首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABC (ATP-binding cassette) transporters play an important role in the communication of various substrates across cell membranes. They are ubiquitous in prokaryotes and eukaryotes, and eukaryotic types (EK-types) are distinguished from prokaryotic types (PK-types) in terms of their genes and domain organizations. The EK-types and PK-types mainly consist of exporters and importers, respectively. Prokaryotes have both the EK-types and the PK-types. The EK-types in prokaryotes are usually called "bacterial multidrug ABC transporters," but they are not well characterized in comparison with the multidrug ABC transporters in eukaryotes. Thus, an exhaustive search of the EK-types among diverse organisms and detailed sequence classification and analysis would elucidate the evolutionary history of EK-types. It would also help shed some light on the fundamental repertoires of the wide variety of substrates through which multidrug ABC transporters in eukaryotes communicate. In this work, we have identified the EK-type ABC transporters in 126 prokaryotes using the profiles of the ATP-binding domain (NBD) of the EK-type ABC transporters from 12 eukaryotes. As a result, 11 clusters were identified from 1,046 EK-types ABC transporters. In particular, two large novel clusters emerged, corresponding to the bacterial multidrug ABC transporters related to the ABCB and ABCC families in eukaryotes, respectively. In the genomic context, most of these genes are located alone or adjacent to genes from the same clusters. Additionally, to detect functional divergences in the NBDs, the Kullback-Leibler divergence was measured among these bacterial multidrug transporters. As a result, several putative functional regions were identified, some corresponding to the predicted secondary structures. We also analyzed a phylogeny of the EK-type ABC transporters in both prokaryotes and eukaryotes, which revealed that the EK-type ABC transporters in prokaryotes have certain repertoires corresponding to the conventional ABC protein groups in eukaryotes. On the basis of these findings, we propose an updated evolutionary hypothesis in which the EK-type ABC transporters in both eukaryotes and prokaryotes consisted of several kinds of ABC transporters in putative ancestor cells before the divergence of eukaryotic and prokaryotic cells.  相似文献   

2.
ATP-binding cassette (ABC) transporters mediate transport of diverse substrates across membranes. We have determined the quaternary structure and functional unit of the recently discovered ECF-type (energy coupling factor) of ABC transporters, which is widespread among prokaryotes. ECF transporters are protein complexes consisting of a conserved energizing module (two peripheral ATPases and the integral membrane protein EcfT) and a non-conserved integral membrane protein responsible for substrate specificity (S-component). S-components for different substrates are often unrelated in amino acid sequence but may associate with the same energizing module. Here, the energizing module from Lactococcus lactis was shown to form stable complexes with each of the eight predicted S-components found in the organism. The quaternary structures of three of these complexes were determined by light scattering. EcfT, the two ATPases (EcfA and EcfA'), and the S-components were found to be present in a 1:1:1:1 ratio. The complexes were reconstituted in proteoliposomes and shown to mediate ATP-dependent transport. ECF-type transporters are the smallest known ABC transporters.  相似文献   

3.
Membrane associated and secreted proteins are translated as precursors containing a signal peptide that allows protein-insertion into the membrane of the endoplasmic reticulum and is co-translationally removed in the lumen. The ability of the signal peptide to direct a polypeptide into the secretory pathway is exploited in methods developed to select cDNAs encoding such proteins. Different strategies are known in which cDNA libraries can be screened for signal peptides by the ability of the latter to rescue the translocation of signal sequence-less proteins. In one method, a cDNA library is tested for interleukin 2 receptor α chain translocation to the membrane in COS cells, in another one for invertase secretion from yeast. In this work, we compared the two systems by testing six mouse signal peptides in COS and yeast cells. All of them were functional in the mammalian system, whereas only three of them in yeast. Two other sequences needed the 5′ cDNA sequence flanking the ATG codon to be removed in order to enable protein translocation. Although the structure of signal sequences and the functioning of the secretory machinery are well conserved from prokaryotes to eukaryotes, it seems evident that not all signal peptides can be interchanged between different proteins and organisms. In particular, signal peptides that are functional in the mammalian system do not necessarily lead to protein translocation in yeast. Received: 9 March 2001  相似文献   

