首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 55 毫秒
1.
It has been previously reported that Nigella sativa oil (NSO) and thymoquinone (TQ), active constituent of N. sativa seeds oil, may prevent oxidative injury in various models. Therefore, we considered the possible effect of TQ and NSO on lipid peroxidation level following cerebral ischemia-reperfusion injury (IRI) in rat hippocampus. Male NMRI rats were divided into nine groups, namely, sham, control, ischemia and ischemia treated with NSO or TQ. TQ (2.5, 5 and 10 mg/kg), NSO (0.048, 0.192 and 0.384 mg/kg), phenytoin (50 mg/kg, as positive control) and saline (10 ml/kg, as negative control) were injected intraperitoneally immediately after reperfusion and the administration was continued every 24h for 72 h after induction of ischemia. The transient global cerebral ischemia was induced using four-vessel-occlusion method for 20 min. Lipid peroxidation level in hippocampus portion was measured as malondialdehyde (MDA) based on its reaction with thiobarbituric acid (TBA) following ischemic insult. The transient global cerebral ischemia induced a significant increase in TBA reactive substances (TBARS) level (p<0.001), in comparison with sham-operated animal. Pretreatment with TQ and NSO were resulted a significant decrease in MDA level as compared with ischemic group (66.9+/-1.5 vs. 297+/-2.5 nmol/g tissue for TQ, 10 mg/kg; p<0.001 and 153.5+/-1.3 nmol/g tissue for NSO, 0.384 mg/kg; p<0.001). Using a reversed-phase HPLC system, the amount of TQ in NSO was also quantified and was 0.58% w/w. These results suggest that TQ and NSO may have protective effects on lipid peroxidation process during IRI in rat hippocampus.  相似文献   

2.
We have used electron paramagnetic resonance to investigate the time course of nitric oxide (NO) generation and its susceptibility to inhibitors of nitric oxide synthase (NOS) in ischemia-reperfusion (IR) injury to rat skeletal muscle in vivo. Significant levels of muscle nitroso-heme complexes were detected 24 h postreperfusion, but not after at 0.05, 3, and 8 h of reperfusion. The levels of muscle nitroso-heme complexes were not decreased by the NOS inhibitor N-nitro-L-arginine methyl ester as a single dose (30 mg/kg) prior to reperfusion or as multiple doses continued throughout the reperfusion (total administered, 120 mg/kg) or by the potent NOS inhibitor S-methylisothiourea (3 mg/kg). In contrast, nitroso-heme levels were reduced by the glucocorticoid dexamethasone (2.5 mg/kg). Muscle necrosis in vitro did not result in the formation of nitroso-heme complexes. The finding that reperfusion after ischemia is necessary for NO formation suggests that an inflammatory pathway is responsible for NOS-independent NO formation in IR injury to skeletal muscle.  相似文献   

3.
This study analyzed the effects of L-arginine and non-specific nitric oxide (NO) synthase blocker (L-NAME) on structural and metabolic changes in experimental ischemia/reperfusion injury in the rat. Histopathological evaluation of rat tissues after reperfusion was also performed. The animals were divided into four groups: [1] nonischemic control, [2] ischemia 4 hrs/repefusion 30, 60, 120 min, [3] ischemia/reperfusion after L-arginine administration, [4] ischemia/reperfusion, after L-arginine, and L-NAME. L-arginine (500 mg/kg) and L-NAME (75 micromol/rat/day) were administrated orally for 5 days before experiment. Concentrations of free radicals, CD-62P, CD-54 and malonyl dialdehyde (MDA) in tissues, and MDA and NO levels in sera were determined. Free radical levels significantly increased in reperfused skeletal muscle, small and large intestines. In large bowel, reperfusion increased MDA levels and evoked a rise of endotoxin level while NO levels decreased. Histological studies showed an increase in the number of lymphocytes in both intestines. Administration of L-arginine reduced leukocyte adherence associated with ischemia-repefusion injury, decreased the levels of free radicals and MDA in the examined tissues, and inhibited the release of endotoxins into blood. L-arginine-treated animals showed higher serum NO levels and reduced leukocyte bowel infiltration. Concomitant L-NAME administration reduced serum NO and tissue free radical [corrected] levels, but did not affect intestinal leukocyte infiltration. L-arginine could ameliorate intestinal ischemia/reperfusion injury and constitute a possible protective mechanism by decreasing neutrophil-endothelial interactions, stimulating free radical scavenging and reducing lipid peroxidation.  相似文献   

