首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wang J  Li Y  Lo SW  Hillmer S  Sun SS  Robinson DG  Jiang L 《Plant physiology》2007,143(4):1628-1639
Plants accumulate and store proteins in protein storage vacuoles (PSVs) during seed development and maturation. Upon seed germination, these storage proteins are mobilized to provide nutrients for seedling growth. However, little is known about the molecular mechanisms of protein degradation during seed germination. Here we test the hypothesis that vacuolar sorting receptor (VSR) proteins play a role in mediating protein degradation in germinating seeds. We demonstrate that both VSR proteins and hydrolytic enzymes are synthesized de novo during mung bean (Vigna radiata) seed germination. Immunogold electron microscopy with VSR antibodies demonstrate that VSRs mainly locate to the peripheral membrane of multivesicular bodies (MVBs), presumably as recycling receptors in day 1 germinating seeds, but become internalized to the MVB lumen, presumably for degradation at day 3 germination. Chemical cross-linking and immunoprecipitation with VSR antibodies have identified the cysteine protease aleurain as a specific VSR-interacting protein in germinating seeds. Further confocal immunofluorescence and immunogold electron microscopy studies demonstrate that VSR and aleurain colocalize to MVBs as well as PSVs in germinating seeds. Thus, MVBs in germinating seeds exercise dual functions: as a storage compartment for proteases that are physically separated from PSVs in the mature seed and as an intermediate compartment for VSR-mediated delivery of proteases from the Golgi apparatus to the PSV for protein degradation during seed germination.  相似文献   

2.
3.
During germination and early growth of the seedling, storage proteins are degraded by proteases. Currently, limited information is available on the degradation of storage proteins in the soybean during germination. In this study, a combined two-dimensional gel electrophoresis and mass spectrometry approach was utilized to determine the proteome profile of soybean seeds (Glycine max L.; Eunhakong). Comparative analysis showed that the temporal profiles of protein expression are dramatically changed during the seed germination and seedling growth. More than 80% of the proteins identified were subunits of glycinin and β-conglycinin, two major storage proteins. Most subunits of these proteins were degraded almost completely at a different rate by 120h, and the degradation products were accumulated or degraded further. Interestingly, the acidic subunits of glycinin were rapidly degraded, but no obvious change in the basic chains. Of the five acidic subunits, the degradation of G2 subunit was not apparently affected by at least 96h but the levels decreased rapidly after that, while no newly appearing intermediate was detected upon the degradation of G4 subunit. On the other hand, the degradation of β-conglycinin during storage protein mobilization appeared to be similar to that of glycinin but at a faster rate. Both α and α' subunits of β-conglycinin largely disappeared by 96h, while the β subunits degraded at the slowest rate. These results suggest that mobilization of subunits of the storage proteins is differentially regulated for seed germination and seedling growth. The present proteomic analysis will facilitate future studies addressing the complex biochemical events taking place during soybean seed germination.  相似文献   

4.
Using high throughput tandem mass tag (TMT) based tagging technique, we identified 4172 proteins in three developmental stages: early, mid, and late seed filling. We mapped the identified proteins to metabolic pathways associated with seed filling. The elevated abundance of several kinases was observed from the early to mid-stages of seed filling, indicating that protein phosphorylation was a significant event during this period. The early to late seed filling stages were characterized by an increased abundance of proteins associated with the cell wall, oil, and vacuolar-related processes. Among the seed storage proteins, 7S (β-subunit) and 11S (Gy3, Gy4, Gy5) steadily increased in abundance during early to late stages of seed filling, whereas 2S albumin exhibited a decrease in abundance during the same period. An increased abundance of proteases, senescence-associated proteins, and oil synthesis proteins was observed from the mid to late seed filling stages. The mid to late stages of seed filling was also characterized by a lower abundance of transferases, transporters, Kunitz family trypsin, and protease inhibitors. Two enzymes associated with methionine synthesis exhibited lower abundance from early to late stages. This study unveiled several essential enzymes/proteins related to amino acid and protein synthesis and their accumulation during seed development. All data can be accessed through this link: https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=38784ecbd0854bb3801afc0d89056f84 . (Accession MSV000087577)  相似文献   

