25 Ara residues. Surface plasmon resonance was used to determine conditions for affinity chromatography. Furthermore, this technique confirmed the presence of terminal alpha-Fuc residues in ChSS. Polysaccharide P turned out to be relatively resistant to lithium degradation.  相似文献   

18.
Seven differently linked glycosyl residues have been found to be glycosidically linked to O-4 of the branched 2,4-linked l-rhamnosyl residues contained in the rhamnosyl and galacturonosyl backbone of the cell wall pectic polysaccharide rhamnogalacturonan I. These seven glycosyl residues are, therefore, the first residues of at least seven different side chains attached to the rhamnogalacturonan backbone. These first side chain glycosyl residues are 5-linked l-arabinofuranosyl and terminal 3-, 4-, 6-, 2,6-, and 3,6-linked d-galactopyranosyl residues. The existence of at least seven different side chains in rhamnogalacturonan I indicates that rhamnogalacturonan I is either an exceedingly complex polysaccharide or that rhamnogalacturonan I is a family of polysaccharides with similar or identical rhamnogalacturonan backbones substituted with different side chains.  相似文献   

19.
β-1,4-Galactans are abundant polysaccharides in plant cell walls, which are generally found as side chains of rhamnogalacturonan I. Rhamnogalacturonan I is a major component of pectin with a backbone of alternating rhamnose and galacturonic acid residues and side chains that include α-1,5-arabinans, β-1,4-galactans, and arabinogalactans. Many enzymes are required to synthesize pectin, but few have been identified. Pectin is most abundant in primary walls of expanding cells, but β-1,4-galactan is relatively abundant in secondary walls, especially in tension wood that forms in response to mechanical stress. We investigated enzymes in glycosyltransferase family GT92, which has three members in Arabidopsis thaliana, which we designated GALACTAN SYNTHASE1, (GALS1), GALS2 and GALS3. Loss-of-function mutants in the corresponding genes had a decreased β-1,4-galactan content, and overexpression of GALS1 resulted in plants with 50% higher β-1,4-galactan content. The plants did not have an obvious growth phenotype. Heterologously expressed and affinity-purified GALS1 could transfer Gal residues from UDP-Gal onto β-1,4-galactopentaose. GALS1 specifically formed β-1,4-galactosyl linkages and could add successive β-1,4-galactosyl residues to the acceptor. These observations confirm the identity of the GT92 enzyme as β-1,4-galactan synthase. The identification of this enzyme could provide an important tool for engineering plants with improved bioenergy properties.  相似文献   

20.
Two polysaccharides were isolated from the basidiomycete Flammulina velutipes, via successive hot extraction with water, 2% and 25% aq. KOH, and then submitted to freeze-drying. The precipitate formed by repeated freeze-thawing from the 2% aq. KOH extraction PK2 was analyzed by determination of its monosaccharide composition, as well as by methylation analyses using GC-MS, mono- ((13)C, (1)H NMR) and bidimensional ((1)H (obs.), (13)C HMQC) spectroscopy, and controlled Smith degradations. It was established to be a branched beta-glucan, with a main chain of (1-->3)-linked-Glcp residues, substituted at O-6 by single-unit beta-Glcp side chains. The precipitate formed by repeated freeze-thawing from the 25% KOH extraction PK25 contained Xyl, Man, and Glc and was heterogeneous by HSPEC and extraction with DMSO gave a soluble xylomannan (XM). It was homogeneous with a molar mass 30.8 x 10(4)g/mol (dn/dc=0.186). Using the above chemical analyses, it was a xylomannan with Man and Xyl in a 3:2 molar ratio. Its main chain consisted of (1-->3)-linked alpha-Manp units, mainly substituted at O-4 by beta-Xylp units or with some beta-Xylp-(1-->3)-beta-Xylp groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号