4.
The involvement of nitric oxide in ischemia-reperfusion injury remains controversial and has been reported to be both beneficial and deleterious, depending on the tissue and model used. This study evaluated the effects of the nitric oxide synthase inhibitor N(G)-nitro-L-arginine-methyl ester (L-NAME) and the substrate for nitric oxide synthase, L-arginine on skeletal muscle necrosis in a rat model of ischemia-reperfusion injury. The rectus femoris muscle in male Wistar rats (250 to 500 g) was isolated on its vascular pedicle and subjected to 4 hours of complete arteriovenous occlusion. The animals were divided into five groups: (1) sham-raised control, no ischemia, no treatment (n = 6); (2) 4 hours of ischemia (n = 6); (3) vehicle control, 4 hours of ischemia + saline (n = 6); (4) 4 hours of ischemia + L-arginine infusion (n = 6); and (5) 4 hours of ischemia + L-NAME infusion (n = 6). The infusions (10 mg/kg) were administered into the contralateral femoral vein beginning 5 minutes before reperfusion and during the following 30 to 45 minutes. Upon reperfusion, the muscle was sutured in its anatomic position and all wounds were closed. The percentage of muscle necrosis was assessed after 24 hours of reperfusion by serial transections, nitroblue tetrazolium staining, digital photography, and computerized planimetry. Sham (group 1) animals sustained baseline necrosis of 11.9 +/- 3.0 (percentage necrosis +/- SEM). Four hours of ischemia (group 2) significantly increased necrosis to 79.2 +/- 1.4 (p < 0.01). Vehicle control (group 3) had no significant difference in necrosis (81.17 +/- 5.0) versus untreated animals subjected to 4 hours of ischemia (group 2). Animals treated with L-arginine (group 4) had significantly reduced necrosis to 34.6 +/- 7.5 versus untreated (group 2) animals (p < 0.01). Animals infused with L-NAME (group 5) had no significant difference in necrosis (68.2 +/- 6.7) versus untreated (group 2) animals. L-Arginine (nitric oxide donor) significantly decreased the severity of muscle necrosis in this rat model of ischemia-reperfusion injury. L-arginine is known to increase the amount of nitric oxide through the action of nitric oxide synthase, whereas L-NAME, known to inhibit nitric oxide synthase and decrease nitric oxide production, had comparable results to the untreated 4-hour ischemia group. These results suggest that L-arginine, presumably through nitric oxide mediation, appears beneficial to rat skeletal muscle subjected to ischemia-reperfusion injury.  相似文献   

5.
We previously demonstrated in the pig that instigation of three cycles of 10 min of occlusion and reperfusion in a hindlimb by tourniquet application (approximately 300 mmHg) elicited protection against ischemia-reperfusion injury (infarction) in multiple distant skeletal muscles subsequently subjected to 4 h of ischemia and 48 h of reperfusion, but the mechanism was not studied. The aim of this project was to test our hypothesis that mitochondrial ATP-sensitive potassium (KATP) (mKATP) channels play a central role in the trigger and mediator mechanisms of hindlimb remote ischemic preconditioning (IPC) of skeletal muscle against infarction in the pig. We observed in the pig that hindlimb remote IPC reduced the infarct size of latissimus dorsi (LD) muscle flaps (8 x 13 cm) from 45 +/- 2% to 22 +/- 3% (n = 10; P < 0.05). The nonselective KATP channel inhibitor glibenclamide (0.3 mg/kg) or the selective mKATP channel inhibitor 5-hydroxydecanoate (5-HD, 5 mg/kg), but not the selective sarcolemmal KATP (sKATP) channel inhibitor HMR-1098 (3 mg/kg), abolished the infarct-protective effect of hindlimb remote IPC in LD muscle flaps (n = 10, P < 0.05) when these drugs were injected intravenously at 10 min before remote IPC. In addition, intravenous bolus injection of glibenclamide (1 mg/kg) or 5-HD (10 mg/kg) at the end of hindlimb remote IPC also abolished the infarct protection in LD muscle flaps (n = 10; P < 0.05). Furthermore, intravenous injection of the specific mKATPchannel opener BMS-191095 (2 mg/kg) at 10 min before 4 h of ischemia protected the LD muscle flap against infarction to a similar extent as hindlimb remote IPC, and this infarct-protective effect of BMS-191095 was abolished by intravenous bolus injection of 5-HD (5 mg/kg) at 10 min before or after intravenous injection of BMS-191095 (n = 10; P < 0.05). The infarct protective effect of BMS-191095 was associated with a higher muscle content of ATP at the end of 4 h of ischemia and a decrease in muscle neutrophilic myeloperoxidase activity at the end of 1.5 h of reperfusion compared with the time-matched control (n = 10, P < 0.05). These observations led us to conclude that mKATP channels play a central role in the trigger and mediator mechanisms of hindlimb remote IPC of skeletal muscle against infarction in the pig, and the opening of mKATP channels in ischemic skeletal muscle is associated with an ATP-sparing effect during sustained ischemia and attenuation of neutrophil accumulation during reperfusion.  相似文献   

