首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Natural populations of wild cabbage (Brassica oleracea) show significant qualitative diversity in heritable aliphatic glucosinolates, a class of secondary metabolites involved in defence against herbivore attack. One candidate mechanism for the maintenance of this diversity is that differential responses among herbivore species result in a net fitness balance across plant chemotypes. Such top-down differential selection would be promoted by consistent responses of herbivores to glucosinolates, temporal variation in herbivore abundance, and fitness impacts of herbivore attack on plants varying in glucosinolate profile. A 1-year survey across 12 wild cabbage populations demonstrated differential responses of herbivores to glucosinolates. We extended this survey to investigate the temporal consistency of these responses, and the extent of variation in abundance of key herbivores. Within plant populations, the aphid Brevicoryne brassicae consistently preferred plants producing the glucosinolate progoitrin. Among populations, increasing frequencies of sinigrin production correlated positively with herbivory by whitefly Aleyrodes proletella and negatively with herbivory by snails. Two Pieris butterfly species showed no consistent response to glucosinolates among years. Rates of herbivory varied significantly among years within populations, but the frequency of herbivory at the population scale varied only for B. brassicae. B. brassicae emerges as a strong candidate herbivore to impose differential selection on glucosinolates, as it satisfies the key assumptions of consistent preferences and heterogeneity in abundance. We show that variation in plant secondary metabolites structures the local herbivore community and that, for some key species, this structuring is consistent over time. We discuss the implications of these patterns for the maintenance of diversity in plant defence chemistry.  相似文献   

2.
Elevated atmospheric CO2 is known to affect plant–insect herbivore interactions. Elevated CO2 causes leaf nitrogen to decrease, the ostensible cause of herbivore compensatory feeding. CO2 may also affect herbivore consumption by altering chemical defenses via changes in plant hormones. We considered the effects of elevated CO2, in conjunction with soil fertility and damage (simulated herbivory), on glucosinolate concentrations of mustard (Brassica nigra) and collard (B. oleracea var. acephala) and the effects of leaf nitrogen and glucosinolate groups on specialist Pieris rapae consumption. Elevated CO2 affected B. oleracea but not B. nigra glucosinolates; responses to soil fertility and damage were also species‐specific. Soil fertility and damage also affected B. oleracea glucosinolates differently under elevated CO2. Glucosinolates did not affect P. rapae consumption at either CO2 concentration in B. nigra, but had CO2‐specific effects on consumption in B. oleracea. At ambient CO2, leaf nitrogen had strong effects on glucosinolate concentrations and P. rapae consumption but only gluconasturtiin was a feeding stimulant. At elevated CO2, direct effects of leaf nitrogen were weaker, but glucosinolates had stronger effects on consumption. Gluconasturtiin and aliphatic glucosinolates were feeding stimulants and indole glucosinolates were feeding deterrents. These results do not support the compensatory feeding hypothesis as the sole driver of changes in P. rapae consumption under elevated CO2. Support for hormone‐mediated CO2 response (HMCR) was mixed; it explained few treatment effects on constitutive or induced glucosinolates, but did explain patterns in SEMs. Further, the novel feeding deterrent effect of indole glucosinolates under elevated CO2 in B. oleracae underscores the importance of defensive chemistry in CO2 response. We speculate that P. rapae indole glucosinolate detoxification mechanisms may have been overwhelmed under elevated CO2 forcing slowed consumption. Specialists may have to contend with hosts with poorer nutritional quality and more effective chemical defenses under elevated CO2.  相似文献   

3.
Seed glucosinolates have been determined for 14 wild Brassica species, by micro-scale GC analysis of silylated derivatives. Of these, 12 were investigated for the first time. The majority of taxa exhibited high alkenylglucosinolate levels, although prop-2-enylglucosinolate appears to be generally absent. Other known methionine-derived glucosinolates predominate in B. tournefortii, B. elongata and B. deflexa. Phenylalanine-derived 4-hydroxybenzylglucosinolate is characteristic of section Brassicaria plants and represents the first finding of this glucosinolate in authenticated Brassica material.  相似文献   

