首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
The dnaK gene was cloned from the obligate thermophile Bacillus thermoglucosidasius KP1006, together with the grpE and dnaJ genes in the same operon. The dnaK, grpE and dnaJ genes showed high identity with those of other bacterial strains, particularly with those of Bacillus stearothermophilus NUB36, despite an extremely low homology for the corresponding total genomic DNA. There were significant differences in the proline content of the DnaK operon proteins which is closely correlated with the thermostability of enzyme proteins. The proline content was higher in the GrpE, DnaK and DnaJ proteins of the thermophilic as opposed to the mesophilic strains. The overexpression of the B. thermoglucosidasius DnaK protein in Escherichia coli MV1184 results in extreme filamentation without inhibition on cell growth. The B. thermoglucosidasius DnaK protein seemed to exclusively disturb septation in E. coli cells which suggests that it interacts with key protein(s) involved in cell septation.  相似文献   

6.
DnaK is essential for starvation-induced resistance to heat, oxidation, and reductive division in Escherichia coli. Studies reported here indicate that DnaK is also required for starvation-induced osmotolerance, catalase activity, and the production of the RpoS-controlled Dps (PexB) protein. Because these dnaK mutant phenotypes closely resemble those of rpoS38) mutants, the relationship between DnaK and RpoS was evaluated directly during growth and starvation at 30°C in strains with genetically altered DnaK content. A starvation-specific effect of DnaK on RpoS abundance was observed. During carbon starvation, DnaK deficiency reduced RpoS levels threefold, while DnaK excess increased RpoS levels nearly twofold. Complementation of the dnaK mutation restored starvation-induced RpoS levels to normal. RpoS deficiency had no effect on the cellular concentration of DnaK, revealing an epistatic relationship between DnaK and RpoS. Protein half-life studies conducted at the onset of starvation indicate that DnaK deficiency significantly destabilized RpoS. RpoH (ς32) suppressors of the dnaK mutant with restored levels of RpoS and dnaK rpoS double mutants were used to show that DnaK plays both an independent and an RpoS-dependent role in starvation-induced thermotolerance. The results suggest that DnaK coordinates sigma factor levels in glucose-starved E. coli.  相似文献   

7.
The Escherichia coli chaperone DnaK is vital for many cellular functions, including ribosome biogenesis at high temperature. Thus, the dnaK756-ts (λ R ) mutant, at the non-permissive temperature, is inhibited at a late stage of ribosome assembly, yielding 21S, 32S and 45S precursor particles. This defect, unlike the λ resistance and thermosensitivity phenotypes, is not complemented by lysogenisation with a transducing phage λ dnaK + bearing the wild-type dnaK gene. However this dominant phenotype becomes recessive when dnaK + is expressed from a medium-copy-number plasmid. On the other hand, an excess of DnaK causes an unexpected dominant-lethal effect of the dnaK756 allele near non-permissive temperatures. This interplay between the dnaK + and dnaK756 alleles supports the idea of that DnaK oligomers form in the cell.  相似文献   

8.
Trigger factor (TF) is a ribosome-bound protein that combines catalysis of peptidyl-prolyl isomerization and chaperone-like activities in Escherichia coli. TF was shown to cooperate with the DnaK (Hsp70) chaperone machinery in the folding of newly synthesized proteins, and the double deletion of the corresponding genes (tig and dnaK) exhibited synthetic lethality. We used a detailed genetic approach to characterize various aspects of this functional cooperation in vivo. Surprisingly, we showed that under specific growth conditions, one can delete both dnaK and tig, indicating that bacterial survival can be maintained in the absence of these two major cytosolic chaperones. The strain lacking both DnaK and TF exhibits a very narrow temperature range of growth and a high level of aggregated proteins when compared to either of the single mutants. We found that, in the absence of DnaK, both the N-terminal ribosome-binding domain and the C-terminal domain of unknown function are essential for TF chaperone activity. In contrast, the central PPIase domain is dispensable. Taken together, our data indicate that under certain conditions, folding of newly synthesized proteins in E. coli is not totally dependent on an interaction with either TF and/or DnaK, and suggest that additional chaperones may be involved in this essential process.  相似文献   

9.
10.
The universally conserved J-domain proteins (JDPs) are obligate cochaperone partners of the Hsp70 (DnaK) chaperone. They stimulate Hsp70''s ATPase activity, facilitate substrate delivery, and confer specific cellular localization to Hsp70. In this work, we have identified and characterized the first functional JDP protein encoded by a bacteriophage. Specifically, we show that the ORFan gene 057w of the T4-related enterobacteriophage RB43 encodes a bona fide JDP protein, named Rki, which specifically interacts with the Escherichia coli host multifunctional DnaK chaperone. However, in sharp contrast with the three known host JDP cochaperones of DnaK encoded by E. coli, Rki does not act as a generic cochaperone in vivo or in vitro. Expression of Rki alone is highly toxic for wild-type E. coli, but toxicity is abolished in the absence of endogenous DnaK or when the conserved J-domain of Rki is mutated. Further in vivo analyses revealed that Rki is expressed early after infection by RB43 and that deletion of the rki gene significantly impairs RB43 proliferation. Furthermore, we show that mutations in the host dnaK gene efficiently suppress the growth phenotype of the RB43 rki deletion mutant, thus indicating that Rki specifically interferes with DnaK cellular function. Finally, we show that the interaction of Rki with the host DnaK chaperone rapidly results in the stabilization of the heat-shock factor σ32, which is normally targeted for degradation by DnaK. The mechanism by which the Rki-dependent stabilization of σ32 facilitates RB43 bacteriophage proliferation is discussed.  相似文献   