6.
Zhang Y  Wu YX  Hao YB  Dun Y  Yang SP 《Life sciences》2001,68(9):1013-1019
This study investigated the protective effects of ischemic preconditioning on intestinal ischemic injury and the role of endogenous opioid peptides (EOP) in these effects. Ischemia-reperfusion (I/R) induced by 30-min of ischemia and 60-min of reperfusion significantly increased the levels of malondialdehyde (MDA) and lactate dehydrogenase (LDH) and resulted in serious intestinal edema (wet weight/dry weight). The ischemic preconditioning (PC) elicited by three 8-min occlusion periods interspersed with 10-min reperfusion markedly attenuated intestinal injury caused by ischemia-reperfusion. Pretreatment with morphine (300 microg x kg(-1), i.v.) 10-min before ischemia and reperfusion mimicked the protection produced by PC. Naloxone (3 mg x kg(-1), i.v.) abolished the protection of morphine-induced preconditioning and ischemic preconditioning in rat intestine. However, there were no changes between naloxone alone and control groups. Treatment with naloxone before ischemia-reperfusion had no effect on animals compared with the I/R group. In addition, we also measured the content of endogenous opioid peptides (Leu-enkephalin) in the effluent which was collected before and during preconditioning. It was shown that the release of leu-enkephalin was markedly increased during preconditioning. These results suggested that EOP might play an important role in PC in rat small intestine.  相似文献   

7.
Effect of L-arginine on leukocyte adhesion in ischemia-reperfusion injury   总被引:5,自引:0,他引:5  
Nitric oxide has been reported to be beneficial in preserving muscle viability following ischemia-reperfusion injury. The purpose of this study was to evaluate the influence of nitric oxide via L-arginine on leukocyte adhesion following ischemia-reperfusion injury. Intravital videomicroscopy of rat gracilis muscle was used to quantify changes in leukocyte adherence. The gracilis muscle was raised on its vascular pedicle in 48 male Wistar rats. The animals were assigned to one of five groups: (1) nonischemic control; (2) ischemia-reperfusion; (3) ischemia-reperfusion and L-arginine; (4) ischemia-reperfusion and Nomega-nitro-L-arginine methyl ester (L-NAME); and (5) ischemia-reperfusion, L-NAME, and L-arginine. All groups that included ischemia-reperfusion were subjected to 4 hours of global ischemia followed by 2 hours of reperfusion. L-Arginine (10 mg/kg) and L-NAME (10 mg/kg) were infused into the contralateral femoral vein beginning 5 minutes before reperfusion, for a total of 30 minutes. The number of adherent leukocytes was counted at baseline and at 5, 15, 30, 60, and 120 minutes after reperfusion (reported as mean change from baseline, +/- SEM). Groups were compared by repeated-measures analysis of variance (five groups, five times). P < or =0.05 was accepted as significant. L-Arginine significantly reduced leukocyte adherence to venular endothelium during reperfusion when compared with the ischemia-reperfusion group (1.39 +/- 0.92 versus 12.78 +/- 1.43 at 2 hours, p < 0.05). Administration of L-NAME with L-arginine showed no significant difference in adherent leukocytes when compared with the ischemia-reperfusion group (10.28 +/- 2.03 at 2 hours). The nitric oxide substrate L-arginine appears to reduce the deleterious neutrophil-endothelial adhesion associated with ischemia-reperfusion injury. L-NAME (nitric oxide synthesis inhibitor) given concomitantly with L-arginine reversed the beneficial effect of L-arginine alone, indicating that L-arginine may be acting via a nitric oxide synthase pathway. These results suggest an important role for nitric oxide in decreasing the neutrophil-endothelial interaction associated with ischemia-reperfusion injury.  相似文献   

