首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim In this study we present a molecular phylogenetic and phylogeographical analysis of Peltophryne (Anura: Bufonidae), an endemic genus of Antillean toads, to investigate the spatial and temporal origins of the genus, with particular focus on the eight Cuban species. Location Greater Antilles, with extensive sampling of the Cuban archipelago. Methods We obtained DNA sequence data from two mitochondrial genes, cytochrome c oxidase subunit I (COI) and ribosomal RNA (16S), for 124 toads representing all eight Cuban species, and combined this with published data from Hispaniola (one of three species) and Puerto Rico (one of one species) to establish a molecular phylogeny for Peltophryne. In addition, we explored the phylogeographical structure of widespread Cuban species. For a subset of 42 toads we also obtained DNA sequence data from two nuclear genes, recombination activator‐1 (RAG‐1) and chemokine receptor 4 (CXCR‐4). We combined our molecular data with published DNA sequences from a global sample of bufonid toads to place the spatial and temporal origins of Peltophryne in the Caribbean within a fuller geographical and phylogenetic context. Results All phylogenetic analyses supported the monophyly of West Indian toads. The ancestor of Peltophyrne diverged from its mainland source around the Eocene–Oligocene boundary, with a subsequent radiation across the Caribbean islands taking place during the Miocene. Cuban species are monophyletic with a basal split in the early–middle Miocene that separates extant small‐bodied from large‐bodied species. Extensive mitochondrial DNA (mtDNA) sampling within widespread Cuban species revealed contrasting phylogeographical patterns. Peltophryne taladai and P. empusa showed deeply divergent lineages, whereas no geographical structure was observed in the widespread P. peltocephala. Main conclusions Our timeline for Peltophryne diversification is consistent with a biogeographical model requiring no long‐distance overwater dispersal. Although confidence intervals on divergence time estimates are wide, the stem age of Peltophyrne coincides with the hypothesized GAARlandia landspan or archipelago, which may have connected South America briefly with the Antilles. The ages of Peltophryne for Puerto Rico, Hispaniola and Cuba are consistent with a recently proposed vicariance scenario for the region. Our molecular results support the recognition of all eight species in Cuba, and provide evidence of possible cryptic species.  相似文献   

2.
The 'Great American Interchange' (GAI) is recognized as having had a dramatic effect on biodiversity throughout the Neotropics. However, investigation of patterns in Neotropical avian biodiversity has generally been focused on South American taxa in the Amazon Basin, leaving the contribution of Central American taxa under-studied. More rigorous studies of lineages distributed across the entire Neotropics are needed to uncover phylogeographical patterns throughout the area, offering insights into mechanisms that contribute to overall Neotropical biodiversity. Here we use mitochondrial DNA sequence data and intensive geographical sampling from the widespread Neotropical avian genus Trogon to investigate the role of the GAI in shaping its phylogeographical history. Our results show that genetic diversity in Trogon exceeds the perceived biodiversity, and that the GAI resulted in lineage diversification within the genus. Despite greater diversity in South America, a Central American centre of origin with multiple and independent dispersals into South America is indicated. These dispersals were followed by the evolution of divergent lineages associated with the Andes Mountains and other South American geographical features. According to our phylogenetic reconstructions, several species, which were originally defined by morphological characters, are nonmonophyletic. In sum, our results elucidate the evolutionary history of Trogon , reveal patterns obscured by extant biodiversity, and serve as a biogeographical model to consider in future studies.  相似文献   