5.
Proteolytic cleavage plays an important role in storage proteindeposition and reactivation in seeds. Precursor polypeptidesare processed by limited proteolysis to mature subunits of reserveproteins in storage tissue cells of developing seeds. Stepsof proteolytic processing are closely related to steps in intracellularprotein transfer through the endomembrane system and to thedeposition in the storage vacuole. In germinating seeds specialendopeptidases trigger storage protein breakdown by limitedproteolysis. The induced conformation changes of storage proteinsopen them to attack by additional endo- and exopeptidases whichdegrade the protein reserves completely. Proteases that catalyselimited cleavage or complete degradation are synthesized asprecursors which also undergo stepwise limited proteolysis whenthey are formed in cotyledons of developing or germinating seeds.In general, this processing transforms enzymatically inactiveproenzymes into active proteases. Different compartments participatein the processing steps. Many of the proteases are encoded bysmall multigene families. Different members of the correspondingprotease families seem to act during seed development and germination.Proteolytic processes that contribute to the molecular maturationand to the reactivation of storage proteins in dicotyledonousseeds seem to be controlled by (1) differential expression ofmembers of the protease-encoding gene families; (2) stepwiseprocessing and activation of protease precursor polypeptides;(3) transient differential compartmentation of precursors andmature polypeptides of proteases and storage proteins, respectively;and (4) interacting changes in storage protein structure andprotease action. The present knowledge on these processes isreviewed. Key words: Dicotyledons, seeds, storage proteins, proteolytic cleavage, proteases  相似文献   

6.
Mobilization of seed protein reserves   总被引:1,自引:0,他引:1  
The mobilization of seed storage proteins upon seed imbibition and germination is a crucial process in the establishment of the seedling. Storage proteins fold compactly, presenting only a few vulnerable regions for initial proteolytic digestion. Evolutionarily related storage proteins have similar three-dimensional structure, and thus tend to be initially cleaved at similar sites. The initial cleavage makes possible subsequent rapid and extensive breakdown catalyzed by endo- and exopeptidases. The proteolytic enzymes that degrade the storage proteins during mobilization identified so far are mostly cysteine proteases, but also include serine, aspartic and metalloproteases. Plants often ensure early initiation of storage protein mobilization by depositing active proteases during seed maturation, in the very compartments where storage proteins are sequestered. Various means are used in such cases to prevent proteolytic attack until after imbibition of the seed with water. This constraint, however, is not always enforced as the dry seeds of some plant species contain proteolytic intermediates as a result of limited proteolysis of some storage proteins. Besides addressing fundamental questions in plant protein metabolism, studies of the mobilization of storage proteins will point out proteolytic events to avoid in large-scale production of cloned products in seeds. Conversely, proteolytic enzymes may be applied toward reduction of food allergens, many of which are seed storage proteins.  相似文献   

7.
Somatic embryos of alfalfa (Medicago sativa L.) synthesizedall of the major storage proteins of zygotic embryos; an 11Sglobulin (medicagin), a 7S globulin (alfin), and a 2S albumin(LMW). In zygotic embryos (cotyledons and/or axis) these storageproteins accounted for 30%, 10%, and 20%, respectively, of thetotal extractable protein. In somatic embryos the 7S proteinwas predominant while the 11S (particularly subfamily I) and2S proteins were present in lower amounts. Analysis of cultivarsand selfed seed of the embryogenic clone (RL34) demonstratedthat these differences were predominantly physiologically, ratherthan genetically, based. The accumulated 7S and 11S storageproteins of somatic embryos were processed normally, aggregatedas oligomers, and were deposited in protein bodies. This wasnot the case for the 2S storage protein. In somatic embryosthat protein was localized in the cytoplasm rather than in proteinbodies, the site of deposition in zygotic embryos. Key words: Medicago (alfalfa), zygotic/somatic embryos (seeds), storage proteins, immunolocalization  相似文献   