8.
Oxygen free radicals are implicated in the pathophysiology of ischemia-reperfusion (I/R) injury in skeletal muscle. Nitric oxide (NO) and prostaglandin E2 (PGE2) are important regulators of the microcirculation in skeletal muscle. The effects of L-arginine, substrate for NO, and N(G)-nitro L-arginine methyl ester (L-NAME) on PGE2 synthesis, lipid peroxidation and reduced glutathione (GSH) levels was investigated in the rat gastrocnemius muscle after 3 h of reperfusion following 2 h of ischemia. Lipid peroxidation and GSH levels showed a non-significant changes in the I/R groups compared to the control group. According to these results, it can be assumed that skeletal muscle can resist 2 h of ischemia followed by 3 h of reperfusion-induced oxidative stress. PGE2-like activity in the gastrocnemius muscle increased in the L-NAME treated and I/R groups. L-arginine administration reversed the increase in PGE2-like activity of reperfused skeletal muscle. These findings support the conclusion that endothelium-derived PGE2 synthesis increases during reperfusion and suggest that PGE2 may have a protective role in the maintenance of endothelial function.  相似文献   

9.
Ischemia and reperfusion injury of the skeletal muscle is a common and serious condition observed in patients admitting to peripheral vascular surgery, interventional radiology and cardiology departments. Resveratrol (RVT) being a strong natural antioxidant is found in deal of red wine and Mediterranean diet. In the present study, male Spraque-Dawley rats were randomized into two groups of equal size. The first group was the control group, and these rats were administered with tap water with a gastric tube for fourteen consecutive days once daily. According to the same protocol, the rats in the second group were treated with tap water containing 20 mg/kg RVT. All the rats in the two groups were subjected to acute hind limb ischemia through clamping of the abdominal aorta for 120 min. Following this procedure, 60 minutes of reperfusion was applied by reestablishing blood flow in both iliac arteries. Ischemic damage in the skeletal muscle tissue was assessed by measuring myoglobin, lactate dehydrogenase, creatinine phosphokinase, aspartate transaminase enzymes in venous blood samples obtained at the end of the reperfusion period. Oxidative stress caused by reperfusion was determined by measuring MDA, carbonyl and protein sulphydryl levels in quadriceps muscle tissue retrieved at the end of the experiment. In Group II rats, all the measured ischemic enzymes and the markers of oxidative stress reflected robust anti-ischemic properties obtained by RVT administration. The data from both groups revealed statistically significant protection against acute skeletal muscle ischemia and reperfusion injury in Group II rats, compared to Group I. As a major dietary flavonoid RVT can protect the skeletal muscle tissue against global ischemia and reperfusion injury because of its strong antioxidant and cytoprotective properties.  相似文献   

10.
The low flow state that results from ischemia and reperfusion injury is a potentially reversible process that is important in numerous clinical situations. However, the point in time during the course of reperfusion where tissue injury becomes irreversible is unknown. This experiment evaluated the continuum of tissue damage in skeletal muscle after ischemic insult by quantifying the number of flowing capillaries and percentage muscle necrosis in a male Wistar rat skeletal muscle model. A gracilis muscle flap was raised on the vascular pedicle of 39 male Wistar rats and examined at 832x using intravital videomicroscopy. The numbers of flowing capillaries in five consecutive high-power fields were counted for baseline values. The flap was then subjected to 4 hours of global ischemia (except in sham animals, n = 7) by placing a microvascular clamp on the pedicle artery and vein. Upon reperfusion, flowing capillaries were counted in the same five high-power fields at intervals of 5, 15, 30, and 60 minutes, then at 2 to 8 (1-hour intervals), 24, and 48 hours. The gracilis muscle was then harvested at these intervals during reperfusion and assessed for viability. Compared with baseline, flowing capillaries from the ischemia and reperfusion group (mean +/- SEM) decreased significantly in the first 8 hours of reperfusion (7.7 +/- 0.2 to 3.2 +/- 0.3, p < 0.001) with minimal change noted from 8 to 48 hours. Percentage muscle necrosis increased progressively in ischemia and reperfusion preparations from 1 to 7 hours of reperfusion (16.5 +/- 2.6 percent to 38.9 +/- 1.2 percent, p < 0.001). No significant change in muscle necrosis in the ischemia and reperfusion group was noted between 7 and 48 hours. Sham preparations showed no change in the number of flowing capillaries through 3 hours of reperfusion, with a slight decrease at 24 hours. This rat gracilis microcirculation skeletal muscle model demonstrates a heterogeneous reperfusion injury. The decrease in flowing capillaries correlated with the increase in percentage necrosis and appeared to stabilize at the 7- to 8-hour interval. This finding may have important implications for the timing of interventions aimed at minimizing tissue damage from ischemia-reperfusion.  相似文献   