3.
Four distinct phylogeographical patterns across Southeast Asia were observed for four species of seahorse (genus Hippocampus) with differing ecologies. For all species, genetic differentiation (based on cytochrome b sequence comparisons) was significantly associated with sample site (Phi(ST) = 0.190-0.810, P < 0.0001) and with geographical distance (Mantel's r = 0.37-0.59, P < 0.019). Geographic locations of genetic breaks were inconsistent across species in 7/10 comparisons, although some similarities across species were also observed. The two shallow-water species (Hippocampus barbouri and Hippocampus kuda) have colonized the Sunda Shelf to a lesser degree than the two deeper-water species (Hippocampus spinosissimus and Hippocampus trimaculatus). In all species the presence of geographically restricted haplotypes in the Philippines could indicate past population fragmentation and/or long-distance colonization. A nested clade analysis (NCA) revealed that long-distance colonization and/or fragmentation were likely the dominant forces that structure populations of the two shallow-water species, whereas range expansion and restricted dispersal with isolation by distance were proportionally more important in the history of the two deeper-water species. H. trimaculatus has the most widespread haplotypes [average clade distance (D(c)) of nonsingleton haplotypes = 1169 km], indicating potentially high dispersal capabilities, whereas H. barbouri has the least widespread haplotypes (average D(c) = 67 km) indicating potentially lower dispersal capabilities. Pleistocene separation of marine basins and postglacial flooding of the Sunda Shelf are extrinsic factors likely to have contributed to the phylogeographical structure observed, whereas differences among the species appear to reflect their individual ecologies.  相似文献   

4.
Coloration patterns of tropical reef fishes is commonly used for taxonomic purposes, yet few studies have focused on the relationship between species boundaries and coloration types. The three-spot damselfish (Dascyllus trimaculatus) species complex comprises four species that vary both in geographical ranges and colour patterns making them an ideal model to study these relationships. We analysed the mitochondrial control region of 122 individuals from all four species collected from 13 localities. Individuals from two species (Dascyllus albisella and D. strasburgi) grouped into monophyletic clades, while the two other species (D. trimaculatus and D. auripinnis) were found to be paraphyletic. Coloration patterns were therefore not found to be good predictors of genetic isolation. In contrast, geographical origin was always consistent with the observed genetic pattern.  相似文献   

5.
The damselfish genus Dascyllus comprises nine species of both large- and small-bodied fishes distributed over the entire Indo-West Pacific. Most members of the genus have polygynous mating systems with protogynous sex change, while others are promiscuous with no sex change. Hypotheses linking presumed phylogenetic relationships with body size, sex change and mating structure have been proposed previously. However, lack of a strong phylogenetic hypothesis has prevented the careful testing of such hypotheses. In this study, the phylogenetic relationships between Dascyllus species based on mitochondrial DNA sequences (cytochrome b and 16SrRNA) have been established. The data also shed light on the relationship between mating structure and body size, as well as on the complex biogeographical patterns of the genus.  相似文献   

6.
The review considers the current problems of molecular phylogenetics based on mitochondrial and chromosomal DNA sequences. The emphasis is placed on mtDNA markers, which are widely employed in reconstructing molecular evolution, but often without a critical analysis of the physiological and biochemical features of mitochondria that affect the adequacy and reliability of the results. In addition to the factors that make mtDNA-based phylogenies difficult to interpret (unrecognized hybridization and introgression events, ancestral polymorphism, and nuclear paralogs of mtDNA sequences), attention is paid to the nonneutrality and unequal mutation rates of mtDNA genes and their fragments, violations of uniparental inheritance of mitochondria, recombination events, natural heteroplasmy, and mtDNA haplotypic diversity. These factors may influence the congruence of phylogenetic inferences and trees constructed for the same organisms with different mtDNA markers or with mitochondrial and nuclear markers. The review supports the viewpoint that mitochondrial genes and their fragments fail to provide reliable evolutionary markers when considered without a thorough study of the environmental conditions and life of the taxa. The influence of external conditions on the metabolism and physiology of mitochondria cannot be taken into account in full nor modeled well enough for phylogenetic applications. It is assumed that mtDNA is valuable as a phylogenetic marker primarily because its complete sequence may be analyzed to identify the apomorphic and synmorphic properties of a taxon and to search for informative nuclear paralogs of mtDNA for phylogeographical studies and estimations of relative evolution times.  相似文献   

