首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study evaluates the effects of severe drought stress on the content of phenolic compounds in olive leaves, namely hydroxytyrosol, tyrosol, p-hydroxybenzoic acid, catechin, luteolin 7-O-rutinoside, luteolin 7-O-glucoside, apigenin 7-O-glucoside, quercetin, apigenin, pinoresinol, oleuropein and verbascoside in greenhouse-grown plantlets. The results showed that oleuropein, verbascoside, luteolin 7-O-glucoside and apigenin 7-O-glucoside were the most important phenolic compound of stressed olive plants and can represent up to 84% of the total amount of the identified phenolic compounds. Application of drought stress caused a significant increase in the level of oleuropein (87%), verbascoside (78%), luteolin 7-O-glucoside (72%) and apigenin 7-O-glucoside (85%), when compared to the control. The elevated values of these phenolic compounds can help controlling the water status of olive plants and avoiding serious oxidative damage induced by water deficit stress. To our knowledge, this is the first report to show the boost in the concentrations of verbascoside, luteolin 7-O-glucoside and apigenin 7-O-glucoside in the leaves of olive trees after water deficit stress.  相似文献   

2.
3.
An efficient protocol for the establishment of transformed root culture of Verbascum xanthophoeniceum using sonication-assisted Agrobacterium rhizogenes-mediated transformation is reported. Only 10 days after the inoculation with A. rhizogenes ATCC 15834 and 45 s ultrasound exposure, hairy roots appeared on 75% of the Verbascum leaves. Ten hairy root lines were isolated, although only half of them were free of bacterial contamination and started growing when excised from mother explants. The transgenic nature of the most vigorously growing hairy root clones (VX1 and VX6) was confirmed by polymerase chain reaction. Under submerged cultivation both hairy root clones accumulated high biomass amounts (12.8 and 14.3 g L−1, respectively) and significant amounts of bioactive phenylethanoid glycoside verbascoside (over 6-times more than in mother plant leaves). LC-APCI-MS analyses confirmed verbascoside accumulation in hairy root clones along with three other phenylethanoid glycosides (forsythoside B, leucosceptoside B and martynoside) and an iridoid glycoside aucubin. This is the first report on the induction of hairy roots of Verbascum plants.  相似文献   

4.
The efficiency ofAgrobacterium-based transformation technique in oilseed rape and cauliflower was influenced by cultivar specificity, donor plant age and explant type. Marked differences in demands for plant hormone contents in the regeneration medium were recorded already among different types of nontransformed explants. The highest regeneration capacity was recorded with stem and leaf segments isolated from one-month-old aseptically grown plants. The regeneration was markedly species-dependent. Regeneration of transformed plants from stem segments and thin layers isolated from field-grown oilseed rape plants (at the most 2% of regenerating explants) and from oilseed rape hypocotyls (0.8% of regenerating explants) and cauliflower (1.2% of explant regenerated transformed shoots) was achieved after disarmedAgrobacterium treatment. Hypersensitive reaction of explants could be prevented by using prolongedin vitro precultivation and delayed application of the selective agent.  相似文献   

5.
A genetic transformation method using Agrobacterium rhizogenes was developed for Harpagophytum procumbens. The influence of three factors on hairy root formation was tested: bacterial strains (A4 and ATCC 15834), various types of explants and acetosyringone (AS) (200 μM). The highest frequency of transformation (over 50% of explants forming roots at the infected sites after 6 weeks of culture on Lloyd and McCown (WP) medium) was achieved using a combination of nodal stem explants and A. rhizogenes strain A4. The addition of 200 μM AS to root induction medium was found to enhance hairy root induction but its effect varied depending on bacterial strain and explant type. Three of the most vigorously growing hairy root clones of H. procumbens were chosen and analyzed for accumulation of iridoid and phenylethanoid glycosides. The transgenic nature of these root clones was confirmed by PCR amplification; they were positive for rolB and rolC genes. Harpagoside, verbascoside and isoverbascoside were identified by HPLC and LC–ESI-MS as the major compounds from all analyzed hairy root clones. The Hp-3 root clone showed the higher harpagoside content (0.32 mg g−1 dry wt.) compared with other analyzed transformed and non-tuberized untransformed roots of H. procumbens. However, the level of the compound in the hairy root clone was lower than that detected in a sample of commercially available root tubers of H. procumbens. The Hp-3 root clone also produced high amounts of verbascoside and isoverbascoside (8.12 mg g−1 dry wt. and 9.97 mg g−1 dry wt., respectively) comparable to those found in root tubers.  相似文献   

