首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Omega-3 polyunsaturated fatty acids (PUFA) are increasingly finding use as treatments for a variety of medical conditions. PUFA supplementation can, however, result in increased oxidative stress causing elevated turnover rate of membrane phospholipids, impairment of membrane integrity and increased formation of inflammatory mediators. The aim of this study was to determine which antioxidant compounds were most effective in ameliorating the stimulation of phospholipid turnover by oxidative stress. U937 cells were supplemented with eicosapentaenoic acid and either ascorbic acid, alpha-tocopherol, beta-carotene or astaxanthin prior to being challenged with oxidant. Although all antioxidants were found to be effective in decreasing oxidant-stimulated peroxide formation, only alpha-tocopherol significantly decreased oxidant-stimulated release of 3H-labeled arachidonic acid (AA), while ascorbic acid markedly increased release. All antioxidants except alpha-tocopherol decreased oxidant-stimulated 3H-AA uptake. Our data suggest that antioxidants are not equally effective in combating the effects of oxidative stress upon membrane phospholipid turnover, and that optimal protection will require mixtures of antioxidants.  相似文献   

2.
Nonalcoholic steatohepatitis (NASH) is a common and potentially severe form of liver disease. This study aimed to determine the effect of ursodeoxycholic acid and its NO-releasing derivative NCX-1000 alone or in combination with antioxidants on cultured mouse hepatocytes treated with amiodarone to mimic certain aspects of hepatocyte injury found in NASH. Isolated mouse hepatocytes were incubated with ursodeoxycholic acid or NCX-1000 (0-100 micromol/L) combined or not combined with the hydrophilic antioxidants butylated hydroxytoluene and ascorbic acid (0-100 micromol/L) or with the lipophilic antioxidant alpha-tocopherol (0-100 micromol/L) 15 min before adding amiodarone (50 micromol/L) to the culture medium. Twenty hours later, necrosis, apoptosis, superoxide anion production, and malondialdehyde levels were assessed in cultured cells. Amiodarone led to a dose-dependent decrease in cell viability with an LD50 of 50 micromol/L and increased production of superoxide anion and lipid peroxidation. NCX-1000 showed a better protective potential than ursodeoxycholic acid against the toxic effects of amiodarone. The hydrophilic antioxidants had no effect on the toxicity of amiodarone, whereas alpha-tocopherol at a concentration >100 micromol/L almost completely suppressed it. Ursodeoxycholic acid and NCX-1000 protection was additive only when they were combined with alpha-tocopherol, not with butylated hydroxytoluene or ascorbic acid. In addition, all the antioxidants tested reduced the superoxide anion detected, but only alpha-tocopherol prevented lipid peroxidation induced by amiodarone. The combination of lipophilic antioxidants with ursodeoxycholic acid or NCX-1000 enhances their protective potential and could represent an interesting therapeutic approach to explore for the treatment of NASH.  相似文献   

3.
Vitamin A (retinol) and some of its analogs exhibited varying degrees of inhibition on induced iron and ascorbic acid lipid peroxidation of rat brain mitochondria. Malonyldialdehyde production was used as an index of the extent of in vitro lipid peroxidation. The fat-soluble vitamins retinol, retinol acetate, retinoic acid, retinol palmitate, and retinal at concentrations between 0.1 and 10.0 mmol/L inhibited brain lipid peroxidation. Retinol and retinol acetate were the most effective inhibitors. It is concluded from this study that retinol and its analogs can be considered as potential antioxidant factors, more potent than some of the well-known antioxidants such as alpha-tocopherol and butylated hydroxytoluene.  相似文献   

4.
Relation of lipid peroxidation to loss of cations trapped in liposomes   总被引:2,自引:0,他引:2  
Lipid peroxidation and alterations in cation loss have been induced in liposomes by ferrous ion, ascorbic acid, reduced and oxidized glutathione, and gamma radiation. Modifications of these effects by tocopherol and 2,6-di-tert-butyl-4-methylphenol (BHT) were studied when these antioxidants were either incorporated in the membrane or were added to already formed liposomes prior to the addition of the chemical agent or to irradiation. Lipid peroxidation, as indicated by the thiobarbituric acid test for malonic dialdehyde, did not correlate with alterations in cation loss. The largest amounts of lipid peroxidation induced by ascorbic acid and glutathione were associated with decreased cation loss. Inhibition of Fe(2+)- and radiation-induced lipid peroxidation by antioxidants did not inhibit the associated increase in cation loss. Tocopherol was a more effective antioxidant than BHT when it was incorporated in the membrane, whereas BHT was more effective when it was added to the liposomes after formation.  相似文献   