4.
1. There is an ongoing debate about the relative importance of top‐down and bottom‐up regulation of herbivore dynamics in the wild. Secondary metabolites, produced by plants, have negative effects on survival and growth of some herbivore species, causing bottom‐up regulation of population dynamics. Herbivore natural enemies may use plant secondary metabolites as cues to find their prey, but their survival and reproduction can also be influenced by the upward cascade of secondary metabolites through the food web. Thus plant chemistry might also affect herbivore populations by mediating top‐down regulation. 2. We investigated the influence of heritable variation in aliphatic glucosinolates, a class of secondary metabolites produced by Brassica plants, on the relative importance of top‐down and bottom‐up regulation of Brevicoryne brassicae (mealy cabbage aphid) colonies in natural Brassica oleracea (wild cabbage) populations. We manipulated natural enemy pressure on plants differing in their glucosinolate profiles, and monitored aphid colony growth and disperser production. 3. Aphid colony sizes were significantly smaller on plants producing sinigrin, compared with plants producing alternative aliphatic glucosinolates. Aphid natural enemy numbers correlated with aphid colony size, but there was no additional effect of the plants' chemical phenotype on natural enemy abundance. Furthermore, experimental reduction of natural enemy pressure had no effect on aphid colony size or production of winged dispersers. 4. Our results provide evidence for glucosinolate‐mediated, bottom‐up regulation of mealy cabbage aphid colonies in natural populations, but we found no indication of top‐down regulation. We emphasise that more studies of these processes should focus on tritrophic interactions in the wild.  相似文献   

5.
Natural plant populations often show substantial heritable variation in chemical structure of secondary metabolites. Despite a great deal of evidence from laboratory studies that these chemicals influence herbivore behaviour and life history, there exists little evidence for the structuring of natural herbivore communities according to plant chemical profiles. Brassica oleracea (Brassicaceae) produces aliphatic glucosinolates, which break down into toxins when leaf tissue is damaged. Structural diversity in these glucosinolates is heritable, and varies considerably at two ecological scales in the UK: both within and between populations. We surveyed herbivore attack on plants producing different glucosinolates, using 12 natural B. oleracea populations. In contrast to the results of previous studies in this system, which suffered low statistical power, we found significant differential responses of herbivore species to heritable glucosinolates, both within and between plant populations. We found significant correlations between herbivore infestation rates and the presence or absence of two heritable glucosinolates: sinigrin and progoitrin. There was variation between herbivore species in the direction of response, the ecological scale at which responses were identified, and the correlations for some herbivore species changed at different times of the year. We conclude that variation in plant secondary metabolites can structure the community of herbivores that attack them, and propose that herbivore-mediated differential selection deserves further investigation as a mechanism maintaining the observed diversity of glucosinolates in wild Brassica.  相似文献   

6.
The glucosinolate contents of two different cultivars of Brassica rapa (Herfstraap and Oleifera) infected with Leptosphaeria maculans and Fusarium oxysporum were determined. Infection triggered the accumulation of aliphatic glucosinolates (gluconapin, progoitrin, glucobrassicanapin and gluconapoleiferin) and indole glucosinolate (4-hydroxy-glucobrassicin) in Herfstraap and of two indole glucosinolates (glucobrassicin and 4-hydroxy-glucobrassicin) in Oleifera. While total and aliphatic glucosinolates decreased significantly in Oleifera, a large increase was observed in Herfstraap after fungal infection. The indole glucosinolate glucobrassicin accumulated in Oleifera at a higher rate than Herfstraap especially after infection with F. oxysporum. Apparently the interaction between fungus and B. rapa is cultivar and fungal species specific.  相似文献   

7.
Epidemiological and mechanistic studies show health-promoting effects of glucosinolates and their breakdown products. In literature, differences in non-enzymatic glucosinolate degradation rates during food processing between different vegetables are described, which provide the basis for studying the genetic effects of this trait and breeding vegetables with high glucosinolate retention during food processing. Non-enzymatic glucosinolate degradation, induced by heat, was studied in a publicly available Brassica oleracea doubled haploid population. Data were modeled to obtain degradation rate constants that were used as phenotypic traits to perform quantitative trait loci (QTL) mapping. Glucosinolate degradation rate constants were determined for five aliphatic and two indolic glucosinolates. Degradation rates were independent of the initial glucosinolate concentration. Two QTL were identified for the degradation rate of the indolic glucobrassicin and one QTL for the degradation of the aliphatic glucoraphanin, which co-localized with one of the QTL for glucobrassicin. Factors within the plant matrix might influence the degradation of different glucosinolates in different genotypes. In addition to genotypic effects, we demonstrated that growing conditions influenced glucosinolate degradation as well. The study identified QTL for glucosinolate degradation, giving the opportunity to breed vegetables with a high retention of glucosinolates during food processing, although the underlying mechanisms remain unknown.  相似文献   

