首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Phenotypic plasticity in defensive traits is a common response of prey organisms to variable and unpredictable predation regimes and risks. Cladocerans of the genus Daphnia are keystone species in the food web of lentic freshwater bodies and are well known for their ability to express a large variety of inducible morphological defenses in response to invertebrate and vertebrate predator kairomones. The developed defenses render the daphnids less susceptible to predation. So far, primarily large‐scale morphological defenses, like helmets, crests, and tail‐spines, have been documented. However, less is known on whether the tiny spinules, rather inconspicuous traits which cover many Daphnia’s dorsal and ventral carapace margins, respond to predator kairomones, as well. For this reason, we investigated two Daphnia species (Dmagna and D. longicephala) concerning their predator kairomone‐induced changes in dorsal and ventral spinules. Since these small, inconspicuous traits may only act as a defense against predatory invertebrates, with fine‐structured catching apparatuses, and not against vertebrate predators, we exposed them to both, an invertebrate (Triops cancriformis or Notontecta maculata) and a vertebrate predator (Leucaspius delineatus). Our results show that the length of these spinules as well as spinules‐covered areas vary, likely depending on the predator the prey is exposed to. We further present first indications of a Daphnia species‐specific elongation of the spinules and an increase of the spinules‐bearing areas. Although we cannot exclude that spinescence is altered because it is developmentally connected to changes in body shape in general, our results suggest that the inducible alterations to the spinule length and spinules‐covered areas disclose another level of predator‐induced changes in two common Daphnia species. The predator‐induced changes on this level together with the large‐scale and ultrastructural defensive traits may act as the overall morphological defense, adjusted to specific predator regimes in nature.  相似文献   

3.
Non‐technical summaries of research projects allow tracking the numbers and purpose of animal experiments related to SARS‐CoV2 research so as to provide greater transparency on animal use. Subject Categories: Economics, Law & Politics, Pharmacology & Drug Discovery, Science Policy & Publishing

The COVID‐19 pandemic has accelerated biomedical research and drug development to an unprecedented pace. Governments worldwide released emergency funding for biomedical research that allowed scientists to focus on COVID‐19 and related drug and vaccine development. As a result, a flood of scientific articles on SARS‐CoV‐2 and COVID‐19 was published since early 2020. More importantly though, within less than 2 years, scientists in academia and industry developed vaccines against the virus from scratch: Several vaccines have now received regulatory approval and are being mass produced to immunize the human population worldwide.This colossal success of science rests in large part on the shoulders of animals that were used in basic and pre‐clinical research and regulatory testing. Notwithstanding, animal experimentation has remained a highly controversial and heated topic between advocates for research and animal rights activists. During the past decades, European policymakers responded to the debate by enacting stricter regulations, which inevitably has increased the bureaucratic hurdles for experimentation on animals. Scientists have for long spoken out against this additional burden, arguing that both basic and translational researches to improve human health crucially relies on animal experimentation—as the COVID‐19 pandemic aptly demonstrated (Genzel et al, 2020).  相似文献   

4.
5.
The updating and rethinking of vegetation classifications is important for ecosystem monitoring in a rapidly changing world, where the distribution of vegetation is changing. The general assumption that discrete and persistent plant communities exist that can be monitored efficiently, is rarely tested before undertaking a classification. Marion Island (MI) is comprised of species‐poor vegetation undergoing rapid environmental change. It presents a unique opportunity to test the ability to discretely classify species‐poor vegetation with recently developed objective classification techniques and relate it to previous classifications. We classified vascular species data of 476 plots sampled across MI, using Ward hierarchical clustering, divisive analysis clustering, non‐hierarchical kmeans and partitioning around medoids. Internal cluster validation was performed using silhouette widths, Dunn index, connectivity of clusters and gap statistic. Indicator species analyses were also conducted on the best performing clustering methods. We evaluated the outputs against previously classified units. Ward clustering performed the best, with the highest average silhouette width and Dunn index, as well as the lowest connectivity. The number of clusters differed amongst the clustering methods, but most validation measures, including for Ward clustering, indicated that two and three clusters are the best fit for the data. However, all classification methods produced weakly separated, highly connected clusters with low compactness and low fidelity and specificity to clusters. There was no particularly robust and effective classification outcome that could group plots into previously suggested vegetation units based on species composition alone. The relatively recent age (c. 450,000 years B.P.), glaciation history (last glacial maximum 34,500 years B.P.) and isolation of the sub‐Antarctic islands may have hindered the development of strong vascular plant species assemblages with discrete boundaries. Discrete classification at the community‐level using species composition may not be suitable in such species‐poor environments. Species‐level, rather than community‐level, monitoring may thus be more appropriate in species‐poor environments, aligning with continuum theory rather than community theory.  相似文献   

