首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of tissue position (viz. outer vs inner mesocarp) and heat treatment (48°C, 20 min) on variations in polygalacturonase (EC 3.2.1.15 and EC 3.2.1.67) activity and ripening of fruits of Carica papaya L. cv. Backcross Solo were investigated. Polygalacturonase activity increased during ripening concomitantly with an increase in tissue softness and soluble polyuronide level. Throughout ripening, inner mesocarp tissue was softer and contained higher polygalacturonase activity than outer mesocarp tissue. Titratable acidity as well as ß-galactosidase (EC 3.2.1.23) activity also increased during ripening; however, unlike polygalacturonase, their level or activity was lower in inner than in outer mesocarp. Ascorbic acid could partially account for the increase in titratable acidity during ripening but contributed very little to the differences in titratable acid levels between outer and inner mesocarp. Heat treatment had no effect on either fruit softness or titratable acidity, but it markedly reduced the increase in ascorbic acid and polygalacturonase activity during ripening. Ripening, as reflected by changes in tissue softness and polygalacturonase activity, progressed outwardly from the interior towards the exterior of the fruit. The effect of heat treatment in suppressing polygalacturonase activity was relatively greater in inner than in outer mesocarp, suggesting that sensitivity of the enzyme to heat treatment may vary with stage of ripeness of the tissue.  相似文献   

2.
During the ripening of avocado ( Persea americana Mill.) fruit, water-soluble polyuronides increased dramatically, concomitant with marked downshifts in molecular mass. Treatment of cell walls from pre-ripe fruit with purified avocado polygalacturonase (PG, EC 3.2.1.15) promoted the release and molecular mass downshift of polyuronides. The polyuronides released by PG were similar in size distribution to water-soluble polyuronides from fruit at intermediate stages of ripening. Polyuronides released from pre-ripe fruit by PG, although of relatively high molecular mass, were not further degraded upon additional incubation with fresh enzyme. Similarly, water-soluble polyuronides prepared from fruit at intermediate stages of ripening were largely resistant to the action of purified PG in vitro. When polyuronides derived from fruit at intermediate stages of ripening were treated with weak alkali or pectinmethylesterase (PME, EC 3.1.1.11), extensive molecular mass downshifts occurred in response to incubation with PG. These results suggest that PG plays the central role in polyuronide degradation in ripening avocado fruit cell walls and that partial de-esterification is necessary for the increase in the susceptibility of polyuronides to PG. Differences in the patterns of polyuronide depolymerization in avocado fruit compared with the more thoroughly characterized tomato fruit are discussed.  相似文献   

3.
The role of the cell wall hydrolase polygalacturonase (PG) during fruit ripening was investigated using novel mutant tomato lines in which expression of the PG gene has been down regulated by antisense RNA. Tomato plants were transformed with chimaeric genes designed to express anti-PG RNA constitutively. Thirteen transformed lines were obtained of which five were analysed in detail. All contained a single PG antisense gene, the expression of which led to a reduction in PG enzyme activity in ripe fruit to between 5% and 50% that of normal. One line, GR16, showed a reduction to 10% of normal PG activity. The reduction in activity segregated with the PG antisense gene in selfed progeny of GR16. Plants homozygous for the antisense gene showed a reduction of PG enzyme expression of greater than 99%. The PG antisense gene was inherited stably through two generations. In tomato fruit with a residual 1% PG enzyme activity pectin depolymerisation was inhibited, indicating that PG is involved in pectin degradation in vivo. Other ripening parameters, such as ethylene production, lycopene accumulation, polyuronide solubilisation, and invertase activity, together with pectinesterase activity were not affected by the expression of the antisense gene.  相似文献   

4.
Papaya ( Carica papaya L. cv. Eksotika) fruit softens differentially in relation to position of the tissue. The inner mesocarp tissue is softer, and its firmness decreases more rapidly during ripening than that of the outer mesocarp tissue. As the fruit ripens, pectin solubility and depolymerisation increase. Hemicellulose, too, appears to be depolymerised but, unlike pectins, this apparent degradation of hemicellulose is associated with an increase rather than a decrease in its level. Pectin and hemicellulose depolymerisation began in the inner mesocarp tissue at about the same time as β-galactosidase (EC 3.2,1.23) activity started to increase and tissue firmness began to decrease more rapidly. In contrast, pectin solubilisation in both outer and inner mesocarp tissues occurred steadily throughout ripening at a comparable rate and paralleled closely the increase of polygalacturonase (PG; EC 3.2.1.67) and pectinesterase (EC 3.1.1.11). In general, irrespective of enzyme distribution, tissue softening during ripening was more closely related to changes in β-galactosidase activity than to PG or pectinesterase activity. Papaya, β-galactosidase appears to be an important wall degrading enzyme and may contribute significantly to differential softening, perhaps by complementing the action of polygalacturonase. Polygalacturonase activity increased with increasing depth of the mesocarp tissue, as did softening of the fruit.  相似文献   