5.
The antioxidant capacity of human plasma was determined by following the oxidation kinetics of the lipid-soluble fluorescent marker BODIPY using 2,2'-azobis(4-methoxy-2,4-dimethylvaleronitrile) (MeO-AMVN) as the lipophilic radical initiator. The results are expressed as a total antioxidant performance (TAP) value based on the inhibition of BODIPY oxidation, as determined by the appearance of green fluorescence, with respect to a control sample (phosphatidylcholine with or without delipidized human serum). The suitability of the assay was evaluated on the basis of its precision, reproducibility, and specificity. The intra- and interassay coefficients of variation both were less than 5%. The addition of a representative substrate of plasma peroxidation, phosphatidylcholine, up to 750mug/ml did not induce significant changes in the TAP value. Also, BODIPY photooxidation was not observed during the experimental time course (220min). The TAP values of 6 plasma samples from healthy donors were measured and correlated with the main plasma water- and lipid-soluble antioxidants (uric acid and ascorbic acid, alpha-tocopherol, and carotenoids) and lipid profiles. Significant correlations were found between TAP and uric acid (R=0.97, P<0.05) and cholesterol-adjusted alpha-tocopherol (R=0.93, P<0.01). The results confirm that the TAP assay is suitable to measure the antioxidant activity of plasma antioxidants localized in both the lipophilic and hydrophilic compartments.  相似文献   

6.
Factors affecting the balance between pro- and antioxidant effects of ascorbic acid and glutathione were studied in soybean phosphatidylcholine liposomes challenged with Fe2+/H2O2. Effective antioxidant protection by alpha-tocopherol appeared to be due to efficient reaction with lipid oxy-radicals in the bilayer rather than to interception of initiating oxygen radicals. At concentrations above a threshold level of approximately 0.2 mol % (based on phospholipid content), alpha-tocopherol completely suppressed lipid oxy-radical propagation, which was measured as malondialdehyde production. Both ascorbic acid and glutathione, alone or in combination, enhanced lipid oxy-radical propagation. Alpha-Tocopherol, incorporated into liposomes at concentrations above its threshold protective level, reversed the pro-oxidant effects of 0.1-1.0 mM ascorbic acid but not those of glutathione. Ascorbic acid also prevented alpha-tocopherol depletion. The combination of ascorbic acid and subthreshold levels of alpha-tocopherol only temporarily suppressed lipid oxy-radical propagation and did not maintain the alpha-tocopherol level. Glutathione antagonized the antioxidant action of the alpha-tocopherol/ascorbic acid combination regardless of alpha-tocopherol concentration. These observations indicate that membrane alpha-tocopherol status can control the balance between pro- and antioxidant effects of ascorbic acid. The data also provide the most direct evidence to date that ascorbic acid interacts directly with components of the phospholipid bilayer.  相似文献   

7.
The effect of supplementation with substances having antioxidant properties on the adaptive responses of human skin fibroblasts to UV-induced oxidative stress was studied in vitro. UVR was found to induce a substantial oxidative stress in fibroblasts, resulting in an increased release of superoxide anions and an increase in lipid peroxidation (shown by an elevated malonaldehyde content). Sub-lethal doses of UVR were also found to induce adaptive responses in the fibroblast antioxidant defences, with a transient rise in catalase and superoxide dismutase activities followed by a slower, large increase in cellular glutathione content. Supplementation of the fibroblasts with the antioxidants, Trolox (a water soluble analogue of alpha-tocopherol), ascorbic acid or beta-carotene, had differential effects on these responses. Trolox supplementation reduced the UVR-induced cellular oxidative stress and adaptive response in a predictable concentration-dependent manner. This was in contrast to ascorbic acid which increased superoxide release from fibroblasts. At low doses, ascorbate supplements also reduced the magnitude of the adaptive increases in catalase and superoxide dismutase activities and increase in glutathione content. Beta-carotene had a similar effect to ascorbic acid, reducing the extent of the adaptations to UVR at lower doses while simultaneously increasing superoxide release and malonaldehyde content. These in vitro data indicate that only the vitamin E analogue suppressed UVR-induced oxidative stress in a predictable manner and suggest that common dietary antioxidants may not be equally effective in reducing the potential deleterious effects of UVR-induced oxidative stress in skin.  相似文献   