8.
Soybean ( Glycine max [L.] Merr.) seeds are rich in protein, most of which is contributed by the major storage proteins glycinin (11S globulin) and beta-conglycinin (7S globulin). Null mutations for each of the subunits of these storage proteins were integrated by crossbreeding to yield a soybean line that lacks both glycinin and beta-conglycinin components. In spite of the absence of these two major storage proteins, the mutant line grew and reproduced normally, and the nitrogen content of its dry seed was similar to that for wild-type cultivars. However, protein bodies appeared underdeveloped in the cotyledons of the integrated mutant line. Furthermore, whereas free amino acids contribute only 0.3-0.8% of the seed nitrogen content of wild-type varieties, they constituted 4.5-8.2% of the seed nitrogen content in the integrated mutant line, with arginine (Arg) being especially enriched in the mutant seeds. Seeds of the integrated mutant line thus appeared to compensate for the reduced nitrogen content in the form of glycinin and beta-conglycinin by accumulating free amino acids as well as by increasing the expression of certain other seed proteins. These results indicate that soybean seeds are able to store nitrogen mostly in the form of either proteins or free amino acids.  相似文献   

9.
Previous work from this laboratory had shown that Leguminosa seed extracts contain lectin-bound proteins. In the present paper, the isolation of protein bodies from the seeds of 7 Leguminosa species (Canavalia ensiformis, Lens culinaris, Pisum sativum, Glycine max, Sophora japonica, Wisteria floribunda and Phaseolus vulgaris) is described. Protein bodies were characterized microscopically and by their constituents, storage proteins, lectins and some glycosidases. From the protein bodies, lectin-bound proteins were isolated and were shown to be identical with those from whole seed extracts. This indicates a common localization of lectin-bound proteins and of lectins. Lectin-bound proteins belong to the storage proteins and to the proteins with glycosidase activity. The common localization of these proteins and interactions between them suggest a biological role of seed lectins: during maturation they may act as a packaging aid for storage proteins and enzymes into developing protein bodies. Lectins thus may contribute to an ordered construction and degradation of protein bodies.  相似文献   

10.
Organization of the sunflower 11S storage protein gene family   总被引:2,自引:0,他引:2  
  相似文献   

11.
以苦荞(Fagopyrum tataricum(L.)Gaertn)全基因组数据为平台,采用生物信息学方法,挖掘出9个11S种子储藏蛋白基因,并对其定位、蛋白结构、系统发育及表达模式进行了分析。结果表明,苦荞9个11S种子储藏蛋白基因编码的蛋白长度为189~914 aa,等电点位于5.18~9.82之间,分子量为21.27~103.33 kD;定位分析结果显示,这些成员位于苦荞基因组的6条连锁群上(Megascaffold2/5以及scaffold77/344/395/861);序列比对分析发现,除了1个11S种子储藏蛋白sample1_00009513-RA具有1个cupin保守结构域外,其余8个都含有2个cupin结构域,并且在cupin保守结构域中,苦荞和拟南芥(Arabidopsis thaliana(L.)Heynh)共有14个保守的氨基酸残基;蛋白结构预测表明,苦荞11S种子储藏蛋白的结构具有2种类型;苦荞与其它6个物种[拟南芥、花生(Arachis hypogaea Linn.)、大豆(Glycine max(Linn.)Merr.)、杏仁(Armeniaca vulgaris Lam.)、胡桃(Juglans regia L.)和芝麻(Sesamum indicum Linn.)]11S种子储藏蛋白以及苦荞过敏蛋白(TBb和TBt)系统发育分析结果表明,这些蛋白可以分为3类,共具有4对旁系同源蛋白和3对直系同源蛋白;与已报道的苦荞过敏性储藏蛋白以及其它5个物种(花生、大豆、杏仁、胡桃和芝麻)的11S过敏蛋白比较发现,5个11S种子储藏蛋白(sample1_00013128-RA、sample1_00013130-RA、sample1_00021677-RA、sample1_00021668-RA和sample1_00021674-RA)与苦荞2个过敏蛋白的同源性较高,同时它们与胡桃11S过敏蛋白的同源性最高,但尚需进一步实验来确定这5个成员是否为食物过敏原;RNA-Seq转录组数据显示,4个基因(sample1_00018411-RA、sample1_00026786-RA、sample1_00021674-RA、sample1_00022718-RA)在2种荞麦属植物的灌浆期种子中表达水平较高,且在‘大苦1号’中的表达水平要高于‘大甜1号’。  相似文献   