7.
Polytomella is composed of colorless green algae closely related to Chlamydomonas reinhardtii. Species in the genus have been used in diverse fields of biological research, most recently to study mitochondrial function and mitochondrial genome evolution in the Chlorophyceae, but the phylogenetic relationship between the various available taxa has not yet been clarified and it is not known whether they also possess fragmented mitochondrial genomes, as reported for Polytomella parva. We therefore examined cox1 sequence from seven Polytomella taxa with the goal of establishing their phylogenetic relationships and relating this information to their mitochondrial DNA (mtDNA) fragmentation pattern. We found that the Polytomella isolates examined fall into three distinct lineages, two of which possess fragmented mitochondrial genomes. The third and earliest branching lineage, represented by Polytomella capuana, appears to possess an intact mtDNA. In addition, there is evidence for variation in both size and number of mtDNA fragments between various Polytomella isolates, even within the same lineage. The considerable amount of sequence divergence between lineages seems to correlate with the geographic origin of the strains, leading us to believe that greater amounts of sequence divergence could be uncovered by a broader sampling of Polytomella.  相似文献   

8.
Devitt TJ 《Molecular ecology》2006,15(14):4387-4407
The Western Lyresnake (Trimorphodon biscutatus) is a widespread, polytypic taxon inhabiting arid regions from the warm deserts of the southwestern United States southward along the Pacific versant of Mexico to the tropical deciduous forests of Mesoamerica. This broadly distributed species provides a unique opportunity to evaluate a priori biogeographical hypotheses spanning two major distinct biogeographical realms (the Nearctic and Neotropical) that are usually treated separately in phylogeographical analyses. I investigated the phylogeography of T. biscutatus using maximum likelihood and Bayesian phylogenetic analysis of mitochondrial DNA (mtDNA) from across this species' range. Phylogenetic analyses recovered five well-supported clades whose boundaries are concordant with existing geographical barriers, a pattern consistent with a model of vicariant allopatric divergence. Assuming a vicariance model, divergence times between mitochondrial lineages were estimated using Bayesian relaxed molecular clock methods calibrated using geological information from putative vicariant events. Divergence time point estimates were bounded by broad confidence intervals, and thus these highly conservative estimates should be considered tentative hypotheses at best. Comparison of mtDNA lineages and taxa traditionally recognized as subspecies based on morphology suggest this taxon is comprised of multiple independent lineages at various stages of divergence, ranging from putative secondary contact and hybridization to sympatry of 'subspecies'.  相似文献   

9.
Here we report on 16 microsatellite loci designed for the damselfish Dascyllus aruanus. All loci were tested on 98 individuals and were polymorphic (seven to 35 alleles). Expected heterozygosity ranged from 0.705 to 0.942. Six loci showed Hardy-Weinberg disequilibrium due to the occurrence of null alleles. Cross-species amplifications conducted within the genus Dascyllus (D. carneus, D. strasburgi, D. trimaculatus) lead to polymorphic fragments in 32 out of 48 tests. These 16 loci will enable future research into the behavioural ecology and population ecology of Dascyllus aruanus throughout the Indo-Pacific.  相似文献   

10.
To investigate the phylogenetic relationships and geographical structure among brown trout S. trutta L. populations from the South Adriatic-Ionian and Aegean sea basins, mitochondrial DNA nucleotide sequence comparisons were used. A 310-base-pair (bp) segment of the control region (D-loop), and an additional 280-bp segment of the cytochrome b gene were sequenced from representatives of 13 brown trout populations. Phylogenetic analyses, conducted after combining the data presented with published data from other Eurasian brown trout, revealed four major phylogenetic groups, three of which were found widely distributed within the southern Balkan region. The phylogeographical patterns revealed by mtDNA represent one of the few cases where phylogenetic discontinuity in a gene tree exists without obvious geographical localization within a species' range and has most likely resulted from the differentiation of the major mtDNA clades during Messinian or early Pleistocene times. Finally, the genetic relationships among the populations suggested by mtDNA were generally not in accordance with either allozyme or morphological data.  相似文献   

11.

Background

The orders Ascaridida, Oxyurida, and Spirurida represent major components of zooparasitic nematode diversity, including many species of veterinary and medical importance. Phylum-wide nematode phylogenetic hypotheses have mainly been based on nuclear rDNA sequences, but more recently complete mitochondrial (mtDNA) gene sequences have provided another source of molecular information to evaluate relationships. Although there is much agreement between nuclear rDNA and mtDNA phylogenies, relationships among certain major clades are different. In this study we report that mtDNA sequences do not support the monophyly of Ascaridida, Oxyurida and Spirurida (clade III) in contrast to results for nuclear rDNA. Results from mtDNA genomes show promise as an additional independently evolving genome for developing phylogenetic hypotheses for nematodes, although substantially increased taxon sampling is needed for enhanced comparative value with nuclear rDNA. Ultimately, topological incongruence (and congruence) between nuclear rDNA and mtDNA phylogenetic hypotheses will need to be tested relative to additional independent loci that provide appropriate levels of resolution.