4.
DNA repair in the Archaea is relevant to the consideration of genome maintenance and replication fidelity in the last universal common ancestor (LUCA) from two perspectives. First, these prokaryotes embody a mix of bacterial and eukaryal molecular features. Second, DNA repair proteins would have been essential in LUCA to maintain genome integrity, regardless of the environmental temperature. Yet we know very little of the basic molecular mechanisms of DNA damage and repair in the Archaea in general. Many studies on DNA repair in archaea have been conducted with hyperthermophiles because of the additional stress imposed on their macromolecules by high temperatures. In addition, of the six complete archaeal genome sequences published so far, five are thermophilic archaea. We have recently shown that the hyperthermophile Pyrococcus furiosus has an extraordinarily high capacity for repair of radiation-induced double-strand breaks and we have identified and sequenced several genes involved in DNA repair in P. furiosus. At the sequence level, only a few genes share homology with known bacterial repair genes. For instance, our phylogenetic analysis indicates that archaeal recombinases occur in two paralogous gene families, one of which is very deeply branched, and both recombinases are more closely related to the eukaryotic RAD51 and Dmc1 gene families than to the Escherichia coli recA gene. We have also identified a gene encoding a repair endo/exonuclease in the genomes of several Archaea. The archaeal sequences are highly homologous to those of the eukaryotic Rad2 family and they cluster with genes of the FEN-1 subfamily, which are known to be involved in DNA replication and repair in eukaryotes. We argue that there is a commonality of mechanisms and protein sequences, shared between prokaryotes and eukaryotes for several modes of DNA repair, reflecting diversification from a minimal set of genes thought to represent the genome of the LUCA.  相似文献   

5.
The heat shock protein 70 kDa sequences (HSP70) are of great importance as molecular chaperones in protein folding and transport. They are abundant under conditions of cellular stress. They are highly conserved in all domains of life: Archaea, eubacteria, eukaryotes, and organelles (mitochondria, chloroplasts). A multiple alignment of a large collection of these sequences was obtained employing our symmetric-iterative ITERALIGN program (Brocchieri and Karlin 1998). Assessments of conservation are interpreted in evolutionary terms and with respect to functional implications. Many archaeal sequences (methanogens and halophiles) tend to align best with the Gram-positive sequences. These two groups also miss a signature segment [about 25 amino acids (aa) long] present in all other HSP70 species (Gupta and Golding 1993). We observed a second signature sequence of about 4 aa absent from all eukaryotic homologues, significantly aligned in all prokaryotic sequences. Consensus sequences were developed for eight groups [Archaea, Gram-positive, proteobacterial Gram-negative, singular bacteria, mitochondria, plastids, eukaryotic endoplasmic reticulum (ER) isoforms, eukaryotic cytoplasmic isoforms]. All group consensus comparisons tend to summarize better the alignments than do the individual sequence comparisons. The global individual consensus ``matches' 87% with the consensus of consensuses sequence. A functional analysis of the global consensus identifies a (new) highly significant mixed charge cluster proximal to the carboxyl terminus of the sequence highlighting the hypercharge run EEDKKRRER (one-letter aa code used). The individual Archaea and Gram-positive sequences contain a corresponding significant mixed charge cluster in the location of the charge cluster of the consensus sequence. In contrast, the four Gram-negative proteobacterial sequences of the alignment do not have a charge cluster (even at the 5% significance level). All eukaryotic HSP70 sequences have the analogous charge cluster. Strikingly, several of the eukaryotic isoforms show multiple mixed charged clusters. These clusters were interpreted with supporting data related to HSP70 activity in facilitating chaperone, transport, and secretion function. We observed that the consensus contains only a single tryptophan residue and a single conserved cysteine. This is interpreted with respect to the target rule for disaggregating misfolded proteins. The mitochondrial HSP70 connections to bacterial HSP70 are analyzed, suggesting a polyphyletic split of Trypanosoma and Leishmania protist mitochondrial (Mt) homologues separated from Mt-animal/fungal/plant homologues. Moreover, the HSP70 sequences from the amitochondrial Entamoeba histolytica and Trichomonas vaginalis species were analyzed. The E. histolytica HSP70 is most similar to the higher eukaryotic cytoplasmic sequences, with significantly weaker alignments to ER sequences and much diminished matching to all eubacterial, mitochondrial, and chloroplast sequences. This appears to be at variance with the hypothesis that E. histolytica rather recently lost its mitochondrial organelle. T. vaginalis contains two HSP70 sequences, one Mt-like and the second similar to eukaryotic cytoplasmic sequences suggesting two diverse origins. Received: 29 January 1998 / Accepted: 14 May 1998  相似文献   