8.
beta-Carotene, alpha-tocopherol, and ascorbic acid were tested for their ability to inhibit, enhance, or react synergistically with O(2) (15, 150, 760 torr) and, 2,2'-azobis (2-amidino-propane) dihydrochloride (AAPH) or 1,1'-azobis (cyclohexane-carbonitrile) (ACCN) in isolated rat liver microsomes. beta-Carotene did not protect against lipid peroxidation, i.e., malondialdehyde (MDA) formation, in microsomal samples incubated at 37 degrees C with aqueous soluble AAPH at all added beta-carotene concentrations and oxygen tensions. More MDA (16%, p < 0.001) was produced at 15 torr of O(2,) and 160 nmol/mg protein of beta-carotene compared to respective vehicle control. Individually, alpha-tocopherol and ascorbic acid exhibited antioxidant protection (ascorbic acid &z.Gt; alpha-tocopherol); however, a mixture of both compounds was no more protective than ascorbic acid alone. beta-Carotene demonstrated a concentration-dependent antioxidant affect at 15 torr O(2) (p < 0.01); but a prooxidant effect at higher O(2) at 150 and 760 torr (>57%, p < 0.001) by lipid-soluble ACCN. alpha-Tocopherol exhibited concentration-dependent inhibitory effects on microsomal MDA formation at all oxygen tensions, but was most effective under 150 torr. Ascorbic acid demonstrated a concentration-dependent antioxidant effect only at 150 torr. ACCN-induced lipid peroxidation was no greater for the combination of the three compounds than ascorbic acid added alone. Thus, antioxidant or prooxidant activities for beta-carotene, alpha-tocopherol, and ascorbic acid in microsomal suspensions are related to O(2) tension, solubility, antioxidant concentrations and are governed by complex interactions. Differences between AAPH- and ACCN-induced lipid peroxidation are related to differences in lipid solubility.  相似文献   

9.
The antioxidant potential of N-acetylcysteine amide (NACA), also known as AD4, was assessed by employing different in vitro assays. These included reducing power, free radical scavenging capacities, peroxidation inhibiting activity through linoleic acid emulsion system and metal chelating capacity, as compared to NAC and three widely used antioxidants, alpha-tocopherol, ascorbic acid and butylated hydroxytoluene (BHT). Of the antioxidant properties that were investigated, NACA was shown to possess higher 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) radical scavenging ability and reducing power than NAC, at all the concentrations, whereas the scavenging ability of H(2)O(2) differed with concentration. While NACA had greater H(2)O(2) scavenging capacity at the highest concentration, NAC was better than NACA at lower concentrations. NAC and NACA had a 60% and 55% higher ability to prevent beta-carotene bleaching, respectively, as compared to control. The chelating activity of NACA was more than 50% that of the metal chelating capacity of EDTA and four and nine times that of BHT and alpha-tocopherol, respectively. When compared to NACA and NAC; alpha-tocopherol had higher DPPH scavenging abilities and BHT and alpha-tocopherol had better beta-carotene bleaching power. These findings provide evidence that the novel antioxidant, NACA, has indeed enhanced the antioxidant properties of NAC.  相似文献   

