首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Phytochemistry》1986,25(12):2897-2899
Seven bitter ferulic acid esters of sucrose have been isolated from Lilium speciosum var. rubrum. These compounds were identified as 3,6′-diferuloylsucrose, 4-acetyl-3,6′-diferuloylsucrose, 6-acetyl-3,6′-diferuloylsucrose, 4′-acetyl-3,6′-diferuloylsucrose, 4,6-diacetyl-3,6′-diferuloylsucrose, 6,3′-diacetyl-3,6′-diferuloylsucrose and 4,6,3′-triacetyl-3,6′-diferuloylsucrose on the basis of spectroscopic studies.  相似文献   

2.
7-MethyljugIone, 8,8′-dihydroxy-4,4′-dimethoxy-6,6′-dimethyl-2,2′-binaphthyl-1,1′-quinone, 2-methylnaphthazarin, mamegakinone and euclein have been isolated from Euclea pseudebenus. Euclein is the 3,6′-dimer of 7-methyljuglone.  相似文献   

3.
8,8′-Dihydroxy-4,4′-dimethoxy-6,6′-dimethyl-2,2′-binaphthyl-1,1′-quinone, 7-methyljuglone, 8′-hydroxydiospyrin, and eucleolatin have been isolated from the root bark of E. lanceolata. Eucleolatin is the 3,6′or 3,7′- dimer of 2-methylnaphthazarin.  相似文献   

4.
Nucleophilic displacement of 4,4′-di-O-mesyl-α,α-trehalose hexabenzoate occurred very readily to give, by a double inversion, the thermodynamically more stable 4,4′-di-iodide in 93% yield with overall retention of configuration. Reductive dehalogenation of the 4,4′-di-iodide with hydrazine hydrate—Raney nickel followed by debenzoylation afforded 4,4′-dideoxytrehalose in high, overall yield. Alternatively, treatment of trehalose with sulphuryl chloride afforded 4,6-dichloro-4,6-dideoxy-α-D-galactopyranosyl 4,6-dichloro-4,6-dideoxy-α-D-galactopyranoside, which underwent selective dehalogenation at the secondary positions on treatment with hydrazine hydrate—Raney nickel. Subsequent nucleophilic displacement of the primary chlorine substituents with sodium acetate in N,N-dimethylformamide gave, after deacetylation, 4,4′-dideoxy-α,α-trehalose. Repeated treatment of the 4,4′,6,6′-tetrachlorotrehalose derivative with hydrazine hydrate—Raney nickel gave 4,4′,6,6′-tetradeoxy-α,α-trehalose. An alternative route to the tetradeoxy derivative was via thiocyanate displacement of the 4,4′,6,6′-tetramethanesulphonate. The tetrathiocyanate, formed in poor yield, was desulphurized with Raney nickel to give the tetradeoxytrehalose. Treatment of 4,6-dichloro-4,6-dideoxy-α-D-galactopyranosyl 4,6-dichloro-4,6-dideoxy-α-D-galactopyranoside with methanolic sodium methoxide yielded, initially, 3,6-anhydro-4-chloro-4-deoxy-α-D-galactopyranosyl 4,6- dichloro-4,6-dideoxy-α-D-galactopyranoside which was transformed into the 3,6:3′,6′-dianhydro derivative. Reductive dechlorination of the dianhydride proceeded smoothly to give the 3,6:3′,6′-dianhydride of 4,4′-dideoxytrehalose.  相似文献   

5.
Two new coumarins have been isolated from the aerial parts of Amyris balsamifera. On the basis of spectral and chemical data, these have been identified as (R)-(+)-6-(2′-hydroxy-3′-methyl-3′-butenyl)-7-methoxycoumarin and balsamiferone, 7-hydroxy-3,6-bis (3′-methyl-2′-butenyl)-coumarin.  相似文献   

6.
《Phytochemistry》1986,25(12):2837-2840
Two new carotenoids, cucurbitaxanthin A [(3S,5R,6,R3′R)-3,6-epoxy-5,6-dihydro-β,β-carotene-5,3′-diol] and cucurbitaxanthin B [(3S,5R,6R,3′S,5′R,6′S)-3,6,5′,6′-diepoxy-5,6,5′,6′-tetrahydro-β-β-carotene-5,3′-diol] have been isolated from the pumpkin Cucurbita maxima.  相似文献   