Results

For this comparative phylogenetic study, we determined the complete mitochondrial genome sequences of three nematode species, Cucullanus robustus (13,972 bp) representing Ascaridida, Wellcomia siamensis (14,128 bp) representing Oxyurida, and Heliconema longissimum (13,610 bp) representing Spirurida. These new sequences were used along with 33 published nematode mitochondrial genomes to investigate phylogenetic relationships among chromadorean orders. Phylogenetic analyses of both nucleotide and amino acid sequence datasets support the hypothesis that Ascaridida is nested within Rhabditida. The position of Oxyurida within Chromadorea varies among analyses; in most analyses this order is sister to the Ascaridida plus Rhabditida clade, with representative Spirurida forming a distinct clade, however, in one case Oxyurida is sister to Spirurida. Ascaridida, Oxyurida, and Spirurida (the sampled clade III taxa) do not form a monophyletic group based on complete mitochondrial DNA sequences. Tree topology tests revealed that constraining clade III taxa to be monophyletic, given the mtDNA datasets analyzed, was a significantly worse result.

Conclusion

The phylogenetic hypotheses from comparative analysis of the complete mitochondrial genome data (analysis of nucleotide and amino acid datasets, and nucleotide data excluding 3rd positions) indicates that nematodes representing Ascaridida, Oxyurida and Spirurida do not share an exclusive most recent common ancestor, in contrast to published results based on nuclear ribosomal DNA. Overall, mtDNA genome data provides reliable support for nematode relationships that often corroborates findings based on nuclear rDNA. It is anticipated that additional taxonomic sampling will provide a wealth of information on mitochondrial genome evolution and sequence data for developing phylogenetic hypotheses for the phylum Nematoda.
  相似文献   

12.
Mussels of the genus Mytilus have two types of mitochondrial DNA (mtDNA). The M type is transmitted paternally and the F type is transmitted maternally. RFLP analysis is used to assess phylogenetic relationships and nucleotide diversity and divergence for both mtDNA genomes in European populations of M. edulis and Atlantic and Mediterranean forms of M. galloprovincialis. Ten restriction endonucleases were used to assay variation in regions of the ND2 and COIII genes for a total of 77 individuals. F and M genomes show a concordant phylogenetic split into two major divergent clades, one specific to Mediterranean M. galloprovincialis and the other containing haplotypes from the three taxa. For both genomes, the geographical distribution of mtDNA variation suggests: (i) extensive levels of mtDNA introgression; (ii) asymmetric mtDNA gene flow from Atlantic to Mediterranean populations; and (iii) recurrent historical hybridization events. Significantly higher mtDNA diversity and divergence are observed for the M than F genome in all three Mytilus taxa, although the evolutionary forces responsible for these differences cannot be resolved. The extensive mtDNA gene flow between European Mytilus taxa conflicts with the restricted mtDNA introgression observed in American mussels , implying geographical variation in the nature of nuclear/mtDNA interactions regulating biparental inheritance.  相似文献   

13.
The broad distribution of the Sceloporus magister species group (squamata: phrynosomatidae) throughout western North America provides an appropriate model for testing biogeographical hypotheses explaining the timing and origins of diversity across mainland deserts and the Baja California Peninsula. We inferred concordant phylogenetic trees describing the higher-level relationships within the magister group using 1.6 kb of mitochondrial DNA (mtDNA) and 1.7 kb of nuclear DNA data. These data provide strong support for the parallel divergence of lineages endemic to the Baja California Peninsula (S. zosteromus and the orcutti complex) in the form of two sequential divergence events at the base of the magister group phylogeny. A relaxed phylogenetic analysis of the mtDNA data using one fossil and one biogeographical constraint provides a chronology of these divergence events and evidence that further diversification within the Baja California clades occurred simultaneously, although patterns of geographical variation and speciation between clades differ. We resolved four major phylogeographical clades within S. magister that (i) provide a novel phylogenetic placement of the Chihuahuan Desert populations sister to the Mojave Desert; (ii) illustrate a mixed history for the Colorado Plateau that includes Mojave and Sonoran Desert components; and (iii) identify an area of overlap between the Mojave and Sonoran Desert clades near Yuma, Arizona. Estimates of bidirectional migration rates among populations of S. magister using four nuclear loci support strong asymmetries in gene flow among the major mtDNA clades. Based on the nonexclusivity of mtDNA haplotypes, nuclear gene flow among populations and wide zones of phenotypic intergradation, S. magister appears to represent a single geographically variable and widespread species.  相似文献   