6.
An F1 population consisting of 51 genotypes, derived from two unresponsive parental lines ofSolanum chacoense Bitt., was examined for shoot regeneration from leaf explants. Fourteen genotypes failed to respond whereas, among the responsive genotypes, four produced multiple shoots on over 90% of the explants. Estimates of broad-sense heritability were high for both frequency of responsive explants (83%) and the number of shoots per responsive explant (82%). The segregation of the F1 hybrid progeny was in agreement with the theoretical ratios of a genetic model for tissue culture responsiveness involving three unlinked genes. This study confirms earlier findings concerning the genetic control ofin vitro shoot regeneration from leaf explants inS. chacoense.  相似文献   

7.
B.E. Ellis 《Phytochemistry》1983,22(9):1941-1943
Cell suspension cultures of Syringa vulgaris accumulate up to 16% of their dry wt as a mixture of hydroxyphenylethanol glycosides. The main component is the caffeoyl ester, verbascoside (acteoside). Tyrosine and tyramine are efficient biosynthetic precursors of the 4-hydroxy- and 3,4-dihydroxyphenylethanol moieties of these glycosides.  相似文献   

8.
《Phytochemistry》1996,42(6):1633-1636
Two species of Plantago, namely P. Alpina and P. altissima were investigated. From the former, nine iridoid glucosides and verbascoside were isolated. Together with the known iridoids gardoside, geniposidic acid, 8-epi-loganic acid, mussaenosidic acid, aucubin, monomelittoside and melittoside, two new glucosides were found: 10-O-acetylgeniposidic acid and alpinoside, another compound with a 10-O-acetyl group. From P. altissima verbascoside and isoverbascoside were isolated together with the known iridoids gardoside, 8-epi-loganic acid, catalpol, aucubin, and hookerioside as well as the new compound desacetylhookerioside.  相似文献   

9.
The complete structural elucidation of the two caffeic acid sugar esters verbascoside and orobanchoside, has been realized by 1H and 13C NMR studies. It has been demonstrated that verbascoside is β-(3′,4′-dihydroxyphenyl)ethyl-O-α-L-rhamnopyranosyl(1→3)-β-D-(4-O-caffeoyl)-glucopyranoside, and orobanchoside is β-hydroxy-β-(3′,4′-dihydroxyphenyl)-ethyl-O-α-L-rhamnopyranosyl(1→2)-β-D-(4-O-caffeoyl)-glucopyranoside.  相似文献   

10.
A systematic study was carried out to optimize regeneration and Agrobacterium tumefaciens-mediated transformation of four common bean (Phaseolus vulgaris L.) cultivars; Red Hawk, Matterhorn, Merlot, and Zorro, representing red kidney, great northern, small red, and black bean commercial classes, respectively. Regeneration capacity of leaf explants, stem sections, and embryo axes were evaluated on 30 media each containing Murashige and Skoog (MS) medium and different combinations of plant growth regulators. For stem sections and leaf explants, none of the media enabled plant regeneration from any of the four cultivars tested, indicating the recalcitrance of bean regeneration from these tissues. In contrast, several media enabled multiple shoot production from embryo axis explants, although optimal regeneration media was genotype-dependent. Under optimal regeneration conditions, multiple shoots, 2.3–10.8 on average for each embryogenic explant, were induced from embryo axis explants at frequencies of 93 % for ‘Merlot’, 80 % for ‘Matterhorn’, 73 % for ‘Red Hawk’, and 67 % for ‘Zorro’. Transient expression studies monitored by an intron-interrupted gusA on explants transformed with A. tumefaciens strains GV3101, LBA4404, and EHA105 indicated that all three A. tumefaciens strains tested were efficient in gene delivery. Gene delivery depended on parameters including strain of A. tumefaciens, co-cultivation time, explant type, and bean genotype. Agroinfiltration also enhanced gene delivery. Kanamycin-resistant and GUS-positive calluses were induced from leaf, stem, and embryo axis explants. Chimeric transformants were obtained from embryo axis explants and showed partial GUS-staining. Lack of efficient regeneration from non-meristem containing tissues is the main limitation for stable transformation of common bean.  相似文献   