11.
Abstract

The antioxidant effects of ellagic acid (EA) and hesperidin (HES) against skeletal muscle ischemia/reperfusion injury (I/R) were performed. Hindlimb ischemia has been induced by tourniquet occlusion for 2?h on left hindlimb. At the end of ischemia, the tourniquate has been removed and initiated reperfusion for 2?h. EA (100?mg/kg) has been applied orally before ischemia/reperfusion in the EA?+?I/R group. HES (100?mg/kg) has been given orally in the HES?+?I/R group. The left gastrocnemius muscle has been harvested and stored immediately at??80?°C until assessed for the levels of MDA and antioxidant enzymes activities. MDA level has statistically increased in I/R group (p?<?0.05) compared to other groups. The muscle tissue antioxidant enzymes activities were lower than the other groups in the I/R group (p?<?0.05). EA and HES treatments significantly reversed the damage level in I/R, also activity of tissue SOD increased in the EA?+?I/R and HES?+?I/R groups.  相似文献   

12.
We tested our hypothesis that postischemic conditioning (PostC) is effective in salvage of ischemic skeletal muscle from reperfusion injury and the mechanism involves inhibition of opening of the mitochondrial permeability transition pore (mPTP). In bilateral 8x13 cm pig latissimus dorsi muscle flaps subjected to 4 h ischemia, muscle infarction increased from 22+/-4 to 41+/-1% between 2 and 24 h reperfusion and remained unchanged at 48 (38+/-6%) and 72 (40+/-1%) h reperfusion (P<0.05; n=4 pigs). PostC induced by four cycles of 30-s reperfusion/reocclusion at the onset of reperfusion after 4 h ischemia reduced muscle infarction from 44+/-2 to 22+/-2% at 48 h reperfusion. This infarct protective effect of PostC was mimicked by intravenous injection of the mPTP opening inhibitor cyclosporin A or NIM-811 (10 mg/kg) at 5 min before the end of 4 h ischemia and was abolished by intravenous injection of the mPTP opener atractyloside (10 mg/kg) at 5 min before PostC (P<0.05; n=4-5 pigs). PostC or intravenous cyclosporin A injection at 5 min before reperfusion caused a decrease in muscle myeloperoxidase activity and mitochondrial free Ca2+ concentration and an increase in muscle ATP content after 4 h ischemia and 2 h reperfusion compared with the time-matched controls. These effects of PostC were abolished by intravenous injection of atractyloside at 5 min before PostC (P<0.05; n=6 pigs). These observations support our hypothesis that PostC is effective in salvage of ischemic skeletal muscle from reperfusion injury and the mechanism involves inhibition of opening of the mPTP.  相似文献   

13.
This study evaluated the effects of the selective inducible nitric oxide synthase (iNOS) inhibitor N-[3-(aminomethyl)benzyl]acetamidine (1400W) on the microcirculation in reperfused skeletal muscle. The cremaster muscles from 32 rats underwent 5 h of ischemia followed by 90 min of reperfusion. Rats received either 3 mg/kg 1400W or PBS subcutaneously before reperfusion. We found that blood flow in reperfused muscles was <45% of baseline in controls but sharply recovered to near baseline levels in 1400W-treated animals. There was a significant (P < 0.01 to P < 0.001) difference between the two groups at each time point throughout the 90 min of reperfusion. Vessel diameters remained <80% of baseline in controls during reperfusion, but recovered to the baseline level in the 1400W group by 20 min, and reached a maximum of 121 +/- 14% (mean +/- SD) of baseline in 10- to 20-micro m arterioles, 121 +/- 6% in 21- to 40-micro m arterioles, and 115 +/- 8% in 41- to 70-micro m arteries (P < 0.01 to P < 0.001). The muscle weight ratio between ischemia-reperfused (left) and non-ischemia-reperfused (right) cremaster muscles was 193 +/- 42% of normal in controls and 124 +/- 12% in the 1400W group (P < 0.001). Histology showed that neutrophil extravasation and edema were markedly reduced in 1400W-treated muscles compared with controls. We conclude that ischemia-reperfusion leads to increased generation of NO from iNOS in skeletal muscle and that the selective iNOS inhibitor 1400W reduces the negative effects of ischemia-reperfusion on vessel diameter and muscle blood flow. Thus 1400W may have therapeutic potential in treatment of ischemia-reperfusion injury.  相似文献   