5.
Degradation of Cell Wall Polysaccharides during Tomato Fruit Ripening   总被引:26,自引:17,他引:9       下载免费PDF全文
Changes in neutral sugar, uronic acid, and protein content of tomato (Lycopersicon esculentum Mill) cell walls during ripening were characterized. The only components to decline in amount were galactose, arabinose, and galacturonic acid. Isolated cell walls of ripening fruit contained a water-soluble polyuronide, possibly a product of in vivo polygalacturonase action. This polyuronide and the one obtained by incubating walls from mature green fruit with tomato polygalacturonase contained relatively much less neutral sugar than did intact cell walls. The ripening-related decline in galactose and arabinose content appeared to be separate from polyuronide solubilization. In the rin mutant, the postharvest loss of these neutral sugars occurred in the absence of polygalacturonase and polyuronide solubilization. The enzyme(s) responsible for the removal of galactose and arabinose was not identified; a tomato cell wall polysaccharide containing galactose and arabinose (6:1) was not hydrolyzed by tomato β-galactosidase.  相似文献   

6.
《Phytochemistry》1987,26(12):3137-3139
There are marked differences between polyuronide degradation in vivo during tomato ripening and in vitro during the autolysis of cell wall preparations. Experiments using purified enzymes and enzymically inactive wall preparations show that the combined action of polygalacturonase (E.C. 3.2.1.15) and pectinesterase(E.C. 3.1.1.11)can mimic this in vitro autolysis of cell walls. Assuming these two enzymes are also responsible for polyuronide degradation in vivo their combined action must be restricted in some way.  相似文献   

7.
Biochemical changes associated with the ripening of hot pepper fruit   总被引:5,自引:0,他引:5  
Hot pepper ( Capsicum annuum L. cv. Chooraehong) fruit underwent a respiratory climacteric during ripening. However, the rate of ethylene production was low, reaching a maximum of approximately 0.7 μl kg−1 h−1 at the climacteric peak when the surface color was 30 to 40% red. Ripening was accompanied by a loss of galactose and arabinose residues from the cell wall. The content of uronic acid and cellulose in the wall changed only slightly during ripening. The average molecular weight of a cell wall hemicellulosic fraction shifted progressively toward a lower molecular weight during ripening. Total β-galactosidase (EC 3.2.1.23) activity increased 50-fold from the immature green to the red ripe stage. No polygalacturonase (EC 3.2.1.15) activity was detected at any stage of ripeness. Thus, the loss of galactose and arabinose residues from the cell wall, as well as the observed modification of hemicelluloses during ripening, seem to be unrelated to active polygalacturonase. Soluble polyuronide content remained relatively constant at approximately 60 μg (g fresh weight)−1 as fruit ripended.  相似文献   

8.
A nonsoftening tomato (Lycopersicon esculentum L.) variety, dg, was examined to assess the physiological basis for its inability to soften during ripening. Total uronic acid levels, 18 milligrams uronic acid/100 milligrams wall, and the extent of pectin esterification, 60 mole%, remained constant throughout fruit development in this mutant. The proportion of uronic acid susceptible to polygalacturonase in vitro also remained constant. Pretreatment of heat-inactivated dg fruit cell walls with tomato pectinmethylesterase enhances polygalacturonase susceptibility at all ripening stages. Pectinesterase activity of cell wall protein extracts from red ripe dg fruit was half that in extracts from analogous tissue of VF145B. Polygalacturonase activities of cell wall extracts, however, were similar in both varieties. Diffusion of uronic acid from tissue discs of both varieties increased beginning at the turning stage to a maximum of 2.0 milligrams uronic acid released/gram fresh weight at the ripe stage. The increased quantity of hydrolytic products released during ripening suggests the presence of in situ polygalacturonase activity. Low speed centrifugation was employed to induce efflux of uronide components from the cell wall tree space. In normal fruit, at the turning stage, 2.1 micrograms uronic acid/gram fresh weight was present in the eluant after 1 hour, and this value increased to a maximum of 8.2 micrograms uronic acid/gram fresh weight at the red ripe stage. However, centrifuge-aided extraction of hydrolytic products failed to provide evidence for in situ polygalacturonase activity in dg fruit. We conclude that pectinesterase and polygalacturonase enzymes are not active in situ during the ripening of dg fruit. This could account for the maintenance of firmness in ripe fruit tissue.  相似文献   