8.
Resynthesized (Resyn) Brassica napus L. can be used to broaden the genetic diversity and to develop a heterotic genepool for rapeseed hybrid breeding. Domesticated vegetable types are usually employed as B. oleracea parents. We sought to evaluate the potential of wild species as parents for Resyn lines. Fifteen Resyn lines were derived by crossing wild B. oleracea ssp. oleracea and oilseed B. rapa, and 29 Resyn lines were generated from 10 wild Brassica species (B. bourgaei, B. cretica, B. incana, B. insularis, B. hilarionis, B. macrocarpa, B. montana, B. rupestris, B. taurica, B. villosa). Genetic distances were analyzed with AFLP markers for 71 Resyn lines from wild and domesticated B. oleracea, and compared with 55 winter, spring, vegetable, and Asian B. napus genotypes. The genetic distances clearly showed that Resyn lines with wild species provide a genetic diversity absent from the breeding material or Resyn lines from domesticated species. Forty-two Resyn lines were crossed with one or two winter oilseed rape testers, resulting in 64 hybrids that were grown in one year and four locations in Germany and France. The correlation between hybrid yield and genetic distance was slightly negative (r = ?0.29). Most of the hybrids with Resyn lines from wild B. oleracea were lower in yield than hybrids with Resyn lines from domesticated B. oleracea. It is promising that Resyn lines descending from unselected wild B. oleracea accessions produced high-yielding hybrids when crossed with adapted genotypes: these Resyn lines would be suited to develop heterotic pools in hybrid breeding.  相似文献   

9.
10.
The evolutionary response of plant populations to herbivore imposed selection for defense may theoretically be constrained by the costs of defense, yet few studies convincingly demonstrate such costs. We investigated possible constraints on the evolution of defense in rapid cycling Brassica rapa by divergently selecting lines for investment in foliar glucosinolate content, a chemical defense in this species. Costs would then result in a significant correlated response to artificially imposed selection in the direction opposite to the direct response of foliar glucosinolate production. Correlated responses of date of first flowering, total flower number, number of seeds per fruit, and mean seed mass were examined. After three generations of selection, there was a significant direct response in glucosinolate content of the leaves of B. rapa. Furthermore, we found significant correlated responses in both total flower production and number of seeds produced per fruit, but not date of first flowering or mean seed mass. Lines selected for high glucosinolates produced fewer flowers and seeds per fruit compared to those selected for low glucosinolates while lines selected for low glucosinolates showed the opposite response. Thus, costs of defense were demonstrated and may constrain the evolution of foliar glucosinolate production in this plant species.  相似文献   

11.
Understanding the evolutionary history of crops, including identifying wild relatives, helps to provide insight for conservation and crop breeding efforts. Cultivated Brassica oleracea has intrigued researchers for centuries due to its wide diversity in forms, which include cabbage, broccoli, cauliflower, kale, kohlrabi, and Brussels sprouts. Yet, the evolutionary history of this species remains understudied. With such different vegetables produced from a single species, B. oleracea is a model organism for understanding the power of artificial selection. Persistent challenges in the study of B. oleracea include conflicting hypotheses regarding domestication and the identity of the closest living wild relative. Using newly generated RNA-seq data for a diversity panel of 224 accessions, which represents 14 different B. oleracea crop types and nine potential wild progenitor species, we integrate phylogenetic and population genetic techniques with ecological niche modeling, archaeological, and literary evidence to examine relationships among cultivars and wild relatives to clarify the origin of this horticulturally important species. Our analyses point to the Aegean endemic B. cretica as the closest living relative of cultivated B. oleracea, supporting an origin of cultivation in the Eastern Mediterranean region. Additionally, we identify several feral lineages, suggesting that cultivated plants of this species can revert to a wild-like state with relative ease. By expanding our understanding of the evolutionary history in B. oleracea, these results contribute to a growing body of knowledge on crop domestication that will facilitate continued breeding efforts including adaptation to changing environmental conditions.  相似文献   