6.
ATP-binding cassette (ABC) systems are found in all three domains of life and in some giant viruses and form one of the largest protein superfamilies. Most family members are transport proteins that couple the free energy of ATP hydrolysis to the translocation of solutes across a biological membrane. The energizing module is also used to drive non-transport processes associated, e.g., with DNA repair and protein translation. Many ABC proteins are of considerable medical importance. In humans, dysfunction of at least eighteen out of 49 ABC transporters is associated with disease, such as cystic fibrosis, Tangier disease, adrenoleukodystrophy or Stargardt’s macular degeneration. In prokaryotes, ABC proteins confer resistance to antibiotics, secrete virulence factors and envelope components, or mediate the uptake of a large variety of nutrients. Canonical ABC transporters share a common structural organization comprising two transmembrane domains (TMDs) that form the translocation pore and two nucleotide-binding domains (NBDs) that bind and hydrolyze ATP. In this Mini-Review, we summarize recent structural and biochemical data obtained from both prokaryotic and eukaryotic model systems.  相似文献   

7.
A Novel Family of Ubiquitous Heavy Metal Ion Transport Proteins   总被引:33,自引:0,他引:33  
We describe a novel diverse family of metal ion transporter (CDF) proteins (the cation diffusion facilitator (CDF) family) with members occurring in both prokaryotes and eukaryotes. Thirteen sequenced protein members of the CDF family have been identified, several of which have been shown to transport cobalt, cadmium and/or zinc. All members of the CDF family possess six putative transmembrane spanners with strongest conservation in the four N-terminal spanners, and on the basis of the analyses, we present a unified structural model. Members of the family are shown to exhibit an unusual degree of size variation, sequence divergence, and differences in cell localization and polarity. The phylogenetic tree for the CDF family reveals that prokaryotic and eukaryotic proteins cluster separately. It allows functional predictions for some uncharacterized members of this family. A signature sequence specific for the CDF family is derived. Received: 15 July 1996/Revised: 21 October 1996  相似文献   

8.
Until recently, extracytoplasmic solute receptor (ESR)-dependent uptake systems were invariably found to possess a conserved ATP-binding protein (the ATP-binding cassette protein or ABC protein), which couples ATP hydrolysis to the translocation of the solute across the cytoplasmic membrane. While it is clear that this class of ABC transporter is ubiquitous in prokaryotes, it is now firmly established that other, unrelated types of membrane transport systems exist which also have ESR components. These systems have been designated tripartite ATP-independent periplasmic (TRAP) transporters, and they form a distinct class of ESR-dependent secondary transporters where the driving force for solute accumulation is an electrochemical ion gradient and not ATP hydrolysis. Currently, the most well characterised TRAP transporter at the functional and molecular level is the high-affinity C4-dicarboxylate transport (Dct) system from Rhodobacter capsulatus. This consists of three proteins; an ESR (DctP) and small (DctQ) and large (DctM) integral membrane proteins. The characteristics of this system are discussed in detail. Homologues of the R. capsulatus DctPQM proteins are present in a diverse range of prokaryotes, both bacteria and archaea, but not in eukaryotes. The deduced structures and possible functions of these homologous systems are described. In addition to the DctP family, other types of ESRs can be associated with TRAP transporters. A conserved family of immunogenic extracytoplasmic proteins is shown to be invariably associated with TRAP systems that contain a large DctQM fusion protein. All of the currently known archaeal systems are of this type. It is concluded that TRAP transporters are a widespread and ancient type of solute uptake system that transport a potentially diverse range of solutes and most likely evolved by the addition of auxiliary proteins to a single secondary transporter.  相似文献   