10.
Pycnogenol (PYC), a procyanidin-rich extract of French maritime pine bark (Pinus pinaster) has strong antioxidant potential and promotes cellular health. The aim of this study was to investigate a possible cooperation of natural antioxidant PYC with synthetic antioxidants ascorbic acid and trolox in the model system of lipid peroxidation determined as conjugated dienes formation in liposomes and on the oxidation of proteins (in BSA and plasma proteins) determined as protein carbonyls. The present study shows that PYC and trolox significantly increased inhibition of lipid peroxidation initiated by copper acetate and tert-butylhydroperoxide in concentration and time dependence compared with untreated unilamellar liposomes. PYC and trolox added simultaneously to the oxidized liposomes exerted an additive preventive effect. PYC s inhibitory effect on formation of carbonyl compounds in BSA and plasma proteins, oxidized by two oxidative systems--H2O2/FeSO4 and HOCl, were studied in co-operation with other synthetic antioxidants--ascorbic acid and trolox. We found the synergistic or additive effect of PYC with mentioned antioxidants.  相似文献   

11.
Oxidative stress and the role of antioxidants are currently one of the most important subjects in the field of life science. In the present study, we assessed the oxidation of plasma lipids induced by free radicals and its inhibition by antioxidants with a fluorescence probe BODIPY. Vitamin E and C-depleted plasma was used to evaluate the inherent action of several antioxidants. BODIPY reacted with free radicals in plasma to emit fluorescence (ex. 510 nm, em. 520 nm), which was suppressed by the antioxidants in a concentration-dependent manner. However, the suppression of fluorescence emission by antioxidants did not always correlate quantitatively with the suppression of lipid peroxidation. For example, alpha-tocopherol suppressed BODIPY fluorescence but enhanced the peroxidation of plasma lipids in the absence of ascorbic acid. 2,2,5,7,8-Pentamethyl-6-chromanol, a vitamin E analogue without a phytyl side chain, almost completely suppressed both fluorescence emission and lipid peroxidation in the plasma. These results show that BODIPY can be used as a convenient probe for radical scavenging, but that care should be taken for the evaluation of antioxidant capacity.  相似文献   

12.
Characteristics of both deliberately added and "cryptic" antioxidants were assayed from hydrophilic and lipophilic extracts from artificial diets for plant bugs, lepidopteran larvae, and green lacewings. Cryptic antioxidants are defined as substances naturally existing in diet ingredients but not deliberately added because of their antioxidant potential. Diets were tested after 1) being freshly produced, 2) stored for 48 h at 4 degrees C, or 3) held for 48 h under rearing room conditions at 27 degrees C. Tests included 1) a general assay of antioxidant capacity known as the ferric-reducing antioxidant power (FRAP) assay. 2) a cation radical-scavenging assay, 3) an ascorbic acid assay, and 4) an assay of inhibition of lipid peroxidation. In all assays, the lepidopteran diet had the highest values for protection against reactive oxygen species (ROS). The lepidopteran diet (with 0.17-0.23-mg equivalents of gallic acid equals total phenolic compounds per gram of diet) had three- to four-fold higher concentrations of phenolic compounds than did either the plant bug diet or the lacewing diet. Unexpectedly, the plant bug and the lacewing diets caused more lipid peroxidation than did the positive controls. This was attributed to the high concentrations of iron in these diets (mainly from chicken eggs), causing an ascorbate-ferric ion-induced lipid peroxidation. Diet storage, measured after 2 d at 27 or 4-6 degrees C, caused no significant declines in overall antioxidant potential. However, storage did lead to decline in ascorbic acid. The FRAP assay offered the best potential as a general, routine test of the potential of various insect diets to resist the destructive effects of ROS. The importance of addressing issues of protection against ROS in insect diets is discussed.  相似文献   

13.
Lipoxygenase-dependent low-density lipoprotein (LDL) oxidation is believed to be involved in atherogenesis. Inhibition of lipoxygenase-induced lipid peroxidation might, therefore, be an important mode to suppress the development of atherosclerosis. Because dietary antioxidants inhibit LDL oxidation in vitro and their intake is inversely associated with coronary heart diseases, we compared the inhibitory effect of three typical flavonoids-quercetin, epicatechin, and flavone-with alpha-tocopherol and ascorbic acid against human LDL oxidation catalyzed by mammalian 15-lipoxygenase. The oxidative modification of LDL was monitored by measurement of cholesteryl ester hydroperoxide (CE-OOH) formation and consumption of antioxidants by using HLPC. Quercetin and epicatechin were the strongest inhibitors of LDL oxidation catalyzed by 15-lipoxygenase; ascorbic acid was an effective inhibitor in the first 3 h of oxidation; and fivefold alpha-tocopherol-enriched LDL showed a partial inhibition of CE-OOH formation only after 4-6 h of incubation. Flavone had no effect. Quercetin, ascorbic acid, and alpha-tocopherol were consumed in the first 3 h of incubation. Consumption of LDL alpha-tocopherol was partially inhibited by ascorbic acid and quercetin, whereas epicatechin and flavone were without effect. These results emphasize the inhibitory effect of the flavonoids quercetin and epicatechin on 15-lipoxygenase-mediated LDL lipid peroxidation. At similar concentrations, they are stronger antioxidants than ascorbic acid, alpha-tocopherol, and flavone.  相似文献   