6.
The study of animal–habitat interactions is of primary importance for the formulation of conservation recommendations. Flying, gliding, and climbing animals have the ability to exploit their habitat in a three‐dimensional way, and the vertical canopy structure in forests plays an essential role for habitat suitability. Forest bats as flying mammals may seasonally shift their microhabitat use due to differing energy demands or changing prey availability, but the patterns are not well understood. We investigated three‐dimensional and seasonal habitat use by insectivorous bats in a temperate lowland old‐growth forest, the Belovezhskaya Pushcha in Belarus. We acoustically sampled broadleaved and mixed coniferous plots in the forest interior and in gaps in three heights during two reproductive periods (pregnancy/lactation vs. postlactation). In canopy gaps, vertical stratification in bat activity was less pronounced than in the forest interior. Vertical activity patterns differed among species. The upper canopy levels were important foraging habitats for the open‐space forager guild and for some edge‐space foragers like the Barbastelle bat Barbastella barbastellus and the soprano pipistrelle Pipistrellus pygmaeus. Myotis species had highest activity levels near the ground in forest gaps. Moreover, we found species‐dependent seasonal microhabitat shifts. Generally, all species and species groups considered except Myotis species showed higher activity levels during postlactation. Myotis species tended toward higher activity in the forest interior during postlactation. Ppygmaeus switched from high activity levels in the upper canopy during pregnancy and lactation to high activity levels near the ground during postlactation. We conclude that a full comprehension of forest bat habitat use is only possible when height in canopy and seasonal patterns are considered.  相似文献   

7.
Annual plants in unpredictable environments maintain dormant seeds to avoid extinction. Here, we present results for four desert annual species suggesting that germination rates are variable even in the absence of abiotic cues. Namely, seeds produced in a copious year had lower germination rates than seeds produced in drought years. Inspired by our data, we have extended previous bet-hedging models by including a structured seed bank. With density-dependence, the ESS (environmental stable strategy) involved a negative relationship between seed yield and subsequent germination probability. We suggest that heterogeneous germination rates are selected for by competition among seedlings after years with high seed production. In summary, our findings are suggestive of an intriguingly simple and effective mechanism that may allow annual plants to partly predict their future success.  相似文献   

8.
Intestinal epithelial cells (IECs) serve as both a physical and an antimicrobial barrier against the microbiota, as well as a conduit for signaling between the microbiota and systemic host immunity. As individuals age, the balance between these systems undergoes a myriad of changes due to age‐associated changes to the microbiota, IECs themselves, immunosenescence, and inflammaging. In this review, we discuss emerging data related to age‐associated loss of intestinal barrier integrity and posit that IEC dysfunction may play a central role in propagating age‐associated alterations in microbiota composition and immune homeostasis.  相似文献   

9.
Climate change can not only increase the exposure of organisms to higher temperatures but can also drive phenological shifts that alter their susceptibility to conditions at the onset of breeding cycles. Organisms rely on climatic cues to time annual life cycle events, but the extent to which climate change has altered cue reliability remains unclear. Here, we examined the risk of a “climate trap”—a climatically driven desynchronization of the cues that determine life cycle events and fitness later in the season in a temperate reptile, the European adder (Vipera berus). During the winter, adders hibernate underground, buffered against subzero temperatures, and re‐emerge in the spring to reproduce. We derived annual spring‐emergence trends between 1983 and 2017 from historical observations in Cornwall, UK, and related these trends to the microclimatic conditions that adders experienced. Using a mechanistic microclimate model, we computed below‐ and near‐ground temperatures to derive accumulated degree‐hour and absolute temperature thresholds that predicted annual spring‐emergence timing. Trends in annual‐emergence timing and subsequent exposure to ground frost were then quantified. We found that adders have advanced their phenology toward earlier emergence. Earlier emergence was associated with increased exposure to ground frost and, contradicting the expected effects of macroclimate warming, increased post‐emergence exposure to ground frost at some locations. The susceptibility of adders to this “climate trap” was related to the rate at which frost risk diminishes relative to advancement in phenology, which depends on the seasonality of climate. We emphasize the need to consider exposure to changing microclimatic conditions when forecasting biological impacts of climate change.  相似文献   

10.
Loss of proteostasis can occur due to mutations, the formation of aggregates, or general deficiency in the correct translation and folding of proteins. These phenomena are commonly observed in pathologies, but most significantly, loss of proteostasis characterizes aging. This loss leads to the chronic activation of stress responses and has a generally deleterious impact on the organism. While finding molecules that can alleviate these symptoms is an important step toward solutions for these conditions, some molecules might be mischaracterized on the way. 4‐phenylbutyric acid (4PBA) is known for its role as a chemical chaperone that helps alleviate endoplasmic reticulum (ER) stress, yet a scan of the literature reveals that no biochemical or molecular experiments have shown any protein refolding capacity. Here, we show that 4PBA is a conserved weak inhibitor of mRNA translation, both in vitro and in cellular systems, and furthermore—it does not promote protein folding nor prevents aggregation. 4PBA possibly alleviates proteostatic or ER stress by inhibiting protein synthesis, allowing the cells to cope with misfolded proteins by reducing the protein load. Better understanding of 4PBA biochemical mechanisms will improve its usage in basic science and as a drug in different pathologies, also opening new venues for the treatment of different diseases.  相似文献   