9.
Solute transport systems are one of the major ways in which organisms interact with their environment. Typically, transport is catalysed by integral membrane proteins, of which one of the largest groups is the ATP‐binding cassette (ABC) proteins. On the basis of sequence similarities, a large family of ABC proteins has been identified in Arabidopsis. A total of 60 open reading frames (ORFs) encoding ABC proteins were identified by BLAST homology searching of the nuclear genome. These 60 putative proteins include 89 ABC domains. Based on the assignment of transmembrane domains (TMDs), at least 49 of the 60 proteins identified are ABC transporters. Of these 49 proteins, 28 are full‐length ABC transporters (eight of which have been described previously), and 21 are uncharacterized half‐transporters. Three of the remaining proteins identified appear to be soluble, lacking identifiable TMDs, and most likely have non‐transport functions. The eight other ORFs have homology to the nucleotide‐binding and transmembrane components of multi‐subunit permeases. The majority of ABC proteins found in Arabidopsis can, on the basis of sequence homology, be assigned to subfamilies equivalent to those found in the yeast genome. This assignment of the Arabidopsis ABC proteins into easily recognizable subfamilies (with distinguishable subclusters) is an important first step in the elucidation of their functional role in higher plants.  相似文献   

10.
Energy coupling factor (ECF) transporters are a subgroup of ATP-binding cassette (ABC) transporters involved in the uptake of vitamins and micronutrients in prokaryotes. In contrast to classical ABC importers, ECF transporters do not make use of water-soluble substrate binding proteins or domains but instead employ integral membrane proteins for substrate binding (named S-components). S-components form active translocation complexes with the ECF module, an assembly of two nucleotide-binding domains (NBDs, or EcfA) and a second transmembrane protein. In some cases, the ECF module is dedicated to a single S-component, but in many cases, the ECF module can interact with several different S-components that are unrelated in sequence and bind diverse substrates. The modular organization with exchangeable S-components on a single ECF module allows the transport of chemically different substrates via a common route. The recent determination of the crystal structures of the S-components that recognize thiamin and riboflavin has provided a first clue about the mechanism of S-component exchange. This review describes recent advances and the current views of the mechanism of transport by ECF transporters.  相似文献   

11.
ATP-binding cassette (ABC) transporters encompass membrane transport proteins that couple the energy derived from ATP hydrolysis to the translocation of solutes across biological membranes. The functions of these proteins include ancient and conserved mechanisms related to nutrition and pathogenesis in bacteria, spore formation in fungi, and signal transduction, protein secretion and antigen presentation in eukaryotes. Furthermore, one of the major causes of drug resistance and chemotherapeutic failure in both cancer and anti-infective therapies is the active movement of compounds across membranes carried out by ABC transporters. Thus, the clinical relevance of ABC transporters is enormous, and the membrane transporters related to chemoresistance are among the best-studied members of the ABC transporter superfamily. As ABC transporter blockers can be used in combination with current drugs to increase their efficacy, the (possible) impact of efflux pump inhibitors is of great clinical interest. The present review summarizes the progress made in recent years in the identification, design, availability, and applicability of ABC transporter blockers in experimental scenarios oriented towards improving the treatment of infectious diseases caused by microorganisms including parasites.  相似文献   

12.
ATP-binding cassette (ABC) transporters serve as importers and exporters for a wide variety of solutes in both prokaryotes and eukaryotes, and are implicated in microbial drug resistance and a number of significant human genetic disorders. Initial crystal structures of the soluble nucleotide binding domains (NBDs) of ABC transporters, while a significant step towards understanding the coupling of ATP binding and hydrolysis to transport, presented researchers with important questions surrounding the role of the signature sequence residues, the composition of the nucleotide binding sites, and the mode of NBD dimerization during the transport reaction cycle. Recent studies have begun to address these concerns. This mini-review summarizes the biochemical and structural characterizations of two archaebacterial NBDs from Methanocaldococcus jannaschii, MJ0796 and MJ1267, and offers current perspectives on the functional mechanism of ABC transporters.  相似文献   