11.
A few studies in the past have shown that plant diversity in terms of species richness and functional composition can modify plant defense chemistry. However, it is not yet clear to what extent genetic differentiation of plant chemotypes or phenotypic plasticity in response to diversity-induced variation in growth conditions or a combination of both is responsible for this pattern. We collected seed families of ribwort plantain (Plantago lanceolata) from six-year old experimental grasslands of varying plant diversity (Jena Experiment). The offspring of these seed families was grown under standardized conditions with two levels of light and nutrients. The iridoid glycosides, catalpol and aucubin, and verbascoside, a caffeoyl phenylethanoid glycoside, were measured in roots and shoots. Although offspring of different seed families differed in the tissue concentrations of defensive metabolites, plant diversity in the mothers'' environment did not explain the variation in the measured defensive metabolites of P. lanceolata offspring. However secondary metabolite levels in roots and shoots were strongly affected by light and nutrient availability. Highest concentrations of iridoid glycosides and verbascoside were found under high light conditions, and nutrient availability had positive effects on iridoid glycoside concentrations in plants grown under high light conditions. However, verbascoside concentrations decreased under high levels of nutrients irrespective of light. The data from our greenhouse study show that phenotypic plasticity in response to environmental variation rather than genetic differentiation in response to plant community diversity is responsible for variation in secondary metabolite concentrations of P. lanceolata in the six-year old communities of the grassland biodiversity experiment. Due to its large phenotypic plasticity P. lanceolata has the potential for a fast and efficient adjustment to varying environmental conditions in plant communities of different species richness and functional composition.  相似文献   

12.
A rapid and efficient Agrobacterium rhizogenes mediated transformation system for Ocimum tenuiflorum L., a traditional Indian medicinal plant that occurs in red and green forma, was developed. The plant is a repertoire of several pharmaceutically and nutraceutically important metabolites. Three different types of explants i.e. leaves, hypocotyls and excised shoots, obtained from shoot cultures of in vitro germinated red and green forma plants were transformed using Agrobacterium rhizogenes strain ATCC 15834. The transformation efficiency was equal between similar explants of both forma. Transformation efficiency was best in leaves of 4 days while excised shoots and hypocotyls had 6 and 8 days respectively. Transformation frequency of green forma leaves was the highest (70.6%) among all explants. Excised shoots of green forma plants exhibited better transformation (58.3%) than the red forma excised shoots (42.59%). Red forma hypocotyl explants displayed marginally better (26.27%) transformation frequency than green hypocotyl explants (21.14%). Transformation with hairy root was confirmed by the presence of rolC gene through PCR amplification and Southern hybridization. The development of hairy root-based transgenic system for O. tenuiflorum will pave the way for in vitro production of important secondary metabolites.  相似文献   

13.
Lippia javanica (N.L.Burm.) Spreng. is an aromatic, multipurpose medicinal plant from which a number of volatile compounds have been identified, together with toxic triterpenoids and iridoid glycosides. Two additional phenylethanoid glycosides, verbascoside and isoverbascoside, were isolated from L. javanica and characterized. High performance liquid chromatography analyses of polar extracts of three other Lippia species (L. scaberrima, L. rehmannii and L. wilmsii), indigenous to South Africa, revealed the presence of both isomers. When compared to the other indigenous Lippia species, the leaves of L. javanica were found to contain the highest concentrations of both isomers. In addition, the intraspecies variation of the verbascoside/isoverbascoside content of L. javanica, harvested from the same and different localities, was investigated. The concentrations of the two phenylethanoids remained fairly consistent within and between different populations, even when geographically separated. While these compounds are produced by many genera, they may now be added to the list of iridoid glucosides employed as chemotaxonomic markers for Lippia species.  相似文献   