12.
13.
Aspartic proteinases are present in a variety of organisms including plants. Common features of aspartic proteases include an active site cleft that contains two catalytic aspartic residues, acid pH optima for enzymatic activity, inhibition by pepstatin A. Plant aspartic proteinases occur in seeds and may be involved in the processing of storage proteins. Many of them have been purified and characterized. The presence of aspartic proteases in seeds of Centaurea calcitrapa during germination was investigated by measuring the activity on enzyme extracts. The aspartic proteases are present mainly in the beginning of seed germination suggesting that they could initiate the degradation of protein reserves in germinating seeds.

These proteases were purified by salt precipitation followed by anion-exchange chromatography. Purified aspartic proteases have an optimal pH between 3.5 and 4.5, using FTC-hemoglobin as substrate and an optimal temperature at 52 °C. The ability of seed extracts for milk clotting was tested and the clotting time that was achieved is in the same range found for flower extracts appropriated for special cheeses in which weak clotting agents are required.  相似文献   


14.
15.
Electron microscopy of seed-storage globulins   总被引:1,自引:0,他引:1  
The quaternary structures of a range of seed globulins, including examples of both the so-called 7 S and 11 S types, have been examined by electron microscopy. The legume 7 S proteins, phaseolin (bean), beta-conglycinin (soybean), and vicilin (pea), appear as flat discs of diameter ca. 8.5 nm and thickness ca. 3.5 nm formed by association of three subunit domains. Phaseolin converts to an 18 S tetramer at acid pH, and images recorded under these conditions suggest that four of the 7 S protomer discs associate to form the faces of a regular tetrahedron. The classical 11 S seed globulins, cucurbitin (pumpkin) and legumin (pea), are approximately spherical molecules of diameter ca. 8.8 nm composed of six subunits. In contrast, the hexameric 10 S storage protein from lupin seed, conglutin gamma, appears toroidal in shape with outer diameter ca. 10.3 nm and thickness ca. 2.2 nm. These results indicate that constraints imposed on seed proteins by their role in sustaining the germinating plant may have allowed a variety of different globulin structures to accumulate in the protein-storage bodies of seeds.  相似文献   

16.
Vacuolar sorting of seed storage proteins is a very complex process since several sorting pathways and interactions among proteins of different classes have been reported. In addition, although the C-terminus of several 7S proteins is important for vacuolar delivery, other signals seem also to be involved in this process. In this work, the ability of two sequences of the Amaranthus hypochondriacus 11S globulin (amaranthin) to target reporter proteins to vacuoles was studied. We show that the C-terminal pentapeptide (KISIA) and the GNIFRGF internal sequence fused at the C terminal region of genes encoding secretory versions of green fluorescent protein (GFP) and GFP-beta-glucuronidase (GFP-GUS) were sufficient to redirect these reporter proteins to the vacuole of Arabidopsis cells. According to the three-dimensional structure of 7S and 11S storage globulins, this internal vacuolar sorting sequence corresponds to the alpha helical region involved in trimer formation, and is conserved within these families. In addition, these sequences were able to interact in vitro, in a calcium dependent manner, with the sunflower vacuolar sorting receptor homolog to pea BP-80/AtVSR1/pumpkin PV72. This work shows for the first time the role of a short internal sequence conserved among 7S and 11S proteins in vacuolar sorting.  相似文献   

17.
Expression of storage-protein genes during soybean seed development   总被引:9,自引:0,他引:9  
D. W. Meinke  J. Chen  R. N. Beachy 《Planta》1981,153(2):130-139
Mature seeds of Glycine max (L.) Merr. contain two major storage proteins, a glycosylated 7S protein (conglycinin) and a non-glycosylated 11S protein (glycinin). Accumulation of these proteins and their mRNAs during seed development in cv. Provar was studied by SDS polyacrylamide gel electrophoresis and by Northern (DNA-RNA) hybridization. The 11S acidic and basic subunits and the 7S and subunits began to accumulate 18–20 d after pollination, shortly after the termination of cell division in developing cotyledons, whereas the 7S and 11S A-4 subunits were not detected until one to two weeks later, during the maturation phase of development. Messenger RNAs for 7S and 11S proteins were first detected 14–18 d after pollination, several days before the accumulation of storage proteins. Extracts from embryonic axes contained reduced levels of the 7S subunit, very little 11S protein, no detectable 7S or 11S A-4 subunits, and an additional 7S subunit not found in cotyledons. Soybean axes and cotyledons therefore differ in their synthesis of seed storage proteins.Abbreviations cDNA complimentary DNA - mRNA messenger RNA - SDS sodium dodecyl sulfate  相似文献   