14.
Free radicals derived from molecular oxygen have been reported to be responsible for changes in motility and mucosal damage observed in intestinal ischemia-reperfusion injury. Melatonin has been considered as an antioxidant that prevents injuries resulted from I/R in various tissues. The present study was designed to determine the effect of melatonin on the contractile responses of acetylcholine (Ach) and KCl, on malondialdehyde (MDA), a product of lipid peroxidation, and reduced glutathione (GSH) levels and to assess histopathological changes in the smooth muscle of terminal ileum subjected to ischemia-reperfusion. The intestinal ischemia-reperfusion was induced by occlusion of superior mesenteric artery of rat for 30 min, followed by a period of reperfusion for 3 h. Melatonin at doses of 10 or 50 mg/kg was administered via the tail vein in 5 min prior to reperfusion. Following reperfusion, segments of terminal ileum were rapidly taken and transferred into isolated organ bath and responses to Ach and KCl were recorded. Samples of terminal ileum were also taken for measuring the MDA and GSH levels. EC50 values of these contracting substances were seriously reduced in the ischemia-reperfusion group compared to that of the sham-operated control group. The decreased contraction response to Ach and KCl was significantly ameliorated by a dosage of 50 mg/kg of melatonin, while not by a dosage of 10 mg/kg. Similar pattern of the effect was observed in the tissue levels of MDA and GSH as well as in histological improvement. Melatonin appeared to be restoring the amounts of tissue MDA and GSH back to about control levels. These results suggest that the high dose of melatonin not only physiologically but also biochemically and morphologically could be useful to normalize contractility injured by oxidative stress in intestinal ischemia-reperfusion.  相似文献   

15.
Amputated tissue maintained in a hypothermic environment can endure prolonged ischemia and improve replantation success. The authors hypothesized that local tissue hypothermia during the early reperfusion period may provide a protective effect against ischemia-reperfusion injury similar to that seen when hypothermia is provided during the ischemic period. A rat gracilis muscle flap model was used to assess the protective effects of exposing skeletal muscle to local hypothermia during ischemia only (p = 18), reperfusion only (p = 18), and both ischemia and reperfusion (p = 18). Gracilis muscles were isolated and exposed to hypothermia of 10 degrees C during 4 hours of ischemia, the initial 3 hours of reperfusion, or both periods. Ischemia-reperfusion outcome measures used to evaluate muscle flap injury included muscle viability (percent nitroblue tetrazolium staining), local edema (wet-to-dry weight ratio), neutrophil infiltration (intramuscular neutrophil density per high-power field), neutrophil integrin expression (CD11b mean fluorescence intensity), and neutrophil oxidative potential (dihydro-rhodamine oxidation mean fluorescence intensity) after 24 hours of reperfusion. Nitroblue tetrazolium staining demonstrated improved muscle viability in the experimental groups (ischemia-only: 78.8 +/- 3.5 percent, p < 0.001; reperfusion-only: 80.2 +/- 5.2 percent, p < 0.001; and ischemia-reperfusion: 79.6 +/- 7.6 percent, p < 0.001) when compared with the nonhypothermic control group (50.7 +/- 9.3 percent). The experimental groups demonstrated decreased local muscle edema (4.09 +/- 0.30, 4.10 +/- 0.19, and 4.04 +/- 0.31 wet-to-dry weight ratios, respectively) when compared with the nonhypothermic control group (5.24 +/- 0.31 wet-to-dry weight ratio; p < 0.001, p < 0.001, and p < 0.001, respectively). CD11b expression was significantly decreased in the reperfusion-only (32.65 +/- 8.75 mean fluorescence intensity, p < 0.001) and ischemia-reperfusion groups (25.26 +/- 5.32, p < 0.001) compared with the nonhypothermic control group (62.69 +/- 16.93). There was not a significant decrease in neutrophil CD11b expression in the ischemia-only group (50.72 +/- 11.7 mean fluorescence intensity, p = 0.281). Neutrophil infiltration was significantly decreased in the reperfusion-only (20 +/- 11 counts per high-power field, p = 0.025) and ischemia-reperfusion groups (23 +/- 3 counts, p = 0.041) compared with the nonhypothermic control group (51 +/- 28 counts). No decrease in neutrophil density was observed in the ischemia-only group (40 +/- 15 counts per high-power field, p = 0.672) when compared with the nonhypothermic control group (51 +/- 28 counts). Finally, dihydrorhodamine oxidation was significantly decreased in the reperfusion-only group (45.83 +/- 11.89 mean fluorescence intensity, p = 0.021) and ischemia-reperfusion group (44.30 +/- 11.80, p = 0.018) when compared with the nonhypothermic control group (71.74 +/- 20.83), whereas no decrease in dihydrorhodamine oxidation was observed in the ischemia-only group (65.93 +/- 10.3, p = 0.982). The findings suggest a protective effect of local hypothermia during early reperfusion to skeletal muscle after an ischemic insult. Inhibition of CD11b expression and subsequent neutrophil infiltration and depression of neutrophil oxidative potential may represent independent protective mechanisms isolated to local tissue hypothermia during the early reperfusion period (reperfusion-only and ischemia-reperfusion groups). This study provides evidence for the potential clinical utility of administering local hypothermia to ischemic muscle tissue during the early reperfusion period.  相似文献   