9.
Cell wall isolation procedures were evaluated to determine their effect on the total pectin content and the degree of methylesterification of tomato (Lycopersicon esculentum L.) fruit cell walls. Water homogenates liberate substantial amounts of buffer soluble uronic acid, 5.2 milligrams uronic acid/100 milligrams wall. Solubilization appears to be a consequence of autohydrolysis mediated by polygalacturonase II, isoenzymes A and B, since the uronic acid release from the wall residue can be suppressed by homogenization in the presence of 50% ethanol followed by heating. The extent of methylesterification in heat-inactivated cell walls, 94 mole%, was significantly greater than with water homogenates, 56 mole%. The results suggest that autohydrolysis, mediated by cell wall-associated enzymes, accounts for the solubilization of tomato fruit pectin in vitro. Endogenous enzymes also account for a decrease in the methylesterification during the cell wall preparation. The heat-inactivated cell wall preparation was superior to the other methods studied since it reduces β-elimination during heating and inactivates constitutive enzymes that may modify pectin structure. This heat-inactivated cell wall preparation was used in subsequent enzymatic analysis of the pectin structure. Purified tomato fruit polygalacturonase and partially purified pectinmethylesterase were used to assess changes in constitutive substrates during tomato fruit ripening. Polygalacturonase treatment of heat-inactivated cell walls from mature green and breaker stages released 14% of the uronic acid. The extent of the release of polyuronides by polygalacturonase was fruit development stage dependent. At the turning stage, 21% of the pectin fraction was released, a value which increased to a maximum of 28% of the uronides at the red ripe stage. Pretreatment of the walls with purified tomato pectinesterase rendered walls from all ripening stages equally susceptible to polygalacturonase. Quantitatively, the release of uronides by polygalacturonase from all pectinesterase treated cell walls was equivalent to polygalacturonase treatment of walls at the ripe stage. Uronide polymers released by polygalacturonase contain galacturonic acid, rhamnose, galactose, arabinose, xylose, and glucose. As a function of development, an increase in the release of galacturonic acid and rhamnose was observed (40 and 6% of these polymers at the mature green stage to 54 and 15% at the red ripe stage, respectively). The amount of galactose and arabinose released by exogenous polygalacturonase decreased during development (41 and 11% from walls of mature green fruit to 11 and 6% at the red ripe stage, respectively). Minor amounts of glucose and xylose released from the wall by exogenous polygalacturonase (4-7%) remained constant throughout fruit development.  相似文献   

10.
11.
Cell wall isolated from pericarp of normal tomato (Lycopersicon esculentum Mill. cv `Rutgers') fruit released pectic polymers in a reaction apparently mediated by wall-bound polygalacturonase that appears with the onset of ripening. Release was negligible in wall preparations from normal green and the ripening mutant rin fruit. Pectin solubilization was most extensive at pH 2.5 with a less significant peak at 5.5. Brief exposure to low (1.5) or high (7.5) pH resulted in reduction of autolytic activity, which was also inhibited by high temperature, Ca2+, and treatments employed to dissociate protein from cell wall. Uronic acid solubilization was significantly enhanced by 150 millimolar NaCl and by increasing temperature within the physiological range. These data indicate that the release of polyuronide from isolated cell walls is enzymic and may provide a convenient and reliable system for the study of softening metabolism.  相似文献   

12.
The loss of flesh firmness during muskmelon ( Cucumis melo var. reticulatus L. Naud. cv. Galia) fruit ripening was related temporally to modifications of pectic and hemicellulosic polysaccharides, and a net loss of non-cellulosic neutral sugars. An increase in solubility and a decrease in molecular size of polyuronides occurred during ripening; however, the decrease in molecular size was apparently not the result of polygalacturonase (EC 3.2.1.15) activity. Molecular size of hemicelluloses shifted from larger to smaller polymers during ripening, and this decrease was accompanied by changes in neutral sugar composition. Galactose, glucose, and xylose were the predominant neutral sugars in the hemicellulosic polymers. On a mol% basis there were decreases in galactose and glucose in large hemicellulosic polymers with ripening. Relative xylose content approximately doubled in the large polymers during ripening; xylose was the predominant neutral sugar in the small polymers and remained fairly constant.  相似文献   

