首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent global environmental changes such as an increase in sea surface temperature (SST) are likely to impact primary productivity of phytoplankton in the Southern Ocean. However, models to estimate net primary production using satellite data use SST and uncertain estimation of chlorophyll a (chl-a) concentration. A primary productivity model for satellite ocean color data from the Southern Ocean, which is based on the light absorption coefficient of phytoplankton to reduce uncertainties of sea surface chl-a estimations and bias in optimal values of chl-a normalized productivity derived from SST, has been developed. The new model was able to estimate net primary productivity in the water column (PP eu) without dependency on temperature when in the range of −2 to 25°C, and it explained 51% of the observed variability in PP eu with a root mean square error (RMSE) of 0.15. Application of the model revealed that the SST dependent model has overestimated PP eu in warmer waters around the Subtropical Front, and underestimated PP eu in colder waters poleward of the Sub-Antarctic Front. This absorption-based primary productivity model contributes to a study of the relationship among spatio-temporal variations in the physical environment, and biogeochemical cycles in the Southern Ocean.  相似文献   

2.
Between 1951 and 1979, total phosphorous concentrations in Lake Constance increased from 7 to 87 μg L?1. Following wastewater treatment, phosphorus levels were brought under control, returning to 7.6 μg L?1 by spring 2007. The biological and chemical data from 1980 to 2004 were first modelled by seasonal time series analyses and then used to create a general model. Excluding collinear variables allowed the data set to be condensed to six variables that could be fitted into a general linear model that explained ~75% of the observed annual variation in chlorophyll a. A clear seasonal influence was apparent, with chlorophyll a tracking trends in temperature and the progress of spring. A nonseasonal influence was also observed in the interaction of two biological components, the proportion of phytoplankton biomass available to Daphnia (i.e. the percentage of ingestible size <30 μm) and the grazing intensity. In combination, these biotic variables had a negative impact on chlorophyll a levels. In contrast, the concentration of soluble reactive phosphorus (SRP) correlated positively with chlorophyll a. The effect of SRP showed a significant seasonal component, as it was more abundant in spring than at other times of year. In general, the model predicts a negative exponential response of chlorophyll a to further depletion of SRP in Lake Constance, while the temperature trends predicted by current global warming scenarios will result in a moderate increase in productivity. Data from 2005 to 2007 were used to verify the model. The modelled chlorophyll a values were nonbiased and showed a close match to the measured values (r2: 75%). Thus the applicability, reliability, and informative value of the model for pelagic Lake Constance was confirmed. The approach might easily be applied to other waters.  相似文献   

3.
Primary productivity, community respiration, chlorophyll a concentration, phytoplankton species composition, and environmental factors were compared in the Yolo Bypass floodplain and adjacent Sacramento River in order to determine if passage of Sacramento River through floodplain habitat enhanced the quantity and quality of phytoplankton carbon available to the aquatic food web and how primary productivity and phytoplankton species composition in these habitats were affected by environmental conditions during the flood season. Greater net primary productivity of Sacramento River water in the floodplain than the main river channel was associated with more frequent autotrophy and a higher P:R ratio, chlorophyll a concentration, and phytoplankton growth efficiency (αB). Total irradiance and water temperature in the euphotic zone were positively correlated with net primary productivity in winter and early spring but negatively correlated with net primary productivity in the late spring and early summer in the floodplain. In contrast, net primary productivity was correlated with chlorophyll a concentration and streamflow in the Sacramento River. The flood pulse cycle was important for floodplain production because it facilitated the accumulation of chlorophyll a and wide diameter diatom and green algal cells during the drain phase. High chlorophyll a concentration and diatom and green algal biomass enabled the floodplain to export 14–37% of the combined floodplain plus river load of total, diatom and green algal biomass and wide diameter cells to the estuary downstream, even though it had only 3% of the river streamflow. The study suggested the quantity and quality of riverine phytoplankton biomass available to the aquatic food web could be enhanced by passing river water through a floodplain during the flood season.  相似文献   

4.
Relationships between ash-free dry weight, viable chlorophyll a and pheopigments a were examined by linear regression analysis for non-gemmulating and gemmulated Spongilla lacustris and for an unidentified, non-gemmulating species. The primary productivity of S. lacustris was determined by both oxygen and 14C techniques and expressed on a biomass, chlorophyll a, and area basis, and the photosynthetic efficiency was calculated. The proportion of algal photosynthate excreted by the sponge was investigated, and the transfer of algal photosynthate to the sponge was examined by autoradiography.  相似文献   