16.
The aim of this study was to investigate the efficacy and mechanism of action of a noninvasive remote ischemic preconditioning (IPC) technique for the protection of multiple distant skeletal muscles against ischemic necrosis (infarction). It was observed in the pig that three cycles of 10-min occlusion and reperfusion in a hindlimb by tourniquet application reduced the infarction of latissimus dorsi (LD), gracilis (GC), and rectus abdominis (RA) muscle flaps by 55%, 60%, and 55%, respectively, compared with their corresponding control (n = 6, P < 0.01) when they were subsequently subjected to 4 h of ischemia and 48 h of reperfusion. This infarct-protective effect of remote IPC in LD muscle flaps was abolished by an intravenous bolus injection of the nonselective opioid receptor antagonist naloxone (3 mg/kg) 10 min before remote IPC and a continuous intravenous infusion (3 mg/kg) during remote IPC and by an intravenous bolus injection of the selective delta 1-opioid receptor antagonist 7-benzylidenealtrexone maleate (3 mg/kg). However, this infarct-protective effect of remote IPC was not affected by an intravenous bolus injection of the ganglionic blocker hexamethonium chloride (20 mg/kg) or the nonspecific adenosine receptor antagonist 8-(p-sulfophenyl)theophylline (10 mg/kg) or by a local intra-arterial injection of the adenosine1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (3 mg/muscle flap) given 10 min before remote IPC. It was also observed that this remote IPC of skeletal muscle against infarction was associated with a slower rate of muscle ATP depletion during the 4 h of sustained ischemia and a reduced muscle neutrophilic myeloperoxidase activity after 1.5 h of reperfusion. These observations led us to speculate that noninvasive remote IPC by brief cycles of occlusion and reperfusion in a pig hindlimb is effective in global protection of skeletal muscle against infarction. This infarct-protective effect is most likely triggered by the activation of opioid receptors in the skeletal muscle, and remote IPC is associated with an energy-sparing effect during sustained ischemia and attenuation of neutrophil accumulation during reperfusion.  相似文献   

17.
-phenyl-tert-butyl-nitrone (PBN) a spin adduct forming agent is believed to have a protective action in ischemia-reperfusion injury of brain by forming adducts of oxygen free radicals including ±OH radical. Electron paramagnetic resonance (EPR) has been used to both detect and monitor the time course of oxygen free radical formation in the in vivo rat cerebral cortex. Cortical cups were placed over both cerebral hemispheres of methoxyflurane anesthetized rats prepared for four vessel occlusion-evoked cerebral ischemia. Prior to the onset of sample collection, both cups were perfused with artificial cerebrospinal fluid (aCSF) containing the spin trap agent -(4-pyridyl-1-oxide)-N-tert butylnitrone (POBN 100 mM) for 20 min. In addition 50 mg/kg BW of POBN was administered intraperitoneally (IP) 20 min prior to ischemia in order to improve our ability to detect free radical adducts. Cup fluid was subsequently replaced every 15 min during ischemia and every 10 min during reperfusion with fresh POBN containing CSF and the collected cortical superfusates were analyzed for radical adducts by EPR spectroscopy. After a basal 10 min collection, cerebral ischemia was induced for 15 or 30 min (confirmed by EEG flattening) followed by a 90 min reperfusion. -OH radical adducts (characterized by six line EPR spectra) were detected during ischemia and 90 min reperfusion. No adduct was detected in the basal sample or after 90 min of reperfusion. Similar results were obtained when diethylenetriaminepenta-acetic acid (100 μM; DETAPAC) a chelating agent was included in the artificial CSF. Systemic administration of PBN (100 mg/kg BW) produced a significant attenuation of radical adduct during reperfusion. A combination of systemic and topical PBN (100 mM) was required to suppress -OH radical adduct formation during ischemia as well as reperfusion. PBN free radical adducts were detected in EPR spectra of the lipid extracts of PBN treated rat brains subjected to ischemia/reperfusion. Thus this study suggests that PBN's protective action in cerebral ischemia/reperfusion injury is related to its ability to prevent a cascade of free radical generation by forming spin adducts.  相似文献   