13.
Several novel but similar heavy metal ion transporters, Zrt1, Zrt2, Zip1-4 and Irt1, have recently been characterized. Zrt1, Zrt2 and Zip1-4 are probably zinc transporters in Saccharomyces cerevisiae and Arabidopsis thaliana whereas Irt1 appears to play a role in iron uptake in A. thaliana. The family of proteins including these functionally characterized transporters has been designated the Zrt- and Irt-related protein (ZIP) family. In this report, ZIP family proteins in the current databases were identified and multiply aligned, and a phylogenetic tree for the family was constructed. A family specific signature sequence was derived, and the available sequences were analyzed for residues of potential functional significance. A fully conserved intramembranous histidyl residue, present within a putative amphipathic, α-helical, transmembrane spanning segment, was identified which may serve as a part of an intrachannel heavy metal ion binding site. The occurrence of a proposed extramembranal metal binding motif (H X H X H) was examined in order to evaluate its potential functional significance for various members of the family. The computational analyses reported in this topical review should serve as a guide to future researchers interested in the structure-function relationships of ZIP family proteins. Received: 31 March 1997/Revised: 14 May 1998  相似文献   

14.
Channel-forming proteins/peptides fall into over 100 currently recognized families, most of which are restricted to prokaryotes or eukaryotes, but a few of which are ubiquitous. These proteins fall into three major currently recognized classes: (i) α-helix-type channels present in bacterial, archaeal and eukaryotic cytoplasmic and organellar membranes, (ii) β-barrel-type porins present in the outer membranes of Gram-negative bacterial cells, mitochondria and chloroplasts, and (iii) protein/peptide toxins targeted to the cytoplasmic membranes of cells other than those that synthesize the toxins. High-resolution 3-dimensional structural data are available for representative proteins/peptides of all three of these channel-forming types. Each type exhibits distinctive features that distinguish them from the other channel protein types and from carriers. Structural, functional, and evolutionary aspects of transmembrane channel-formers are discussed. Received: 10 September 1999/Revised: 11 February 2000  相似文献   

15.
Periplasmic binding protein-dependent transport systems represent a common mechanism for nutrient and ion uptake in bacteria. As a group, these systems are related to one another and to other transporters of both prokaryotes and eukaryotes, based on sequence similarity within an ATP-binding subunit and overall structural organization. These transporters probably all use energy derived from ATP to pump substrates across membranes. Although there is considerable information about the sequences and identity of the transporters, there is little information about how they work. That is, where do ligands bind? Where do the subunits or domains interact with one another? How is the energy of nucleotide binding and/or hydrolysis converted to conformational changes? In order to address these questions we have taken a genetic approach that involves studying mutant forms of a transporter. Rather than study mutations that result in complete loss of function, the study of mutations which perturb or alter the normal function of the transporter in a defined manner has provided a limited insight into how the answers to these questions may be obtained.  相似文献   

16.
We have analyzed all currently sequenced eukaryotic proteins containing either a kinase module or a receiver module, corresponding to those found in bacterial sensor kinases or response regulators, respectively, of the so-called two-component regulatory systems. We demonstrate that the eukaryotic receiver modules belong to a single subfamily of the bacterial receiver modules. Moreover, the cognate eukaryotic kinase modules exhibit a similar clustering pattern on the sensor kinase phylogenetic tree, suggesting that they evolved in parallel with the receiver modules from a common ancestral source that bore both modules. Multiple alignments of the sequences corresponding to these modules are presented and discussed, and eukaryotic-specific signature sequences are derived. Received: 18 October 1995 / Accepted: 16 December 1996  相似文献   