12.
Locating a resistance mechanism to the cabbage aphid in two wild Brassicas   总被引:1,自引:0,他引:1  
Feeding behaviour of the cabbage aphid,Brevicoryne brassicae, was monitored electronically on two resistantBrassica species,B. fruticulosa andB. spinescens, and compared with a susceptible controlB. oleracea var.capitata cv. Offenham Compacta. Aphids, monitored for 10 h on the under side of leaves, performed recognizable feeding behaviour on all species. Electrical Penetration Graphs (EPGs) of aphids on resistant and susceptible plants showed no difference in behaviour for aphids on resistantBrassica species compared to susceptible until stylets penetrated the phloem sieve elements when a large reduction in the duration of passive phloem uptake (E2 pattern) onB. fruticulosa was indicated. Although feeding behaviour on 6 week-old plants ofB. spinescens was similar to the susceptible controls, behaviour on 10 week-old plants was similar to that recorded forB. fruticulosa. The mechanism of resistance is thought to be located in the sieve element as the normal sieve element salivation (E1) signal was either quickly terminated by withdrawal of the stylets from the sieve element or continued as a disrupted E2 pattern. Analysis of secondary plant compounds in the threeBrassica species only identified significant differences in the glucosinolate profile. No reproducible differences were detected in the concentration of phenolics or anthocyanins. The major glucosinolate component ofB. fruticulosa andB. spinescens was gluconapin rather than glucobrassicin and glucoiberin as found in the susceptible host plant. However, both pure glucosinolates and glucosinolate extracts from all three species did not reduce aphid survival on chemically-defined artificial diets. These results suggest that the mechanism of resistance may be a mechanical blocking of the sieve element or stylets rather than a difference in the secondary plant chemistry of glucosinolates and phenolics.  相似文献   

13.
Oviposition and larval feeding behaviors of the crucifer specialist Pieris napi macdunnoughii correlate with leaf glucosinolate profils of plant species in a natural community. Profiles are species-specific in this group of eight Cruciferae, but particular glucosinolates are shared by subsets of the community. Pieris accepts two lethal naturalized weeds whose glucosinolate profiles resemble that of an indigenous foodplant. The results suggest that specific glucosinolates constitute insect behavioral cues which are only loosely linked evolutionarily to foodplant suitability, and further suggest that allelochemically similar community associates influence the coevolution of individual plant species with insect herbivores.  相似文献   

14.
15.
Leaf colour has been proposed to signal levels of host defence to insect herbivores, but we lack data on herbivory, leaf colour and levels of defence for wild host populations necessary to test this hypothesis. Such a test requires measurements of leaf spectra as they would be sensed by herbivore visual systems, as well as simultaneous measurements of chemical defences and herbivore responses to leaf colour in natural host-herbivore populations. In a large-scale field survey of wild cabbage (Brassica oleracea) populations, we show that variation in leaf colour and brightness, measured according to herbivore spectral sensitivities, predicts both levels of chemical defences (glucosinolates) and abundance of specialist lepidopteran (Pieris rapae) and hemipteran (Brevicoryne brassicae) herbivores. In subsequent experiments, P. rapae larvae achieved faster growth and greater pupal mass when feeding on plants with bluer leaves, which contained lower levels of aliphatic glucosinolates. Glucosinolate-mediated effects on larval performance may thus contribute to the association between P. rapae herbivory and leaf colour observed in the field. However, preference tests found no evidence that adult butterflies selected host plants based on leaf coloration. In the field, B. brassicae abundance varied with leaf brightness but greenhouse experiments were unable to identify any effects of brightness on aphid preference or performance. Our findings suggest that although leaf colour reflects both levels of host defences and herbivore abundance in the field, the ability of herbivores to respond to colour signals may be limited, even in species where performance is correlated with leaf colour.  相似文献   

16.
The development of hybrid broccoli genotypes with enhanced levels of 4-methylsulphinylbutyl glucosinolate, the precursor of anticarcinogenic isothiocyanate sulforaphane (SF), by introgressing genomic segments from the wild ancestor Brassica villosa is described. We demonstrate that to obtain enhanced levels of either 3-methylsulphinylpropyl or 4-methylsulphinylbutyl glucosinolate it is necessary to have B. villosa alleles in either a homozygous or heterozygous state at a single quantitative trait locus (QTL) on O2. The ratio of these two glucosinolates, and thus whether iberin or SF is generated upon hydrolysis, is determined by the presence or absence of B. villosa alleles at this QTL, but also at an additional QTL2 on O5. We further demonstrate that following mild cooking high glucosinolate broccoli lines generate about three fold higher levels of SF than conventional varieties. Commercial freezing processes and storage of high glucosinolate broccoli maintains the high level of glucosinolates compared to standard cultivars, although the blanching process denatures the endogenous myrosinase activity.  相似文献   