14.
The events accompanying the inhibitory effect of alpha-tocopherol and/or ascorbate on the peroxidation of soybean L-alpha-phosphatidylcholine liposomes, which are an accepted model of biological membranes, were investigated by electron paramagnetic resonance, optical and polarographic methods. The presence of alpha-tocopherol radical in the concentration range 10(-8)-10(-7) M was detected from its EPR spectrum during the peroxidation of liposomes, catalysed by the Fe3+-triethylenetatramine complex. The alpha-tocopherol radical, generated in the phosphatidylcholine bilayer, is accessible to ascorbic acid, present in the aqueous phase at physiological concentrations. Ascorbic acid regenerates from it the alpha-tocopherol itself. A kinetic rate constant of about 2 X 10(5) M-1 X s-1 was estimated from the reaction as it occurs under the adopted experimental conditions. The scavenging effect of alpha-tocopherol on lipid peroxidation is maintained as long a ascorbic acid is present.  相似文献   

15.
Arsenic exists ubiquitously in our environment and various forms of arsenic circulate in air, water, soil and living organisms. Since arsenic compounds have shown to exert their toxicity chiefly by generating reactive oxygen species, we have evaluated the effect of antioxidants ascorbic acid and alpha-tocopherol on lipid peroxidation, antioxidants and mitochondrial enzymes in liver and kidney of arsenic exposed rats. A significant increase in the level of lipid peroxidation and decrease in the levels of antioxidants and in the activities of mitochondrial enzymes were observed in arsenic intoxicated rats. Co-administration of arsenic treated rats with ascorbic acid and alpha-tocopherol showed significant reduction in the level of lipid peroxidation and elevation in the levels of ascorbic acid, alpha-tocopherol, glutathione and total sulfhydryls and in the activities of isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinate dehydrogenase, NADH-dehydrogenase and cytochrome c oxidase. From our results, we conclude that ascorbic acid and alpha-tocopherol alleviate arsenic- induced alterations in mitochondria.  相似文献   

16.
Rat liver microsomal lipids in hexane solution were exposed to the lipid-soluble radical initiator, azobis-isobutyronitrile (AIBN), and the antioxidant activities of alpha-tocopherol and beta-carotene have been compared. Lipid peroxidation was monitored both by conjugated diene formation at 233 nm, and by malondialdehyde (MDA) formation in the thiobarbituric acid assay at 535 nm. Diene formation was continuous for at least 120 min in the presence of 85 micrograms/ml lipid and 4 mM AIBN. Both alpha-tocopherol and beta-carotene acted as chain-breaking antioxidants, suppressing lipid peroxidation and producing an induction period at concentrations as low as 0.5 and 8 microM, respectively. When both of these lipid-soluble antioxidants were present together, the oxidation was strongly suppressed and the induction period was the sum of the individual antioxidants, alpha-Tocopherol and beta-carotene also inhibited MDA generation. In the presence of 170 micrograms/ml lipid and 8 mM AIBN, beta-carotene exhibited an IC50 of 1.1 microM and inhibited completely at 15 microM. Using beta-carotene, an induction period was observed, although much less pronounced than with alpha-tocopherol. Furthermore, beta-carotene inhibited MDA production in a concentration-dependent manner and exhibited an IC50 of 50 microM. In addition, added beta-carotene delayed the radical-initiated destruction of the endogenous alpha-tocopherol and gamma-tocopherol in this system.  相似文献   