17.
The genes encoding for heat shock protein 40 (Hsp40 or DnaJ) homologs were cloned and sequenced from the archaebacterium Halobacterium cutirubrum and the eubacterium Deinococcus proteolyticus to add to sequences from the gene banks. These genes were identified downstream of the Hsp70 (or DnaK) genes in genomic fragments spanning this region and, as in other prokaryotic species, Hsp70-Hsp40 genes are likely part of the same operon. The Hsp40 homolog from D. proteolyticus was found to be lacking a central 204 base pair region present in H. cutirubrum that encodes for the four cysteine-rich domains of the repeat consensus sequence CxxCxGxG (where x is any amino acid), present in most Hsp40 homologs. The available sequences from various archaebacteria, eubacteria, and eukaryotes show that the same deletion is also present in the homologs from Thermus aquaticus and two cyanobacteria, but in no other species tested. This unique deletion and the clustering of homologs from the Deinococcus–Thermus group and cyanobacterial species in the Hsp40 phylogenetic trees suggest a close evolutionary relationship between these groups as was also shown recently for Hsp70 sequences (R.S. Gupta et al., J Bacteriol 179:345–357, 1997). Sequence comparisons indicate that the Hsp40 homologs are not as conserved as the Hsp70 sequences. Phylogenetic analysis provides no reliable information concerning evolutionary relationship between prokaryotes and eukaryotes and their usefulness in this regard is limited. However, in phylogenetic trees based on Hsp40 sequences, the two archaebacterial homologs showed a polyphyletic branching within Gram-positive bacteria, similar to that seen with Hsp70 sequences. Received: 30 January 1997 / Accepted: 22 March 1997  相似文献   

18.
Every cell is separated from its external environment by a lipid membrane. Survival depends on the regulated and selective transport of nutrients, waste products and regulatory molecules across these membranes, a process that is often mediated by integral membrane proteins. The largest and most diverse of these membrane transport systems is the ATP binding cassette (ABC) family of membrane transport proteins. The ABC family is a large evolutionary conserved family of transmembrane proteins (> 250 members) present in all phyla, from bacteria to Homo sapiens, which require energy in the form of ATP hydrolysis to transport substrates against concentration gradients. In prokaryotes the majority of ABC transporters are involved in the transport of nutrients and other macromolecules into the cell. In eukaryotes, with the exception of the cystic fibrosis transmembrane conductance regulator (CFTR/ABCC7), ABC transporters mobilize substrates from the cytoplasm out of the cell or into specific intracellular organelles. This review focuses on the members of the ABCG subfamily of transporters, which are conserved through evolution in multiple taxa. As discussed below, these proteins participate in multiple cellular homeostatic processes, and functional mutations in some of them have clinical relevance in humans.  相似文献   

19.
Reyes CL  Ward A  Yu J  Chang G 《FEBS letters》2006,580(4):1042-1048
ATP-binding cassette (ABC) transporters are integral membrane proteins that couple ATP hydrolysis to the transport of various molecules across cellular membranes. Found in both prokaryotes and eukaryotes, a sub-group of these transporters are involved in the efflux of hydrophobic drugs and lipids, causing anti-microbial and chemotherapeutic multidrug resistance. In this review, we examine recent structural and functional analysis of the ABC transporter MsbA and implications on the mechanism of multidrug efflux.  相似文献   

20.
Secondary structure is evaluated for determining evolutionary relationships between catalytic RNA molecules that are so distantly related they are scarcely alignable. The ribonucleoproteins RNase P (P) and RNase MRP (MRP) have been suggested to be evolutionarily related because of similarities in both function and secondary structure. However, their RNA sequences cannot be aligned with any confidence, and this leads to uncertainty in any trees inferred from sequences. We report several approaches to using secondary structures for inferring evolutionary trees and emphasize quantitative tests to demonstrate that evolutionary information can be recovered. For P and MRP, three hypotheses for the relatedness are considered. The first is that MRP is derived from P in early eukaryotes. The next is that MRP is derived from P from an early endosymbiont. The third is that both P and MRP evolved in the RNA-world (and the need for MRP has since been lost in prokaryotes). Quantitative comparisons of the pRNA and mrpRNA secondary structures have found that the possibility of an organellar origin of MRP is unlikely. In addition, comparison of secondary structures support the identity of an RNase P–like sequence in the maize chloroplast genome. Overall, it is concluded that RNA secondary structure is useful for evaluating evolutionary relatedness, even with sequences that cannot be aligned with confidence. Received: 19 July 1999 / Accepted: 3 May 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号