7.
The water soluble portion of the aerial parts of Hypericum canariense L. yielded after acetylation the 5,7,3′4′-tetra- and 7,3′4′-triacetates of a new flavonoid 5,7,3′,4′-tetrahydroxy-3-O-β-d-(methyl 2,3,4-triacetoxypyranuronyl)-quercetin, the 3′-acetate of a new flavonoid 3′-hydroxy-5,7,4′-trimethoxy-3-O-β-d-(methyl 2,3,4-triacetoxypyranuronyl)-quercetin, the 3′-acetate and the 3′5′-diacetate of the new flavonoid 5,3′dihydroxy-7,4′-dimethoxy-3-β-d-(methyl 2,3,4-triacetoxypyranuronyl)-quercetin, the xanthone derivative mangiferin 2′,3′,4′,6′-tetraacetate and the latter's new 1,3,6,7′-tetramethoxy, 1,3,6-trimethoxy-4-acetoxy and 1,7-diacetoxy-3,6-dimethoxy analogs.  相似文献   

8.
A new sesquiterpene alcohol, helianthol A, was isolated from the aerial parts of Helianthus tuberosus. The structure of this compound has been established as (+)-2-methyl-6-[4-methyl-3′-cyclohexen-1′-(R)-yl]-3,6-heptadien-2-ol by chemical and spectroscopic methods.  相似文献   

9.
Nineteen flavonoids were isolated from Artemisia ludoviciana var. ludoviciana, including a new 2′- hydroxy- 6-methoxyflavone, 5,7,2′,4′-tetrahydroxy-6,5′-dimethoxyflavone. The known compounds include quercetagetin 3,6,3′,4′-tetramethyl ether, eupatilin, 5,7-dihydroxy-3,6,8,4′-tetramethoxyflavone, luteolin 3′,4′-dimethyl ether, jaceosidin, 5,7,4′-trihydroxy-3,6-dimethoxyflavone, tricin, hispidulin, chrysoeriol, kaempferol 3-methyl ether, apigenin, axillarin, eupafolin, selagin and luteolin together with three flavones which were previously isolated for the first time from Artemisia frigida: 5,7,4′-trihydroxy-6, 3′,5′-trimethoxyflavone, 5,7,3′-trihydroxy-6,4′,5′-trimethoxyflavone and 5,7,3′,4′-tetrahydroxy-6,5′- dimethoxyflavone.  相似文献   

10.
《Phytochemistry》1986,25(11):2551-2553
Ten flavonoids have been isolated from a dichloromethane leafwash of Perityle vaseyi. Trace amounts of 7,4′-dimethylnaringenin were observed along with nine O-methylated flavonols. Two kaempferol, four 6-hydroxykaempferol and three 6-hydroxyquercetin O-methylated derivatives were identified. 5,7,4-Trihydroxy-3,6-dimethoxyflavone and 5,4′-dihydroxy-3,6,7-trimethoxyflavone were the major components.  相似文献   

11.
James A. Mears 《Phytochemistry》1973,12(9):2265-2268
Casticin (V), 5,7,3′,4′-tetrahydroxy-3,6-dimethoxyflavone-7-glycoside (I), 5,7,4′-trihydroxy-6-methoxyflavone-7-glycoside (hispidulin 7-glycoside) (IV), 5,4′-dihydroxy-3,6,7,3′-tetramethoxyflavone (VII) and 5,7-dihydroxy-3,6,3′,4′-tetramethoxyflavone (XII) were found, with the coumarin scopoletin (IX), in various combinations in the three species of Parthenium section Bolophytum. No infraspecific variation was detected in these calciphilic relicts.  相似文献   

12.
The structures of three previously unidentified carotenoids from Eutreptiella gymnastica are reported. These include siphonein with defined n-2-trans-2-dodecenoic esterifying acid and assigned 3R(?), 3′R,6′R chirality, (3R)-3′,4′-anhydrodiatoxanthin and eutreptiellanone (3,6-epoxy-3′,4′,7′,8′-tetradehydro-5,6-dihydro-β,β-caroten-4-one) with probable 3S,5R,6S chirality.  相似文献   

13.
Twelve flavonoids including one new sulfate were isolated from Neurolaena lobata, and six known flavonoids were obtained from N. macrocephala. The new compound isolated from N. lobata is 6-hydroxykaempferol 3-methyl ether 7-sulfate, and the known flavonoids are 6-hydroxykaempferol 3,7-di-dimethyl ether, 6-hydroxykaempferol, 3-methyl ether 7-glucoside, 6-hydroxykaempferol 7-glucoside, quercetagetin and its 7-glucoside, quercetagetin 3,6- and 3,7-dimethyl ethers, quercetagetin 3-methyl ether 7-glucoside and 7-sulfate, 6-hydroxyluteolin 3′-methyl ether and 6-hydroxyluteolin 7-glucoside. The known flavonoids identified from N. macrocephala are quercetagetin 3,6- and 3, 7-dimethyl ethers, quercetagetin 6-methyl ether 7-glucoside, quercetagetin 3,6-dimethyl ether 7-glucoside, quercetagetin 7-glucoside and quercetagetin 3-methyl ether 7-sulfate.  相似文献   