17.
Autolysis products of nine species of the Cruciferae and two species of the Capparaceae were analysed by high sensitivity GC/MS. Four of the Cruciferae species were examined for glucosinolates for the first time. One new glucosinolate, 9-methylthiononylglucosinolate, was identified in Arabis purpurea and many known glucosinolates were identified for the first time in previously studied plant species. 5-Methylthiopentylglucosinolate appears to be characteristic of the genus Alyssum.  相似文献   

18.
Fine mapping of the glucosinolate biosynthesis gene OHP, which regulates the conversion of 3-methylsulphinylpropyl to 3-hydroxypropyl glucosinolate, in an Arabidopsis thaliana Columbia × Landsberg erecta RI line population positioned the gene within 54 kb of DNA on chromosome IV. Sequence data identified a family of genes encoding 2-oxoglutarate-dependent dioxygenases in this region. A probe based on these genes co-segregated with ALK in Brassica oleracea,a gene regulating the synthesis of alkenyl glucosinolates. The reactions catalysed by the OHP and ALK enzymes utilise similar substrates and may have a common mechanism. Thus, these dioxygenases are prime candidates for controlling the side chain modification of glucosinolates. Received: 12 May 2000 / Accepted: 29 May 2000  相似文献   

19.
Several products derived from processed maca hypocotyls (Lepidium peruvianum Chacón, previously known asL. meyenii Walp.) were surveyed for glucosinolate content and quantified by HPLC analysis. These included pills, capsules, flour, liquor, tonic and mayonnaise. Different plant organs such as fresh hypocotyls and leaves, seeds, dry hypocotyls, and sprouts were also included in the survey. The most abundant glucosinolates detected in fresh and dry hypocotyls and leaves were the aromatic glucosinolates, benzylglucosinolate (glucotropaeolin) and p-methoxybenzylglucosinolate. Maca seeds and sprouts differed in profile from hypocotyls and leaves due to the modification of benzylglucosinolate. No glucosinolates were detected in liquor and tonic, while mayonnaise had only trace amounts of those glucosinolates. It had instead allylglucosinolate (sinigrin), which is an aliphatic glucosinolate. The pills, capsules and flour had the same glucosinolates as those observed in hypocotyls, but in variable amounts. The richest sources of glucosinolates were seeds, fresh hypocotyls and sprouts, in that order.  相似文献   

20.
The effect of direct chemical defences in plants on the performance of insect herbivores and their natural enemies has received increasing attention over the past 10 years. However, much less is known about the scale at which this variation is generated and maintained, both within and across populations of the same plant species. This study compares growth and development of the large cabbage butterfly, Pieris brassicae, and its gregarious pupal parasitoid, Pteromalus puparum, on three wild populations [Kimmeridge (KIM), Old Harry (OH) and Winspit (WIN)] and two cultivars [Stonehead (ST), and Cyrus (CYR)] of cabbage, Brassica oleracea. The wild populations originate from the coast of Dorset, UK, but grow in close proximity with one another. Insect performance and chemical profiles were made from every plant used in the experiment. Foliar glucosinolates (GS) concentrations were highest in the wild plants in rank order WIN > OH > KIM, with lower levels found in the cultivars. Caterpillar-damaged leaves in the wild cabbages also had higher GS levels than undamaged leaves. Pupal mass in P. brassicae varied significantly among populations of B. oleracea. Moreover, development time in the host and parasitoid were correlated, even though these stages are temporally separated. Parasitoid adult dry mass closely approximated the development of its host. Multivariate statistics revealed a correlation between pupal mass and development time of P. brassicae and foliar GS chemistry, of which levels of neoglucobrassicin appeared to be the most important. Our results show that there is considerable variation in quantitative aspects of defensive chemistry in wild cabbage plants that is maintained at very small spatial scales in nature. Moreover, the performance of the herbivore and its parasitoid were both affected by differences in plant quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号