14.
Hairy root lines through the infection of Agrobacterium rhizogenes strain (A4) were established from shoot tips and leaves of Rehmannia glutinosa Libosch. Ten lines of hairy roots were selected on the basis of biomass increase in half-strength Gamborg medium (1/2 B5). Transgenic status of the roots was confirmed by polymerase chain reaction using rolB and rolC specific primers. Iridoid glycosides (catalposide, loganin, aucubin and catalpol) and phenylethanoid glycosides (verbascoside and isoverbascoside) identified using HPLC?CESI?CMS, and their contents were compared with untransformed root culture and roots of 1-year-old field-grown plants of R. glutinosa by RP-HPLC. The growth and production of secondary metabolites in ten hairy root lines varied considerably as to the media. Woody plant (WP) medium displayed higher growth in terms of fresh (FW) and dry weights (DW) compared to 1/2 B5 medium. High-yielding hairy root lines produced higher amounts of loganin, catalposide, verbascoside and isoverbascoside in comparison to the untransformed root culture and roots of 1-year-old field-grown plants. The highest amounts of catalposide and loganin in transformed roots were 4.45?mg?g?1 DW (RS-2 hairy root line) and 4.66?mg?g?1 DW (RS-1 hairy root line), respectively. Aucubin and catalpol were detected in some lines in trace amounts. The highest amounts of verbascoside (16.9?mg?g?1 DW) and isoverbascoside (3.46?mg?g?1 DW) were achieved in RS-2 root line. The contents of catalposide, verbascoside and isoverbascoside in high-producing lines were several times higher than in untransformed root culture and roots of R. glutinosa plants grown in soil. Loganin and aucubin could not be detected in roots of field-grown plants. However, the levels of catalpol were much lower in the in vitro roots.  相似文献   

15.
De Block M 《Plant physiology》1990,93(3):1110-1116
Tissue culture conditions and transformation have been established for both aspen and poplar. The use of previously described culture conditions resulted in shoot tip necrosis in the shoot cultures and necrosis of stem and leaf explants. Shoot tip necrosis could be overcome by buffering the medium with 2-(N-morpholino)ethanesulfonic acid and Ca-gluconate and by growing the shoots below 25°C. Necrosis of the explants was probably due to an accumulation of ammonium in the explants and could be overcome by adapting the NO3/NH4+ ratio of the media. Stem explants of established shoot cultures of the aspen hybrid Populus alba × P. tremula and of the poplar hybrid Populus trichocarpa × P. deltoides were cocultivated with Agrobacterium strains having chimeric bar and neo genes on their disarmed tDNAs. Transformed aspen shoots were obtained from 30 to 40% of the explants, while transformed poplar shoots were obtained from 10% of the explants. Extracts from the transformed trees contained high phosphinotricin acetyltransferase and neomycin phosphotransferase activities, and the trees contained one to three copies of the chimeric genes. The transformed trees were completely resistant to the commercial preparations of the herbicide phosphinotricin (glufosinate), while control trees were not.  相似文献   

16.
Articular cartilage is an enduring tissue. For most individuals, articular cartilage facilitates a lifetime of pain-free ambulation, supporting millions of loading cycles from activities of daily living. Although early studies into osteoarthritis focused on the role of mechanical fatigue in articular cartilage degeneration, much is still unknown regarding its strength and endurance characteristics. The compressive strength of juvenile, bovine articular cartilage explants was determined to be loading rate-dependent, reaching a maximum strength of 29.5 ± 4.8 MPa at a strain rate of 0.10 %/sec. The fatigue and endurance properties of articular cartilage were characterized utilizing a material testing system, as well as a custom, validated instrument termed the two degrees-of-freedom endurance meter (endurometer). These instruments characterized fatigue in articular cartilage explants at loading levels ranging from 10 to 80 % strength (%S), up to 100,000 cycles. Cartilage explants displayed characteristics of fatigue – fatigue life increased as the loading magnitude decreased. All explants failed within 14,000 cycles at loading levels between 50 and 80 %S. At 10 and 20 %S, all explants endured 100,000 loading cycles. There was no significant difference in equilibrium compressive modulus between run-out explants and unloaded controls, although the pooled modulus increased in response to testing. Histological staining and biochemical assays revealed no material changes in collagen, sulfated glycosaminoglycan, or hydration content between unloaded controls and explants cyclically loaded to run-out. These results suggest articular cartilage may have a putative endurance limit of 20 %S (5.86 MPa), with implications for articular cartilage biomechanics and mechanobiology.  相似文献   