11.
In chronic peripheral inflammation, endothelia in brain capillary beds could play a role for the apolipoprotein E4 (ApoE4)‐mediated risk for Alzheimer''s disease (AD) risk. Using human brain tissues, here we demonstrate that the interactions of endothelial CD31 with monomeric C‐reactive protein (mCRP) versus ApoE were linked with shortened neurovasculature for AD pathology and cognition. Using ApoE knock‐in mice, we discovered that intraperitoneal injection of mCRP, via binding to CD31 on endothelial surface and increased CD31 phosphorylation (pCD31), leading to cerebrovascular damage and the extravasation of T lymphocytes into the ApoE4 brain. While mCRP was bound to endothelial CD31 in a dose‐ and time‐dependent manner, knockdown of CD31 significantly decreased mCRP binding and altered the expressions of vascular‐inflammatory factors including vWF, NF‐κB and p‐eNOS. RNAseq revealed endothelial pathways related to oxidative phosphorylation and AD pathogenesis were enhanced, but endothelial pathways involving in epigenetics and vasculogenesis were inhibited in ApoE4. This is the first report providing some evidence on the ApoE4‐mCRP‐CD31 pathway for the cross talk between peripheral inflammation and cerebrovasculature leading to AD risk.  相似文献   

12.
Most calmodulin (CaM) targets are α‐helices. It is not clear if CaM induces the adoption of an α‐helix configuration to its targets or if those targets are selected as they spontaneously adopt an α‐helical conformation. Other than an α‐helix propensity, there is a great variety of CaM targets with little more in common. One exception to this rule is the IQ site that can be recognized in a number of targets, such as those ion channels belonging to the KCNQ family. Although there is negligible sequence similarity between the IQ motif and the docking site on SK2 channels, both adopt a similar three‐dimensional disposition. The isolated SK2 target presents a pre‐folded core region that becomes fully α‐helical upon binding to CaM. The existence of this pre‐folded state suggests the occurrence of capping within CaM targets. In this review, we examine the capping properties within the residues flanking this core domain, and relate known IQ motifs and capping.  相似文献   

13.
14.
Abstract Most deceit‐pollinated species involve floral dimorphisms characterized by the presence of rewarding male flowers and nonrewarding female flowers. It has been proposed that this polymorphism establishes the conditions for the action of frequency dependent selection (FDS). The tendency of foraging animals to aggregate in areas of high resource density suggests that pollination efficiency and fruit production may be positively influenced by flower density (density dependent selection, DDS). In this paper we offer a graphical model describing the effects of FDS and DDS on a monoecious species pollinated by deceit. We test the FDS and DDS assumptions and the predictions of the model using field observations and experimental populations of Begonia gracilis in which population sex ratio and flower density were controlled. We found a marked effect of both FDS and DDS on pollinator visitation, fruit‐set, and on the probability of female flowers to setting fruits. We conclude that these two types of selection have had a strong influence on the evolution of deceit‐pollinated species.  相似文献   

15.
Matrotrophy, the provisioning of embryos between fertilization and birth, creates the potential for conflict between mothers and embryos over the level of maternal investment. This conflict is predicted to drive the evolution of reproductive isolation between populations with different mating systems. In this study, we examine whether density‐driven mating system differences explain the patterns of asymmetric reproductive isolation observed in previous studies involving four populations of the matrotrophic least killifish, Heterandria formosa. Minimum sire number reconstructions suggested that two populations characterized by low densities had lower levels of concurrent multiple paternity than two populations characterized by high densities. However, low levels of genetic variation in the low‐density populations greatly reduced our probability of detecting multiple mating in them. Once we took the lower level of genetic variation into account in our estimations, high levels of multiple paternity appeared the rule in all four populations. In the population where we had the greatest power of detecting multiple mating, we found that multiple paternity in H. formosa typically involves multiple sires contributing to offspring within the same brood instead of different fathers contributing to distinct, simultaneously provisioned broods. Paternity was often skewed towards one sire. Our results suggest that differences between H. formosa populations in the levels of multiple paternity are not sufficient to explain the reproductive isolation seen in previous studies. We suggest that other influences on maternal–foetal conflict may contribute to the pattern of reproductive isolation observed previously. Alternatively, the asymmetric reproductive isolation seen in previous studies might reflect the disruption of maternal–foetal coadaptation.  相似文献   