5.
1. Lough Neagh is a large eutrophic lake covering 387 km2 with a mean depth of 8.9 m. It is an important natural resource, being the largest single source of potable water for Belfast, Northern Ireland. 2. This report examines the causes of the year-to-year variation in the April–June (spring) algal biomass, measured as chlorophyll a, for the period 1974–92. 3. The spring chlorophyll a declined following the introduction of a phosphorus (P) reduction programme at major sewage treatment works in 1981. However, since 1990 the chlorophyll a concentrations in the spring have increased. 4. Time series methodology was employed to develop a model which explained 76% of the annual variation in spring chlorophyll a concentrations. 5. The independent variables used in the multiple regression model were the previous year’s spring chlorophyll a concentration, soluble reactive P inputs for April–June and the particulate P concentration in the Lough during the previous summer.  相似文献   

6.
High-frequency measurements are increasingly available and used to model ecosystem processes. This growing capability provides the opportunity to resolve key drivers of ecosystem processes at a variety of scales. We use a unique series of high-frequency measures of potential predictors to analyze daily variation in rates of gross primary production (GPP), respiration (R), and net ecosystem production (NEP = GPP − R) for two north temperate lakes. Wind speed, temperature, light, precipitation, mixed layer depth, water column stability, chlorophyll a, chromophoric dissolved organic matter (CDOM), and zooplankton biomass were measured at daily or higher-frequency intervals over two summer seasons. We hypothesized that light, chlorophyll a, and zooplankton biomass would be strongly related to variability in GPP. We also hypothesized that chlorophyll a, CDOM, and temperature would be most strongly related to variability in R, whereas NEP would be related to variation in chlorophyll a and CDOM. Consistent with our hypotheses, chlorophyll a was among the most important drivers of GPP, R, and NEP in these systems. However, multiple regression models did not necessarily include the other variables we hypothesized as most important. Despite the large number of potential predictor variables, substantial variance remained unexplained and models were inconsistent between years and between lakes. Drivers of GPP, R, and NEP were difficult to resolve at daily time scales where strong seasonal dynamics were absent. More complex models with greater integration of physical processes are needed to better identify the underlying drivers of short-term variability of ecosystem processes in lakes and other systems.  相似文献   

7.
SUMMARY. 1. Phytoplankton density (organisms ml?1), standing crop (chlorophyll a mg m?2) and primary productivity (mg C m?2 d?1) were measured during years 2 (1976) to 5 (1979) after impoundment on West Point Lake. 2. West Point waters had low alkalinity (<0.4 meq 1–1) and low conductivity (<75 μs cm?1 at 20°C) but N and P concentrations typically exceeded those considered apt to cause nuisance blooms of algae. Abiogenic turbidity was normally higher in the upstream areas of the reservoir than in the downstream areas and was several times higher in winter-spring than in summer-autumn due to increased rains and runoff. 3. Primary productivity varied greatly both temporally and spatially. A mean value of 684 mg C m?2 d?1 was well within the mesotrophic range and did not approach the highly eutrophic state predicted. Productivity increased from a low of 550 mg C m?2 d?1 in 1976 to high of 763 mg Cm?2d?1 in 1979. 4. Observed variation in both chlorophyll a and primary productivity was more predictable in the cool (December-March) than in the warm (June-September) season and with plant nutrient data than without it. With plant nutrient data in the cool season 84% and 86% of the variation (R2) in chlorophyll a and productivity, respectively, were accounted for by the regression equations. During the warm season, with plant nutrient data, regression equations accounted for 44% and 68% of the variation in chlorophyll a and productivity, respectively. Higher R2 values in cool seasons resulted from the overriding influence of abiogenic turbidity on phytoplankton communities.  相似文献   

8.
The photosynthetic activity of phytoplankton in hypersaline Mono Lake, California was measured over the three year period, 1983–1985. The maximum chlorophyll-specific rate of carbon uptake (Pm B) and the light-limited slope (alpha) were derived from laboratory measurements of photosynthesis vs. irradiance (P-I) relationships. Annual estimates of primary production were 340–540 g C m-2 yr-1. Production was two to three times higher during the spring of 1983 than in the springs of 1984 and 1985; higher standing biomass of algae occurred in 1983. While Pm B rates followed water temperatures and varied over 40-fold over the year, integral primary production varied less since periods of high Pm B occurred when algal biomass was low. Sixty-eight percent of the seasonal variation in the Pm B was explained by a regression on temperature (53%), chlorophyll a (12%), and the carbon:chlorophyll a ratio (3%). Light-saturated and light-limited rates of photosynthesis generally covaried, evidenced by the strong seasonal correlation between Pm B and alpha. Sixty-one percent of variation in alpha was explained by a regression on Pm B, temperature, grazing, water column stability, and self-shading. There was no correlation of carbon uptake with ambient levels of inorganic nitrogen. The regression coefficient of the dependence of Pm B on the seasonal temperature trend was much larger than that determined from individual samples incubated at several different temperatures; this indicates that uptake is limited by more than low temperatures in the spring. Regression equations including only temperature, chlorophyll and depth were sufficient to estimate patterns of seasonal and year to year variation in integral primary productivity.  相似文献   