14.
Gerbilliscus has recently been proposed as an endemic African rodent genus distinct from the Asian Tatera. A molecular phylogeny of the genus, including nine species from southern, western and eastern Africa, is presented here based on the analysis of the cytochrome b and 16S mitochondrial genes. With an adequate taxonomic sampling over a wide geographic range, we here provide a clear picture of the phylogenetic relationships between species and species groups in this genus. Three distinct clades were resolved, corresponding to major geographical subdivisions: an eastern clade that possibly diverged first, then a southern and a western clades which appeared later. We suggest two possible hypotheses concerning the dispersal of the genus across Africa, considering also the patterns of karyotypic variation. Finally, we discuss the taxonomic status of G. gambianus and the relationships between Gerbillurus and Gerbilliscus, as previous studies have suggested that the former should be included in the latter. Our data seem to support the synonymy of the two taxa and suggest that Gerbillurus and Gerbilliscus lineages diverged from a common ancestor appeared in eastern Africa.  相似文献   

15.
Australian scincid lizards in the genus Ctenotus constitute the most diverse vertebrate radiation in Australia. However, the evolutionary processes that have generated this diversity remain elusive, in part because both interspecific phylogenetic relationships and phylogeographic structure within Ctenotus species remain poorly known. Here we use nucleotide sequences from a mitochondrial locus and two nuclear introns to investigate broad-scale phylogeographic patterns within Ctenotus leonhardii and C. quattuordecimlineatus, two geographically widespread species of skinks that were found to have a surprisingly close genetic relationship in a previous molecular phylogenetic study. We demonstrate that the apparent close relationship between these ecologically and phenotypically distinct taxa is attributable to mitochondrial introgression from C. quattuordecimlineatus to C. leonhardii. In the western deserts, Ctenotus leonhardii individuals carry mtDNA lineages that are derived from C. quattuordecimlineatus mtDNA lineages from that geographic region. Coalescent simulations indicate that this pattern is unlikely to have resulted from incomplete lineage sorting, implicating introgressive hybridization as the cause of this regional gene-tree discordance.  相似文献   

16.
Law JH  Crespi BJ 《Molecular ecology》2002,11(8):1471-1489
Phylogenetic studies of asexual lineages and their sexual progenitors are useful for inferring the causes of geographical parthenogenesis and testing hypotheses regarding the evolution of sex. With five known parthenogens and well-studied ecology, Timema walking-sticks are a useful system for studying these questions. Timema are mainly endemic to California and they exhibit the common pattern of geographical parthenogenesis, with asexuals exhibiting more-northerly distributions. Neighbour-joining and maximum-parsimony analyses of 416 bp of mitochondrial cytochrome oxidase I (COI) from 168 individuals were used to infer general phylogenetic relationships, resulting in three major phylogeographical subdivisions: a Northern clade; a Santa Barbara clade; and a Southern clade. A nested cladistic analysis, comparing intra- and interspecific haplotypic variation on a geographical scale, revealed that the overall pattern of geographical parthenogenesis in Timema could be attributed to historical range expansion. These results suggest that geographical parthenogenesis is the result of more-extensive northerly dispersal of asexuals than sexuals.  相似文献   