13.
Pectinmethylesterase (PME, EC 3.2.1.11) and polygalacturonase (PG, EC 3.2.1.15) are known to operate in tandem to degrade methylesterified polyuronides. In this study, PGs purified from tomato and avocado fruit were compared in terms of their capacity to hydrolyze water-soluble polyuronides from avocado before and following enzymic or chemical de-esterification. When assayed using polygalacturonic acid or polyuronides from avocado fruit, the activity of PG from tomato fruit was 3-4 times higher than that from avocado fruit. High molecular mass, low methylesterified (33%) water-soluble polyuronides (WSP) from pre-ripe avocado fruit (day 0) were partially depolymerized upon incubation with purified avocado and tomato PGs. In contrast, middle molecular mass, highly methylesterified (74%) WSP from day 2 fruit were largely resistant to the action of both PGs. PME or weak alkali treatment of highly methylesterified WSP decreased the methylesterification values to 11 and 4.5%, respectively. Treatment of de-esterified WSP with either avocado or tomato PGs caused extensive molecular mass downshifts, paralleling those observed during avocado fruit ripening. Although PME and PG are found in many fruits, the pattern of depolymerization of native polyuronides indicates that the degree of cooperativity between these enzymes in vivo differs dramatically among fruits. The contribution of PME to patterns of polyuronide depolymerization observed during ripening compared with physically compromised fruit tissues is discussed.  相似文献   

14.
Avocado (Persea americana) fruit experience a rapid and extensive loss of firmness during ripening. In this study, we examined whether the chelator solubility and molecular weight of avocado polyuronides paralleled the accumulation of polygalacturonase (PG) activity and loss in fruit firmness. Polyuronides were derived from ethanolic precipitates of avocado mesocarp prepared using a procedure to rapidly inactivate endogenous enzymes. During ripening, chelator (cyclohexane-trans-1,2-diamine tetraacetic acid [CDTA])-soluble polyuronides increased from approximately 30 to 40 [mu]g of galacturonic acid equivalents (mg alcohol-insoluble solids)-1 in preripe fruit to 150 to 170 [mu]g mg-1 in postclimacteric fruit. In preripe fruit, chelator-extractable polyuronides were of high molecular weight and were partially excluded from Sepharose CL- 2B-300 gel filtration media. Avocado polyuronides exhibited marked downshifts in molecular weight during ripening. At the postclimacteric stage, nearly all chelator-extractable polyuronides, which constituted from 75 to 90% of total cell wall uronic acid content, eluted near the total volume of the filtration media. Rechromatography of low molecular weight polyuronides on Bio-Gel P-4 disclosed that oligomeric uronic acids are produced in vivo during avocado ripening. The gel filtration behavior and pattern of depolymerization of avocado polyuronides were not influenced by the polyuronide extraction protocol (imidazole versus CDTA) or by chromatographic conditions designed to minimize interpolymeric aggregation. Polyuronides from ripening tomato (Lycopersicon esculentum) fruit extracted and chromatographed under conditions identical with those used for avocado polyuronides exhibited markedly less rapid and less extensive downshifts in molecular weight during the transition from mature-green to fully ripe. Even during a 9-d period beyond the fully ripe stage, tomato fruit polyuronides exhibited limited additional depolymerization and did not include oligomeric species. A comparison of the data for the avocado and tomato fruit indicates that downshifts in polyuronide molecular weight are a prominent feature of avocado ripening and may also explain why molecular down-regulation of PG (EC 3.2.1.15) in tomato fruit has resulted in minimal effects on fruit performance until the terminal stages of ripening.  相似文献   

15.
Alcobaca is commonly regarded as an abnormally ripening mutant of the tomato (Lycopersicon esculentum Mill.). Alcobaca fruits were found to be similar to cv. Rutgers fruits in the following characteristics: time between full anthesis and the onset of ripening, response to ethephon, flavor, pH and concentrations of titratable acids, total soluble solids and reducing sugars. The pattern of CO2 and ethylene climacteric are similar in the two plant types, but the peak levels were lower and occurred later in alcobaca than in ‘Rutgers’. The mutant fruits differed from fruits of normal varieties in their greatly prolonged shelf life, their relatively low activity of polygalacturonase (PG) and polymethylgalacturonase (PMG), and their low level of endogenous ethylene. Fruits of the mutant harvested before the onset of ripening failed to reach normal pigmentation and remained yellow. Fruits harvested at the onset of ripening reached an orange color, while fruits ripened while attached to the plant reached almost normal pigmentation. These results suggest that alcobaca is a slow ripening mutant and does not belong to the category of non-ripening mutants.  相似文献   