17.
The emerald ash borer (EAB; Agrilus planipennis Fairmaire) is causing widespread mortality of ash (Fraxinus spp.) in North America. To date, no mechanisms of host resistance have been identified against this pest. Methyl jasmonate was applied to susceptible North American and resistant Asian ash species to determine if it can elicit induced responses in bark that enhance resistance to EAB. In particular, phenolic compounds, lignin, and defense-related proteins were quantified, and compounds associated with resistance were subsequently tested directly against EAB larvae in bioassays with artificial diet. MeJA application decreased adult emergence in susceptible ash species, comparable to levels achieved by insecticide application. Concentration of the phenolic compound verbascoside sharply increased after MeJA application to green and white ash. When incorporated in an artificial diet, verbascoside decreased survival and growth of EAB neonates in a dose-dependent fashion. Lignin and trypsin inhibitors were also induced by MeJA, and analogs of both compounds reduced growth of EAB larvae in artificial diets. We conclude that the application of MeJA prior to EAB attack has the ability to enhance resistance of susceptible ash trees by inducing endogenous plant defenses, and report evidence that induction of verbascoside is a mechanism of resistance to EAB.  相似文献   

18.
Apple has become a model species for Rosaceae genetic and genomic research, but it is difficult to obtain transgenic apple plants by Agrobacterium-mediated transformation using in vitro leaves as explants. In this study, we developed an efficient regeneration and Agrobacterium-mediated transformation system for crab apple (Malus micromalus) using cotyledons as explants. The proximal cotyledons of M. micromalus, excised from seedlings that emerged from mature embryos cultured for 10–14 d in vitro, were suitable as explants for regeneration and Agrobacterium-mediated transformation. Cotyledon explants were cocultivated for 3 d with Agrobacterium tumefaciens strain EHA105 harboring the binary vector pCAMBIA2301 on regeneration medium. Kanamycin-resistant buds were produced on cotyledon explants cultured on selective regeneration medium containing 20 mg/L kanamycin. Acetosyringone supplemented in the Agrobacterium suspension or in the cocultivation medium slightly enhanced the regeneration of kanamycin-resistant buds. The maximum percentage of explants with kanamycin-resistant buds was 11.7%. The putative transformed plants were confirmed by histochemical analysis of β-glucuronidase activity and the polymerase chain reaction amplification of the neomycin phosphotransferase II gene. This transformation system also enables recovery of nontransformed isogenic controls developed from embryo buds and is therefore suitable for functional genomics studies in apple.  相似文献   

19.
《Phytochemistry》1987,26(7):1981-1983
Iridoid glucosides, reptoside, 8-O-acetylharpagide, and harpagide, and phenylpropanoid glycosides, verbascoside, desrhamnosylverbascoside, and 2-O-(p-coumaroyl)-d-glucose have been isolated from seven species of Ajuga growing in Japan. No harpagide was originally contained in the living specimens. The iridoid glucoside pattern of each species could be correlated to the stem characteristics of that species.  相似文献   

20.
In this study the influence of liposomal incorporation on both the stability and the in vitro (trans) dermal delivery of verbascoside was evaluated. The effect of drug entrapment into vesicles on its radical scavenging activity was also studied. Liposomes were obtained from soy phosphatidylcholine and cholesterol according to the film hydration method. Stability of verbascoside-loaded vesicles was studied over 6 months. Results showed that verbascoside can be incorporated in liposomes (E%?=?57–66%), preventing its degradation. Stability studies (dynamic lager light scattering [DLLS] measurements and transmission electron microscopy [TEM] visualization) pointed out that vesicles were stable for 90 days and neither verbascoside leakage nor vesicle size alteration occurred during this period. The effects of vesicular incorporation on verbascoside diffusion through skin were investigated in vitro using newborn pig skin. Results showed that liposomes promoted drug accumulation into the stratum corneum but they did not give rise to any significant transdermal verbascoside delivery. Finally, results obtained from a 1, 1-diphenyl-2-pierylhydrazyl (DPPH) radical assay demonstrated that liposomes did not interfere with the radical scavenging activity of verbascoside.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号