11.
Shewanella sp. Ac10 is a psychrotrophic bacterium isolated from the Antarctica that actively grows at such low temperatures as 0°C. Immunoblot analyses showed that a heat-shock protein DnaK is inducibly formed by the bacterium at 24°C, which is much lower than the temperatures causing heat shock in mesophiles such as Escherichia coli. We found that the Shewanella DnaK (SheDnaK) shows much higher ATPase activity at low temperatures than the DnaK of E. coli (EcoDnaK): a characteristic of a cold-active enzyme. The recombinant SheDnaK gene supported neither the growth of a dnaK-null mutant of E. coli at 43°C nor phage propagation at an even lower temperature, 30°C. However, the recombinant SheDnaK gene enabled the E. coli mutant to grow at 15°C. This is the first report of a DnaK supporting the growth of a dnaK-null mutant at low temperatures.  相似文献   

12.
13.
The marine bacterium Vibrio harveyi is a potential indicator organism for evaluating marine environmental pollution. The DnaK–DnaJ–GrpE chaperone machinery of V. harveyi has been studied as a model of response to stress conditions and compared to the Escherichia coli DnaK system. The genes encoding DnaK, DnaJ and GrpE of V. harveyi were cloned into expression vectors and grpE was sequenced. It was found that V. harveyi possesses a unique organization of the hsp gene cluster (grpE–gltP–dnaK–dnaJ), which is present exclusively in marine Vibrio species. In vivo experiments showed that suppression of the E. coli dnaK mutation by V. harveyi DnaK protein was weak or absent, while suppression of the dnaJ and grpE mutations by V. harveyi DnaJ and GrpE proteins was efficient. These results suggest higher species-specificity of the DnaK chaperone than the GrpE and DnaJ cochaperones. Proteins of the DnaK chaperone machinery of V. harveyi were purified to homogeneity and their efficient cooperation with the E. coli chaperones in the luciferase refolding reaction and in stimulation of DnaK ATPase activity was demonstrated. Compared to the E. coli system, the purified DnaK–DnaJ–GrpE system of V. harveyi exhibited about 20% lower chaperoning activity in the luciferase reactivation assay. ATPase activity of V. harveyi DnaK protein was at least twofold higher than that of the E. coli model DnaK but its stimulation by the cochaperones DnaJ and GrpE was significantly (10 times) weaker. These results indicate that, despite their high structural identity (approximately 80%) and similar mechanisms of action, the DnaK chaperones of closely related V. harveyi and E.coli bacteria differ functionally.  相似文献   

14.
Edwardsiella tarda and Streptococcus iniae are important aquaculture pathogens that affect many species of farmed fish. In this study, we analyzed the expression, activity, and immunoprotective potential of E. tarda heat shock protein DnaK. We found that dnaK expression was upregulated under conditions of heat shock, oxidative stress, and infection of host cells. Recombinant DnaK (rDnaK) purified from Escherichia coli exhibited ATPase activity and induced protection in Japanese flounder (Paralichthys olivaceus) against lethal E. tarda challenge. On the basis of these results and our previous observation that a protective S. iniae antigen Sia10 which, when expressed heterogeneously in E. coli DH5α, is secreted into the extracellular milieu, we constructed a chimeric antigen by fusing DnaK to Sia10. The resulting fusion protein Sia10-DnaK was expressed in DH5α via the plasmid pTDK. Western blot analysis indicated that Sia10-DnaK was detected in the culture supernatant of DH5α/pTDK. When flounder were vaccinated with live DH5α/pTDK, strong protection was observed against both E. tarda and S. iniae. ELISA analysis detected specific serum antibody production in fish vaccinated with rDnaK and DH5α/pTDK. Taken together, these results indicate that rDnaK is an intrinsic ATPase with immunoprotective property and that Sia10-DnaK delivered by a live bacterial host is an effective bivalent vaccine candidate against E. tarda and S. iniae infection.  相似文献   