16.
‘峰早’和‘洛浦早生’葡萄分别是‘巨峰’和‘京亚’的早熟芽变,本研究对比分析了早熟芽变与其亲本间在果实发育过程中与成熟有关的生理指标动态变化的差异。结果表明,与亲本相比,两个早熟芽变品种在果实横径、纵径、单粒重的增长速率,叶绿素、类黄酮和总酚含量变化趋势,以及β-半乳糖苷酶活性等方面的变化趋势差别不大。可溶性固形物和可溶性糖的变化趋势、类胡萝卜素的含量及脂氧合酶(LOX)活性的变化趋势在两对芽变与亲本间无明显一致的趋势,表现出的情形比较复杂。但两芽变品种花色素苷的增长速率在花后50 d均显著快于亲本,且在成熟时的绝对含量均大于对应时期亲本,这可能是早熟芽变品种果实先着色的原因之一。两芽变与亲本间果胶甲酯酶(PE)活性和多聚半乳糖醛酸酶(PG)活性变化模式相一致,且两芽变的PG酶活性增长速率均明显大于其亲本,这种变化幅度也与早熟芽变性状变化的幅度相关,所以PG酶活性增加加快了芽变品种的成熟软化,这可能是芽变比亲本早熟的原因之一。  相似文献   

17.
18.
Pectin methylesterase (PME, EC 3.1.11) demethoxylates pectins and is believed to be involved in degradation of pectic cell wall components by polygalacturonase in ripening tomato fruit. We have introduced antisense and sense chimeric PME genes into tomato to elucidate the role of PME in fruit development and ripening. Fruits from transgenic plants expressing high levels of antisense PME RNA showed <10% of wild-type PME enzyme activity and undetectable levels of PME protein and mRNA. Lower PME enzyme activity in fruits from transgenic plants was associated with an increased molecular weight and methylesterification of pectins and decreased levels of total and chelator soluble polyuronides in cell walls. The fruits of transgenic plants also contained higher levels of soluble solids than wild-type fruits. This trait was maintained in subsequent generations and segregated in normal Mendelian fashion with the antisense PME gene. These results indicate that reduction in PME enzyme activity in ripening tomato fruits had a marked influence on fruit pectin metabolism and increased the soluble solids content of fruits, but did not interfere with the ripening process.  相似文献   

19.
The nitrogen content of cell wall preparations from normal tomato (cv Ailsa Craig) fruit remained constant during ripening, whereas salt-soluble protein increased throughout this process. Tomato polygalacturonase released about twice as much protein from the preparations as salts did, with a maximum at the orange stage of development. Polygalacturonase-solubilized protein from the tomato mutant `ripening inhibitor' (rin) was less, and that from the mutant `Never ripe' (Nr) cell walls was more than that from normal wall preparations. Release of protein by fungal cellulase was limited, but was increased by the addition of polygalacturonase from the same source. Salt-solubilized protein contained a range of enzymic activities but these were distributed between fewer multimolecular forms than is the case for whole cell preparations. The results suggest that metabolically active protein, removable by strong salt solutions, cellulase, or polygalacturonase, remains attached to the cell walls of tomato fruit until late in ripening. The unusual amounts of protein attached to the cell walls of mutant fruit appear to be a reflection of the absence of some or all of the isoenzymes of polygalacturonase that are associated with normal ripening.  相似文献   

20.
Ultrastructural changes in the pericarp of tomato (Lycopersicon esculentum Mill) fruit were followed during ripening. Ethylene production was monitored by gas chromatography and samples analyzed at successive stages of the ripening process.

Changes in the cytoplasmic ultrastructure were not consistent with the suggestion that ripening is a `senescence' phenomenon. A large degree of ultrastructural organization, especially of the mitochondria, chromoplasts, and rough endoplasmic reticulum, was retained by ripe fruit.

Striking changes in the structure of the cell wall were noted, beginning with dissolution of the middle lamella and eventual disruption of the primary cell wall. These changes were correlated with appearance of polygalacturonase (EC 3.2.1.15) isoenzymes. Application of purified tomato polygalacturonase isoenzymes to mature green fruit tissue duplicated the changes in the cell wall noted during normal ripening. Possible roles of the polygalacturonase isoenzymes in cell wall disorganization are discussed.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号