17.
The current geographical distribution of the ninespine stickleback (Pungitius pungitius) was shaped in large part by the glaciation events of the Pleistocene epoch (2.6 Mya–10 Kya). Previous efforts to elucidate the phylogeographical history of the ninespine stickleback in North America have focused on a limited set of morphological traits, some of which are likely subject to widespread convergent evolution, thereby potentially obscuring relationships among populations. In this study, we used genetic information from both mitochondrial DNA (mtDNA) sequences and nuclear microsatellite markers to determine the phylogenetic relationships among ninespine stickleback populations. We found that ninespine sticklebacks in North America probably dispersed from at least three glacial refugia—the Mississippi, Bering, and Atlantic refugia—not two as previously thought. However, by applying a molecular clock to our mtDNA data, we found that these three groups diverged long before the most recent glacial period. Our new phylogeny serves as a critical framework for examining the evolution of derived traits in this species, including adaptive phenotypes that evolved multiple times in different lineages. In particular, we inferred that loss of the pelvic (hind fin) skeleton probably evolved independently in populations descended from each of the three putative North American refugia.  相似文献   

18.
Annelids of the genus Ophryotrocha are small opportunistic worms commonly found in polluted and nutrient-rich habitats such as harbors. Within this small group of about 40 described taxa a large variety of reproductive strategies are found, ranging from gonochoristic broadcast spawners to sequential hermaphroditic brooders. Many of the species have a short generation time and are easily maintained as laboratory cultures. Thus they have become a popular system for exploring a variety of biological questions including developmental genetics, ethology, and sexual selection. Despite considerable behavioral, reproductive, and karyological studies, a phylogenetic framework is lacking because most taxa are morphologically similar. In this study we use 16S mitochondrial gene sequence data to infer the phylogeny of Ophryotrocha strains commonly used in the laboratory. The resulting mtDNA topologies are generally well resolved and support a genetic split between hermaphroditic and gonochoristic species. Although the ancestral state could not be unambiguously identified, a change in reproductive strategy (i.e., hermaphroditism and gonochorism) occurred once within Ophryotrocha. Additionally, we show that sequential hermaphroditism evolved from a simultaneous hermaphroditic ancestor, and that characters previously used in phylogenetic reconstruction (i.e., jaw morphology and shape of egg mass) are homoplasic within the group.  相似文献   

19.
A phylogenetic tree for fowl including chicken in the genus Gallus and based on mitochondrial D-loop analysis further supports the hypothesis developed from morphology and progeny production that red junglefowl (RJF) is the direct ancestor of the chicken. The phylogenetic positions of the chicken and the other fowl species in the genus Gallus are of great importance when considering maintenance and improvement of chicken breeds through introgression of genetic variation from wild-type genomes. However, because the phylogenetic analysis based on the DNA sequences is not sufficient to conclude the phylogenetic positions of the fowls in the genus, in the present study, we have determined sequences of whole mitochondrial DNA (mtDNA) and two segments of the nuclear genome (intron 9 of ornithine carbamoyltransferase, and four chicken repeat 1 elements) for the species in the genus Gallus. The phylogenetic analyses based on mtDNA sequences revealed that two grey junglefowls (GyJF) were clustered in a clade with RJFs and chicken, and that one GyJF was located in a remote position close to Ceylon junglefowl (CJF). The analyses based on the nuclear sequences revealed that alleles of GyJFs were alternatively clustered with those of CJF and with those of RJFs and chicken. Alternative clustering of RJF and chicken alleles were also observed. These findings taken together strongly indicate that inter-species hybridizations have occurred between GyJF and RJF/chicken and between GyJF and CJF.  相似文献   

20.
Determining the mode, or geographical context, of speciation is a critical first step to understanding the evolutionary mechanisms that cause new species to arise. In this study, we estimated phylogenetic relationships in the cerasina species group of the Hawaiian cricket genus Laupala (Orthoptera: Gryllidae) to test competing phylogeographical hypotheses and thus infer the mode of speciation. A previous phylogenetic result based on nuclear sequence data suggested that populations of L. cerasina on the Big Island of Hawaii are the result of two independent colonizations from Maui, implying parallel speciation and convergent song evolution, and contradicting systematic hypotheses based on behavioural and morphological data. We used amplified fragment length polymorphisms to investigate further the relationships among species and populations in the cerasina species group. Results of these analyses provide a robust estimate of phylogenetic relationships and support the phylogeographical history indicated by behavioural and morphological data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号