16.
17.
The use of animals in neuroscience and biomedical research remains controversial. Policy is built around the “3R” principle of “Refining, Reducing and Replacing” animal experiments, and across the globe, different initiatives stimulate the use of animal‐free methods. Based on an extensive literature screen to map the development and adoption of animal‐free methods in Alzheimer''s and Parkinson''s disease research, we find that at least two in three examined studies rely on animals or on animal‐derived models. Among the animal‐free studies, the relative contribution of innovative models that may replace animal experiments is limited. We argue that the distinction between animal research and alternative models presents a false dichotomy, as the role and scientific value of both animal and animal‐free approaches are intertwined. Calls to halt all animal experiments appear premature, as insufficient non‐animal‐based alternatives are available and their development lags behind. In light of this, we highlight the need for objective, unprejudiced monitoring, and more robust performance indicators of animal‐free approaches.  相似文献   

18.
Spatial pattern of tropical plants is initially generated by limited seed dispersal, but the role of density‐dependent and independent mechanisms as modifiers of these patterns across ontogeny is poorly understood. We investigated whether density‐dependent mortality (DDM) and environmental heterogeneity can drive spatial pattern across the ontogeny of a tree in a seasonally dry tropical climate. We used Moran's I correlograms and spatial analysis by distance indices (SADIE) to assess the spatial patterns of the pre‐ and post‐germinative stages of Cordia oncocalyx (Boraginaceae), an abundant tree endemic in the deciduous thorny woodland in the northeastern Brazilian semiarid region. We also used RDA to analyse the effect of DDM and environmental heterogeneity (measured by microtopography and canopy openness) in the mortality and recruitment. Seeds, seedlings, juveniles and adults showed aggregated spatial patterns; infants and immatures were randomly distributed; adults, seeds and seedlings attracted each other while adult, juveniles and immatures repulsed each other. Infant and seedling mortality rates were related to DDM and the recruitment from infant to juvenile was more influenced by spatial heterogeneity. Attraction was determined by local dispersal; repulsion was related to DDM and environment heterogeneity, which allowed the return to aggregation in adult stage. Together, these results indicated that spatial pattern can change across ontogeny, in which the initial stages are responsive to DDM and the final stages are influenced by spatial heterogeneity.  相似文献   

19.
Bees rely on floral pollen and nectar for food. Therefore, pollinator friendly plantings are often used to enrich habitats in bee conservation efforts. As part of these plantings, non‐native plants may provide valuable floral resources, but their effects on native bee communities have not been assessed in direct comparison with native pollinator friendly plantings. In this study, we performed a common garden experiment by seeding mixes of 20 native and 20 non‐native pollinator friendly plant species at separate neighboring plots at three sites in Maryland, USA, and recorded flower visitors for 2 years. A total of 3,744 bees (120 species) were collected. Bee abundance and species richness were either similar across plant types (midseason and for abundance also late season) or lower at native than at non‐native plots (early season and for richness also late season). The overall bee community composition differed significantly between native and non‐native plots, with 11 and 23 bee species being found exclusively at one plot type or the other, respectively. Additionally, some species were more abundant at native plant plots, while others were more abundant at non‐natives. Native plants hosted more specialized plant–bee visitation networks than non‐native plants. Three species out of the five most abundant bee species were more specialized when foraging on native plants than on non‐native plants. Overall, visitation networks were more specialized in the early season than in late seasons. Our findings suggest that non‐native plants can benefit native pollinators, but may alter foraging patterns, bee community assemblage, and bee–plant network structures.  相似文献   

20.
Investigating the range and population dynamics of introduced species provides insight into species behavior, habitat preferences, and potential of becoming established. Here, we show the current population status of the red‐necked wallaby (Notamacropus rufogriseus) in Britain based on records from an eleven‐year period (2008–2018). Records were obtained from Local Environmental Records Centres (LERCs), the National Biodiversity Network (NBN), and popular media. All records were mapped and compared to a historical distribution map (1940–2007), derived from published data. A total of 95 confirmed wallaby sightings were recorded between 2008 and 2018, of which 64 came from media sources, 18 from Local Environmental Records Centres (LERCs), seven from the National Biodiversity Network (NBN), and six from the published literature (Yalden, Br. Wildl., 24, 2013, 169). The greatest density of wallaby sightings was in southern England, with the Chiltern Hills Area of Outstanding Natural Beauty a particular hot spot (n = 11). More sightings were recorded in August than in any other month. Much of the species’ ecology and responses to British biota and anthropogenic pressures are unknown, and therefore, further research is warranted. The methods used here are widely applicable to other non‐native species, particularly those that the public are more likely to report and could be an important supplement to existing studies of conservation and management relevance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号