15.
In the intracellular bacterium Brucella suis, the molecular chaperone DnaK was induced under heat-shock conditions and at low pH. Insertional inactivation of dnaK and dnaJ within the dnaK/J locus led to the conclusion that DnaK, but not DnaJ, was required for growth at 37°C in vitro. Viability of the dnaK null mutant was also greatly affected at low pH. Under conditions allowing intracellular multiplication, the infection of U937-derived phagocytes resulted in long-lasting DnaK induction in the wild-type bacteria. In infection experiments performed with both mutants at the reduced temperature of 30°C, the dnaK mutant of B. suis survived but failed to multiply within U937 cells, whereas the wild-type strain and the dnaJ mutant multiplied normally. Complementation of the dnaK mutant with the cloned dnaK gene restored growth at 37°C, increased resistance to acid pH, and increased intracellular multiplication. This is the first report of the effects of dnaK inactivation in a pathogenic species, and of the temperature-independent contribution of DnaK to intracellular multiplication of the pathogen B. suis.  相似文献   

16.
17.
The cultivation of Streptomyces griseus 2247 at the growth-limited temperature (37°C) or in liquid medium containing 5% ethanol (toxic for growth) revealed the presence of heat-induced proteins in the total cellular proteins. Among them, a 70 kDal protein was isolated and its N-terminal amino acid sequence was determined. The 70 kDal protein possessed a possible ATP-binding site in the N-terminus, which was conserved among the HSP70 family. A DNA fragment encoding the HSP70 homologue was isolated from a genomic library of S. griseus 2247 strain using an oligonucleotide probe based on the N-terminal amino acid sequence of the 70 kDal protein. DNA sequence analysis of the cloned gene revealed an open reading frame consisting of 618 amino acid residues. The deduced amino acid sequence is highly homologous to the HSP70 family proteins; it is 59.8 % identical to Clostridium perfringens HSP70, 59.7% to the Bacillus megaterium DnaK protein, 58.4% to the Methanosarcina mazei DnaK protein, 58.1% to Synechocystis HSP70, 52.8% to the DnaK protein of Escherichia coli, and about 50% to some of the mitochondrial heat shock proteins. The cloned gene could encode the HSP70 of S. griseus.  相似文献   

18.
The Escherichia coli chaperone DnaK is vital for many cellular functions, including ribosome biogenesis at high temperature. Thus, the dnaK756-ts (λ R ) mutant, at the non-permissive temperature, is inhibited at a late stage of ribosome assembly, yielding 21S, 32S and 45S precursor particles. This defect, unlike the λ resistance and thermosensitivity phenotypes, is not complemented by lysogenisation with a transducing phage λ dnaK + bearing the wild-type dnaK gene. However this dominant phenotype becomes recessive when dnaK + is expressed from a medium-copy-number plasmid. On the other hand, an excess of DnaK causes an unexpected dominant-lethal effect of the dnaK756 allele near non-permissive temperatures. This interplay between the dnaK + and dnaK756 alleles supports the idea of that DnaK oligomers form in the cell. Received: 28 April 1998 / Accepted: 24 July 1998  相似文献   

19.
DnaK chaperones participate in essential cellular processes including the assistance of the folding, structural maintenance, trafficking, and degradation of proteins, the control of stress responses, and so on. In contrast to the situation found in most other bacterial groups, the cyanobacteria contain multiple dnaK homolog genes whose cellular roles remain ambiguous. We compared in this work the in vivo chaperone capabilities of the DnaK1 members from the halophyte Aphanothece halophytica and the freshwater species Synechococcus elongatus. The corresponding dnaK1 genes were expressed in Escherichia coli, and the abilities of the encoded chaperones to provide for both general and specific functions conducted by E. coli DnaK were analyzed. Synechococcus DnaK1 was far more effective than A. halophytica DnaK1 in replacing E. coli DnaK in all activities tested in vivo, including changes in cell morphology and downregulation of the heat shock response, prevention of the aggregation of misfolded proteins, and restoration of thermotolerance to dnaK-deficient mutants. Thus, regardless of an extensive sequence similarity and comparable in vitro chaperone capabilities, the two cyanobacterial DnaK1 chaperones functionally differed under in vivo conditions. The overall results reinforce the notion that A. halophytica DnaK1 and Synechococcus DnaK1 evolved different substrate specificity since they separated from a common ancestor.  相似文献   

20.
The Hsp60 and Hsp70 chaperones contain a number of conserved inserts that are restricted to particular phyla of bacteria. A one aa insert in the E. coli GroEL and a 21–23 insert in the DnaK proteins are specific for most Gram-negative bacteria. Two other inserts in DnaK are limited to certain groups of proteobacteria. The requirement of these inserts for cellular growth was examined by carrying out complementation studies with temperature-sensitive (T s) mutants of E. coli groEL or dnaK. Our results demonstrate that deletion or most changes in these inserts completely abolished the complementation ability of the mutant proteins. Studies with GroEL and DnaK from some other species that either lacked or contained these inserts also indicated that these inserts are essential for growth of E. coli. The DnaK from some bacteria contains a two aa insert that is not found in E. coli. Introduction of this insert into the E. coli DnaK also led to its inactivation, indicating that these inserts are specific for different groups. We postulate that these conserved inserts that are localized in loop regions on protein surfaces, are involved in some ancillary functions that are essential for the groups of bacteria where they are found. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号