17.
Nicotinamide (vitamin B3) an endogenous metabolite, showed significant inhibition of oxidative damage induced by reactive oxygen species (ROS) generated by ascorbate-Fe2+ and photosensitization systems in rat brain mitochondria. It protected against both protein oxidation and lipid peroxidation, at millimolar concentrations. Inhibition was more pronounced against oxidation of proteins than peroxidation of lipids. Chemically related endogenous compounds, tryptophan and isonicotinic acid, showed comparable inhibitory properties. The protective effect observed, at biologically relevant concentrations, with nicotinamide was more than that of the endogenous antioxidants ascorbic acid and alpha-tocopherol. Hence our studies suggest that nicotinamide (vitamin B3) can be considered as a potent antioxidant capable of protecting the cellular membranes in brain, which is highly susceptible to prooxidants, against oxidative damage induced by ROS.  相似文献   

18.
The mechanism of lipid peroxidation and the ways in which the rate of this reaction can be reduced by small quantities of certain specific chemicals, called antioxidants, are described. The types and roles of the different antioxidants found in living systems are considered. Vitamin E (alpha-tocopherol) has long been recognized as an important lipid-soluble, chain-breaking antioxidant. It has an unexpectedly high reactivity towards peroxyl radicals, which can be understood only after detailed consideration of its structure. It is the major antioxidant of its class in human blood and its effectiveness in plasma is greatly improved by a synergistic interaction with water-soluble reducing agents such as ascorbic acid. Experiments designed to locate vitamin E within phospholipid bilayers and to discover the origin of the different biopotencies of stereoisomers of alpha-tocopherol are also described.  相似文献   

19.
The objective was to determine the oxidative stability of Arctic char (Salvelinus alpinus) semen following dietary supplementation with lowbush blueberry (Vaccinium angustifolium) product, alpha-tocopherol, alpha-tocopherol+blueberry product, or alpha-tocopherol+astaxanthin. Sperm lipid peroxidation was initiated by challenging with ferrous sulphate/ascorbic acid (Fe(++)/Asc) at level of 0.04/0.2 mmol/L. Addition of blueberry, alpha-tocopherol, or both to char diets inhibited semen lipid peroxidation by: (a) decreasing the rate of sperm lipid peroxidation, an effect which was more pronounced with alpha-tocopherol treatments; and (b) increasing the antioxidant potential of seminal plasma, based on the lipid peroxidation process of sperm and an in vitro chicken brain tissue model. Dietary supplementation with astaxanthin and alpha-tocopherol had the same effect as the supplementation with alpha-tocopherol alone on inhibiting the lipid peroxidation process of sperm and chicken brain. Catalase-like activity increased significantly in sperm of fish fed alpha-tocopherol, blueberry, or both. There was a negative correlation (r= -0.397, P < 0.05) between catalase-like activity in sperm cells and the rate of sperm lipid peroxidation. Seminal plasma alpha-tocopherol levels increased significantly in fish supplemented with alpha-tocopherol alone or in combination with blueberry or astaxanthin. There were negative correlations between seminal plasma alpha-tocopherol levels and lipid peroxidation rates of sperm cells (r= -0.625, P < 0.01) and brain tissue (r= -0.606, P < 0.01). In conclusion, dietary supplementation of blueberry product or alpha-tocopherol inhibited lipid peroxidation in Arctic char semen. Further experiments are needed to test the effect of dietary blueberry and antioxidants on Arctic char semen quality during liquid and cryopreserved storage.  相似文献   

20.
Nitrogen dioxide (NO2.) is often present in inhaled air and may be generated in vivo from nitric oxide. Exposure of human blood plasma to NO2. caused rapid losses of ascorbic acid, uric acid and protein thiol groups, as well as lipid peroxidation and depletions of alpha-tocopherol, bilirubin and ubiquinol-10. No increase in protein carbonyls was detected. Supplementation of plasma with ascorbate decreased the rates of lipid peroxidation, alpha-tocopherol depletion and loss of uric acid. Uric acid supplementation decreased rates of lipid peroxidation but not the loss of alpha-tocopherol. We conclude that ascorbic acid, protein -SH groups, uric acid and alpha-tocopherol may be important agents protecting against NO2. in vivo. If these antioxidants are depleted, peroxidation of lipids occurs and might contribute to the toxicity of NO2..  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号