9.
楚科奇海及其海台区粒度分级叶绿素a与初级生产力   总被引:1,自引:0,他引:1  
刘子琳  陈建芳  张涛  陈忠元  张海生 《生态学报》2007,27(12):4953-4962
2003年夏季中国第二次北极科学考察期间,在楚科奇海及其海台区进行了叶绿素a浓度与初级生产力的现场观测。结果表明,观测海区叶绿素a浓度范围为0.009~30.390μg/dm3。表层浓度为0.050~4.644μg/dm3,平均值为(0.875±0.981)μg/dm3;陆架区次表层和底层的浓度高于表层,海台区深层水的浓度较低,200m层的浓度为(0.015±0.007)μg/dm3。水柱平均叶绿素a浓度区域性特征明显,陆架区高于海台区。R断面进行3趟重复观测,平均叶绿素a浓度分别为(2.564±1.496)μg/dm3,(1.329±0.882)μg/dm3和(0.965±0.623)μg/dm3,浓度呈下降趋势。观测站潜在初级生产力为0.263~4.186mgC/(m.3h),陆架区平均潜在初级生产力((2.305±1.493)mgC/(m.3h))比海台区((0.527±0.374)mgC/(m.3h))高近4倍。平均同化数为(1.22±1.14)mgC/(mgChla.h)。观测区细胞粒径>20μm的小型浮游生物对总叶绿素a浓度和初级生产力的贡献率分别为63.13%和65.16%,细胞粒径2.0~20μm的微型浮游生物和细胞粒径<2.0μm的微微型浮游生物对总叶绿素a和初级生产力的贡献率相差甚小,其对总叶绿素a浓度的贡献率分别为19.18%和17.69%,对总初级生产力的贡献率分别为20.11%和14.73%。  相似文献   

10.
The standing crop and primary productivity of a small eutrophic, prairie-parkland lake were measured. In general, both standing crops and primary productivity were large, 29.4 and 73.09 mg chlorophyll a m−3 and m−2 and 78.71 and 196.77 mg C hr −1m−3 and m−2 respectively. Productivity decreased with increasing depth, therefore, decreasing light intensity. Relations between productivity and chlorophyll a content, productivity and light intensity, phytoplankton productivity efficiency and light intensity, productivity and water temperature were investigated, as was the photosynthetic index. Experiments designed to determine the photosynthetic capacity of the phytoplankton distinguished between actively growing and senescent populations. The latter were present during the winter ice cover.  相似文献   

11.
Ostracods are important members of the benthos and littoral communities of lake ecosystems. Ostracods respond to hydrochemistry (water chemistry) which is influenced by climatic factors such as water balance, temperature, and chemicals in rainfall runoff from the land. Thus, at local scales, environmental preferences of ostracods and characteristics of lakes are used to infer changes in climate, hydrology, and erosion of lake catchments. This study addresses potential drivers of ostracod community structure and biodiversity at multiple spatial scales using NMS, CART?, and multiple regression models. We identified 23 ostracod species from 12 lake sites. Lake area, maximum depth, spring conductivity, chlorophyll a, pH, dissolved oxygen, sedimentary carbonate, and organic matter all influence ostracod community structure based on our NMS. Based on regression analysis, lake depth, chlorophyll a, and total dissolved solids best explained ostracod richness and abundance. Land uses are also important community structuring elements that varied with scale; locally and regionally agriculture, wetlands, and grasslands were important. Nationally, using regression tree analysis of lakes sites in the North American Non-marine ostracod database (NANODe), row-crop agriculture was the most important predictor of biodiversity. Low agriculture corresponded to low species richness but greater landscape heterogeneity produced sites of high ostracod richness.  相似文献   