14.
The fruits of Mabea caudata contain, besides 5,7,4′-trihydroxyflavanone (naringenin), naringenin 7-O-β-(3,6-di-p-coumaroylglucoside) and naringenin 7-O-β-(3-p-coumaroylglucoside).  相似文献   

15.
Besides spinatoside (3,6-dimethoxy-5,7,3′,4′-tetrahydroxyflavone 4′-O-β-D-glucopyranuronide), three new flavonol glycosides have now been isolated from the polar fractions of the methanolic extract of Spinacia oleracea. They have been identified as patuletin 3-O-β-D-glucopyranosyl-(1 → 6)-[β-D-apiofuranosyl-(1 → 2)]-β-D-glucopyranoside, patuletin 3-O-β-gentiobioside and spinacetin 3-O-β-gentiobioside, respectively.  相似文献   

16.
The synthesis, characterisation and cyclic voltam-metric behaviour of new complexes of 2,2′-bipyrimidine (bpm) with the metals rhodium, osmium, platinum, palladium and mercury and 3,6-di(2-pyridyl)- 1,2,4,6-sym-tetrezine (dpt) with nickel and ruthenium are described.  相似文献   

17.
A new flavanone glycoside 5-hydroxy-6,7,3′,4′,5′-pentamethoxyflavanone 5-O-α-l-rhamnopyranoside along with quercetagetin 3,6-dimethyl ether and an anthraquinone glycoside have been isolated from the stem bark of Cassia renigera. The two flavonoids were characterized by spectral and chemical studies.  相似文献   

18.
The inertness of the alkenic bond towards electrophilic additions in 3-exocyano-3-(methylthio)-2-thiabicyclo[2.2.1]hept-5-ene S,S,S′,S′-tetraoxide (5), 3,6-dihydro-2-(methylthio)-2H-thiopyran-2-carbonitrile S,S,S′,S′-tetraoxide (3), and 2-(acetamidomethyl)-3,6-dihydro-2-(methylthio)-2H-thiopyran S,S,S′,S′-tetraoxide (4) is attributed to the “supra-annular effect” and field effects. Conformational analysis of a pentadeuterated derivative of 4 (10) is reported. On the basis of the 220-MHz 1H n.m.r.-spectral data of 10, the compound was concluded to adopt the 0H2 conformation in chloroform solution.  相似文献   

19.
A leaf wash of Wyethia bolanderi afforded eight known methylated flavonols: santin, ermanin, jaceidin, 3,6-dimethoxyapigenin, kaempferide, isokaempferide, axillarin and quercetin 3-methyl ether. A leaf wash of Balsamorhiza macrophylla afforded six known methylated flavonols: centaureidin, quercetin 3,4′-dimethyl ether, axillarin, spinacetin, tamarexetin and quercetin 3-methyl ether. The chemotaxonomy of the two genera is discussed briefly.  相似文献   

20.
The perennial American desert shrub, Gutierrezia microcephala, contains 20 flavonol methyl ethers displaying nine different oxygenation patterns. These include 11 new flavonols: 5,7-dihydroxy-3,6,8,3′,4′,5′-hexamethoxyflavone, 5,7,4′-trihydroxy-3,6,8,3′,5′-pentamethoxyflavone, 5,7,3′-trihydroxy-3,6,8,4′,5′-pentamethoxyflavone, 5,7,2′,4′-tetrahydroxy-3,6,8,5′-tetramethoxyflavone, 5,7,3′,4′-tetrahydroxy-3,6,8-trimethoxyflavone, 5,7,8,3′,4′-pentahydroxy-3,6-dimethoxyflavone, 3,5,7,3′,4′-pentahydroxy-6,8-dimethoxyflavone, 5,7,4′-trihydroxy-3,6,8-trimethoxyflavone, 5,7,8,4′-tetrahydroxy-3,3′-dimethoxyflavone, 5,7,8,3′,4′-pentahydroxy-3-methoxyflavone and 5,7,8,4′-tetrahydroxy-3-methoxyflavone. In addition, the following known flavonols were isolated: 5,7-dihydroxy-3,8,3′,4′,5′-pentamethoxyflavone, 5,7,4′-trihydroxy-3,8-dimethoxyflavone, 5,7,4′-trihydroxy-3,8,3′-trimethoxyflavone, 5,7,3′,4′-tetrahydroxy-3,8-dimethoxyflavone, 5,7,4′-trihydroxy-3,6,3′-trimethoxyflavone, 5,7,3′,4′-tetrahydroxy-3-methoxyflavone, 5,4′-dihydroxy-3,6,7,8,3′-pentamethoxyflavone, 5,7,4′-trihydroxy-3,6,8,3′-tetramethoxyflavone and 3,5,7,4′-tetrahydroxy-6,8,3′-trimethoxyflavone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号