18.
Myocardial ischemia-reperfusion injury contributes significantly to morbidity and mortality in patients with diabetes. Insulin decreases myocardial infarct size in animals and the rate of apoptosis in cultured cells. Ischemia-reperfusion activates p38 mitogen-activated protein kinase (MAPK), which regulates cellular apoptosis. To examine whether p38 MAPK affects insulin's cardioprotection against ischemia-reperfusion injury, we studied overnight-fasted adult male rats by use of an in vivo rat model of myocardial ischemia-reperfusion. A euglycemic clamp (3 mU.min(-1).kg(-1)) was begun either 10 min before ischemia (InsulinBI), 5 min before reperfusion (InsulinBR), or 30 min after the onset of reperfusion (InsulinAR), and continued until the end of the study. Compared with saline control, insulin decreased the infarct size in both InsulinBI (P < 0.001) and InsulinBR (P < 0.02) rats but not in InsulinAR rats. The ischemic area showed markedly increased phosphorylation of p38 MAPK compared with the nonischemic area in saline animals. Acute activation of p38 MAPK with anisomycin (2 mg/kg iv 10 min before ischemia) had no effect on infarct size in saline rats. However, it completely abolished insulin's protective effect in InsulinBI and InsulinBR rats. Activation of p38 MAPK by anisomycin was associated with marked and persistent elevation in IRS-1 serine phosphorylation. Treatment of animals with SB-239063, a potent and specific inhibitor of p38 MAPK, 10 min before reperfusion enabled insulin-mediated myocardial protection in InsulinAR rats. We conclude that insulin protects myocardium against ischemia-reperfusion injury when given prior to ischemia or reperfusion, and activation of p38 MAPK abolishes insulin's cardioprotective effect.  相似文献   

19.
Pretreatment with diazoxide, KATP channel opener, increases tissue tolerance against ischemia reperfusion (IR) injury. In clinical settings pretreatment is rarely an option therefore we evaluated the effect of post-ischemic treatment with diazoxide on skeletal muscle IR injury. Rats were treated with either saline, diazoxide (KATP opener; 40?mg/kg) or 5-hydroxydecanoate (5-HD; mitochondrial KATP inhibitor; 40?mg/kg) after skeletal muscle ischemia (3?h) and reperfusion (6, 24 or 48?h). Tissue contents of malondialdehyde (MDA), superoxide dismutase (SOD) and catalase (CAT) activities, Bax and Bcl-2 protein expression and muscle histology were determined. Apoptosis was examined (24 and 48?h) after ischemia. IR induced severe histological damage, increased MDA content and Bax expression (24 and 48?h; p?<?0.01) and decreased CAT and SOD activities (6 and 24?h, p?<?0.01 and 48?h, p?<?0.05), with no significant effect on Bcl-2 expression. Diazoxide reversed IR effects on MDA (6 and 24?h; p?<?0.05), SOD (6 and 24?h; p?<?0.01) and CAT (6 and 48?h, p?<?0.05 and 24?h p?<?0.01) and tissue damage. Diazoxide also decreased Bax (24 and 48?h; p?<?0.05) and increased Bcl-2 protein expression (24 and 48?h; p?<?0.01). Post-ischemic treatment with 5-HD had no significant effect on IR injury. Number of apoptotic nuclei in IR and 5-HD treated groups significantly increased (p?<?0.001) while diazoxide decreased apoptosis (p?<?0.01). The results suggested that post-ischemic treatment with diazoxide decrease oxidative stress in acute phase which modulates expression of apoptotic proteins in the late phase of reperfusion injury. Involvement of KATP channels in this effect require further evaluations.  相似文献   

20.
In this study, the effects of iloprost (ZK 36374) and NDGA on warm ischemia and reperfusion injury in rat liver were investigated. Rats were given isotonic saline (control group), iloprost 25 micrograms/kg i.v. (group II) just before warm ischemia or NDGA 10 micrograms/kg i.v. (group III) 5 min before reperfusion or the same drugs were given together (group IV). Serum SGOT, SGPT, and LDH values and tissue malondialdehyde (MDA), glutathione (GSH), prostaglandin (PG)E2, and leukotriene (LT)C4 levels were determined after ischemia-reperfusion injury. Histopathologic examination of the liver was carried out under the light microscope. The serum SGOT, SGPT and LDH levels improved significantly in groups II, III, and IV when compared with the control group (p < 0.05). There was a significant decrease (p < 0.05) in tissue MDA levels and significant increase (p < 0.05) in tissue GSH levels in group I, when compared with group IV and the control groups. The values did not differ significantly in group IV when compared to controls. The LTC4/PGE2 ratio was low and histologic findings were worse in group III. In conclusion, iloprost was found to be beneficial in preventing the ischemia-reperfusion injury in the rat livers. NDGA, either by direct toxic effect or by shifting the arachidonic acid metabolism to the cyclooxygenase route, was not found to be as effective. Iloprost and NDGA did not exert a synergist effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号