12.
The hypothesis that nitrate versus phosphate regulates the coastal primary production has been assessed at different time scales in the northwest Alboran Sea. Time series of temperature, salinity, nutrients and chlorophyll a obtained at three stations located off Málaga city (the greatest coastal urban core along the Alboran Sea shoreline) from 1992 to 2006 have been analysed. At the decadal scale, temperature increased linearly while salinity decreased. These changes were related to a shift in the wind regime suggesting that coastal upwelling became steadily weaker. In contrast to phosphate, nitrate was positively correlated with salinity at the seasonal scale and decreased linearly from 1992 to 2006. Seasonal and decadal changes in chlorophyll a were correlated with nitrate (and uncorrelated with phosphate). However, non-regular variability in chlorophyll a was correlated with phosphate. Consequently, the results demonstrate that nitrate controls the phytoplankton biomass at the inter-annual scale while both nitrate and phosphate do so at a shorter time scale. The Bay of Málaga receives elevated entries of domestic waste waters that release high loads of phosphate compared to nitrate. Our analysis indicates that the expected impact of this pollution on chlorophyll a at the inter-annual scale is reduced in comparison with the effects of atmospheric forcing.  相似文献   

13.
The chlorophyll a concentration and water level of the Black Volta near the Bui dam were studied in relation to fish production as measured by catch per unit effort (CPUE) between February 2011 and December 2012. The primary objective was to develop a simple linear regression model for predicting CPUE levels. The mean estimated CPUE for 2011 and 2012 was lower (6.23 kg canoe?1 day?1) in the postwet season than in the dry season (10.86 kg canoe?1 day?1) with a mean of 7.95 kg canoe?1 day?1. Hence, the dry season was the most important season for fish catches in the study area. Predictor variables that significantly explained CPUE levels were chlorophyll a (positive correlation) and water level (negative correlation) (= 0.0002). The model was validated with independent data from the same Black Volta in 2011 and 2012. This model, CPUE = (0.062 × chlorophyll a) ? (0.456 × water level) + 3.363, explained 91% CPUE variability. Independent validation indicated that the model had the potential to predict CPUE (as a measure of fish production) in the Black Volta near the Bui dam. Hence, the model is also a valuable tool to predict future trends in the CPUE levels of the Black Volta.  相似文献   

14.
We evaluate the influence of abiotic and biotic factors on the community structure of rotifers across a regional hydrological cycle in lotic and lentic environments of the upper River Paraná. Depth, transparency, temperature, pH, electrical conductivity, dissolved oxygen, chlorophyll a and densities of rotifers were measured at two stations in Lake Guaraná (littoral and open water regions) and at one station in the River Baía (open water region). Highest densities of rotifers were found at the lake littoral. Canonical correlation analysis related environmental variables with the densities of the most abundant rotifers. The strongest relationship was with chlorophyll a, dissolved oxygen, hydrological level and water temperature. Diversity of rotifers at each station was mainly explained by fluctuations in hydrological level. Results of grouping analysis suggested the formation of groups according to phases of the hydrological cycle.  相似文献   

15.
Kinetics of fluorescence at room temperature, electron transport and photooxidation of P700 and cytochrome f have been studied in chloroplasts isolated from active and winter stressed Pinus silvestris. The winter stress induced block in the electron transport chain between the two photosystems is close to the site of plastoquinone, since winter stress and DCMU caused the same type of inhibition of the reoxidation of the primary electron acceptor Q of photosystem II. No winter inhibition of the electron transport between cytochrome f and P700 was observed. Time course studies of P700 photooxidation in chloroplasts of active and winter stressed pine have shown that the photosynthetic unit size must be about equal in the two types of chloroplasts. An apparent increase of the photosynthetic unit size was induced by winter stress, as revealed by the high chlorophyll/P700 ratio of winter stressed pine. The phenomenon is explained by the formation of photosynthetically inactive chlorophyll. Low-temperature fluorescence emission spectra were recorded when either chlorophyll a (433 nm) or chlorophyll b (477 nm) were preferentially excited. Winter stress induced the formation of a chlorophyll a fraction emitting at 673 nm. This chlorophyll is most likely derived from the chlorophyll a antennae of the two photosystems, and it probably contributes to the photosynthetically inactive pool of chlorophyll in winter stressed pine. The light harvesting chlorophyll a/b complex is relatively resistant to winter stress.  相似文献   

16.
Satellite-derived time-series of sea surface temperature (SST), chlorophyll a, and net primary productivity showed a period of warm SST and low productivity during 1997 and 1999 in the southwestern Gulf of Mexico followed by a period of colder than average SST (2000–2001). This shift between the warm and cold oceanic conditions might have caused significant changes in the structure of the ecosystem that is shown by changes in primary productivity and fishery landings between those periods. Handling editor: L. Naselli-Flores  相似文献   