18.
The proteins in the oilseeds of species from 11 families, including sunflower, mustard, linseed, almond, lupin, peanut, cucumber, Brazil nut, hazelnut, yucca, castor bean, and cottonseed were studied. Sucrose gradient centrifugation showed that a substantial proportion of the total seed protein from each species migrated with a 2S sedimentation coefficient. The 2S proteins, being water-soluble and thus termed albumins, comprised 20–60% of the total seed proteins, while faster migrating globulins comprised the rest. The amino acid compositions of the 2S proteins were characterisitic of storage proteins by having a high amide content. However, the 2S proteins are different from the classical globulin storage proteins in having a high content of cysteine. It is proposed that 2S albumins are seed storage proteins with a wide distribution and with chemical properties distinct from those of the globulin storage proteins. They play an additional and unique role of providing sulfur reserve for germination.  相似文献   

19.
Seed proteome analysis by 2D IEF/SDS-PAGE techniques is challenging for the intrinsic difficulties related to quantitative disparity of the seed proteins, i.e. storage and non-storage proteins, their polymorphic nature, the extensive post-translational modifications and the paucity of deposited primary structures available. Conversely, 2D maps of seed proteomes can be extremely useful for a number of fundamental and applied investigations. In this work, we have used a combination of two experimental approaches to identify the main protein components of an emerging protein-rich legume seed, that is white lupin seed (Lupinus albus, L.). One is the canonical proteomic approach including 2D electrophoretic separation and mass spectrometry of selected trypsin-digested polypeptides; the other approach is a group comparative 2D electrophoretic analysis of cotyledonary protein families. To this second purpose, the three main families of lupin seed proteins, namely alpha-conglutins, the 11S globulin fraction, beta-conglutins, the 7S globulin fraction, and gamma-conglutin, a basic 7S protein, were isolated by conventional biochemical techniques and their 2D reference maps were compared with the total protein map. With the first approach 37 out of 40 spots, making up about 35% of total spot volumes in the 2D map, were found to belong to the main seed protein families. Thanks to cDNA-deduced lupin storage protein sequences, determined on purpose and deposited, most of the identification statistical parameters were very good. Moreover, it was possible to identify several endogenously proteolysed subunits in the map. The second comparative approach, beside confirming these attributions, allowed to allocate 124 polypeptides within the three main lupin protein families. These two approaches proved to be mutually validating and their combined use was effective for the establishment of a seed proteome map even in the case of sequence and protein post-translational processing lack of information. The results obtained also extend our knowledge of the seed storage protein polymorphism of white lupin.  相似文献   

20.
The degradation of storage protein in germinating cucumber seedswas shown to proceed via two distinct steps. First, severalproteases with acidic isoelectric points (pIs) were involvedin solubilization and partial degradation of 11S globulin. Treatmentof seedlings with cycloheximide inhibited this step and theexpression of these proteases. Thus, the first step appearedto be governed by these proteases, which were synthesized denovo after imbibition. The first step was observed in dark-growncotyledons, but the complete degradation of 11S globulin didnot occur in the absence of illumination. An additional protease,with a pI of 4.5, was induced by illumination, and it was involvedin the further cleavage of the partially degraded products ofIIS globulin. Thus, the complete degradation of the storageprotein proceeded via a two-step process in illuminated germinatingseedlings. Light is needed to induce the second step in thedegradation of 11S globulin that supplies the nitrogen requiredfor development of the photosynthetic apparatus in the greeningcotyledon. (Received November 9, 1995; Accepted January 31, 1996)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号