17.
Factors limiting periphyton accrual in east-central Illinois agricultural streams were investigated. Nutrient-diffusing substrata were used to examine periphyton macronutrient limitation in streams in two agricultural watersheds. Substrata consisted of sand-agar mixtures with one of six experimental treatments. Macronutrients included carbon, nitrate, phosphate and combinations of the three. Substrata were collected after a 5 and 9 day period and analyzed for chlorophyll a. None of the treatments were significantly greater than the controls at any of the seven stations, thus we conclude that periphyton in these streams was not nutrient limited. Highest periphyton colonization/growth rates were associated with the smaller upstream reaches, while lower rates occurred in the larger downstream reaches. Multiple regression showed that most of the variance in the rate of chlorophyll a accrual after five days was explained through water temperature and turbidity (r2 = 0.91); whereas, stream nitrate and phosphate concentrations accounted for no significant portion of the variance. We conclude that instream primary production in agricultural streams of central Illinois is limited by temperature and light.  相似文献   

18.
The productivity hypothesis in respect of an animal species’ geographical range predicts that whereas higher productivity at the equatorial periphery of a species’ range favours superior competitors, lower productivity at the centre of a species’ range favours high reproduction and reduced competitive traits. I test whether life‐history patterns follow this hypothesis, using demographic data from 15 Canadian moose (Alces alces) populations. Two models are contrasted; the first assumes that intraspecific variation in age at maturity is explained proximately by density and juvenile mortality. Age at maturity was found to increase with decreasing juvenile mortality (= 0.01) and increasing density (= 0.006). To test the productivity hypothesis, the second model additionally included primary productivity and seasonality as geographical explanatory variables that would ultimately influence age at maturity via juvenile mortality and density. Path analysis indicated that including productivity and seasonality improved the model predictions of variation in age at maturity (Ra2 0.56 and 0.85). In bivariate comparisons, seasonality was negatively associated (= 0.01) with age at maturity. In the best model, however, primary productivity was the environmental variable that explained 25% of the variance in age at maturity, and forest cover replaced seasonality as an explanatory variable. The positive association between primary productivity and age at maturity is consistent with the productivity hypothesis. Relative to populations that lived at the centre of the species’ range (51°N), moose populations living in relatively high productivity and low seasonality environments (equatorial periphery of species’ range; 48°N) experienced less juvenile mortality, more variable year‐to‐year density, higher relative density and slower life history (slower growth rate, later age at maturity, lower fecundity).  相似文献   

19.
We investigated the photosynthesis–light intensity (P–I) relationships of phytoplankton collected from a sublittoral sand bank in the Seto Inland Sea, Japan, under different temperature conditions. In spite of low chlorophyll a concentration (<3 mg m−3), phytoplankton had considerably high photosynthetic potential (>10 mg C (mg chl a)−1 h−1) in the study area. Based on the P–I relationships, we conducted numerical simulation of areal primary production using published data on water temperature, chlorophyll a concentration, and irradiance. The areal primary production ranged between 159 and 187 g C m−2 year−1. This production was within the range of typical values reported previously in deeper areas of the Seto Inland Sea. The productivity in the sand bank area was discussed in relation to water current, allochthonous resource input, and fisheries.  相似文献   

20.
Larned  Scott T.  Santos  Scott R. 《Hydrobiologia》2000,432(1-3):101-111
To date, most studies of light- and nutrient-limited primary productivity in forested streams have been carried out in deciduous forests of temperate, continental regions. Conceptual models of light and nutrient limitation have been developed from these studies, but their restricted geographic range reduces the generality of such models. Unlike temperate continental streams, streams on tropical high islands are characterized by flashy, unpredictable discharge and riparian canopies that do not vary seasonally. These contrasting conditions suggest that patterns of light and nutrient limitation in tropical streams may differ from those in temperate streams. The effects of light, and nitrogen and phosphorus availability on periphyton accrual (measured as chlorophyll a per unit area) were investigated using field experiments in 4 low-order streams on the island of Oahu, Hawaii. Levels of chlorophyll a in partially-shaded stream pools were significantly greater than in heavily-shaded pools, and nutrient-enrichment increased the level of chlorophyll a in partially-shaded pools but not in heavily-shaded pools. In each stream, phosphate enrichment resulted in an increase in the level of chlorophyll a, but nitrate enrichment had no effect. Spates following rainstorms occur frequently in these streams, and may increase periphyton productivity by increasing the flux of nutrients to algal cells. However, differences in inorganic nitrogen and phosphorus concentrations measured during spates and baseflow were small, and during some spates, concentrations of these two nutrients declined relative to baseflow concentrations. These observations suggest that phosphorus limitation was not alleviated by spates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号