首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peterson PA 《Genetics》1976,84(3):469-483
From an original A2 allele (colored aleurone), a mutable allele, a2-m-4 1629, that changes from a2 to A2 is described. Mutability is expressed as a very distinct pattern limited to the last cell division.—The mutability of a2-m-4 1629 is autonomously controlled by an En at the a2 locus. This En, inactive on standard a testers for En, is partially active on a2-m-1, an a2 tester for En, and expresses varied levels of activity from limited to nearly full suppression of the a2-m-1 color phenotype.—When the En of the a2-m-4 1629 allele transposes from the a2 locus, it behaves, at the new position, like a standard En in triggering a2-m-1, a-m-1 and a-m(r), which express colored spots on a colorless background. The activity of En is therefore different following the change in chromosome location. This finding supports the "position" hypothesis that has been proposed to explain diverse patterns observed among controlling elements. In this case mutation is related to the terminal cell state and not to tissue differences as shown with some phase-variation regulatory elements.  相似文献   

2.
Genetic screening of Saccharomyces cerevisiae mutants defective in Ca2+ homeostasis identified cls2, which exhibits a specific Ca2+-sensitive growth phenotype. We describe here the CLS2 gene and a multicopy suppressor (named BCL21, for bypass of CLS2) of the cls2 mutation. The CLS2 gene encodes a polypeptide of 410 amino acid residues, and its hydropathy profile indicates that the predicted Cls2 protein (Cls2p) contains ten putative membrane spanning regions. Immunofluorescent staining of the yeast cells expressing epitopetagged Cls2p suggests that Cls2p is localized to endoplasmatic reticulum (ER) membrane. A cls2 disruption strain is viable, but shows a Ca2+-sensitive phenotype like the original cls2 mutants. BCL21 suppresses the cls2 disruption mutation, indicating that the multicopy suppression does not require the Cls2p. Suppression of cls2 was observed even after introduction of a singlecopy plasmid harboring BCL21. The BCL21 gene encodes a protein of 382 amino acid residues and is identical to the SUR1 gene. sur1 was originally isolated as a suppressor of rvs161, which has reduced viability in nutrient starvation conditions. Possible mechanisms of the multicopy suppression are discussed.  相似文献   

3.
Uniparental inheritance of mitochondria dominates among sexual eukaryotes. However, little is known about the mechanisms and genetic determinants. We have investigated the role of the plant pathogen Ustilago maydis genes lga2 and rga2 in uniparental mitochondrial DNA (mtDNA) inheritance during sexual development. The lga2 and rga2 genes are specific to the a2 mating-type locus and encode small mitochondrial proteins. On the basis of identified sequence polymorphisms due to variable intron numbers in mitochondrial genotypes, we could demonstrate that lga2 and rga2 decisively influence mtDNA inheritance in matings between a1 and a2 strains. Deletion of lga2 favored biparental inheritance and generation of recombinant mtDNA molecules in combinations in which inheritance of mtDNA of the a2 partner dominated. Conversely, deletion of rga2 resulted in predominant loss of a2-specific mtDNA and favored inheritance of the a1 mtDNA. Furthermore, expression of rga2 in the a1 partner protected the associated mtDNA from elimination. Our results indicate that Lga2 in conjunction with Rga2 directs uniparental mtDNA inheritance by mediating loss of the a1-associated mtDNA. This study shows for the first time an interplay of mitochondrial proteins in regulating uniparental mtDNA inheritance.  相似文献   

4.
Discovery of new fragrance alleles provides important genetic resources for breeding fragrant rice. In this study, a hybrid complementation test demonstrated the association of a new fragrance allele without mutation in the coding region with flavor formation in a fragrant rice variety Nankai 138. The new allele (badh2-p-5′UTR) has a 3-bp deletion in the 5′ untranslated region and an 8-bp insertion in the promoter (?1,314 site upstream from the initiation codon). Surprisingly, we found that there is also an 8-bp insertion in the promoter of the badh2-E7 allele. We developed a new sequence tagged site functional marker to identify the badh2-p-5′UTR and badh2-E7 alleles according to the 8-bp insertion in their promoters. A cleaved amplified polymorphic sequence (AluI) functional marker targeting a common base substitution in the intron 2 of three badh2 alleles, viz. badh2-p-5′UTR, badh2-E7 and badh2-E2, was developed to identify diverse genotypes for fragrance in rice. Based on the results of sequence alignments among the three badh2 alleles, we suggest that the badh2-E7 and badh2-p-5′UTR alleles may have the same genetic origin. In addition, the genetic distance between the badh2-E7 and badh2-p-5′UTR alleles may be closer than that between the badh2-E2 and the badh2-p-5′UTR alleles, or between the badh2-E2 and the badh2-E7 alleles.  相似文献   

5.
Acid-catalysed monobutylidenation of 2-deoxy-D-arabino-hexitol, 2-deoxy-D-lyxo-hexitol, and 2-deoxy-D-erythro-pentitol yielded a 1,3-monoacetal as a kinetic product in each reaction. The thermodynamic products were 4,6-monoacetals from 2-deoxy-D-arabino-hexitol and 2-deoxy-D-lyxo-hexitol, and a 3,5-monoacetal from 2-deoxy-D-erythro-pentitol 2-Deoxy-D-lyxo-hexitol also yielded diastereoisomeric 4,5-monoacetals.  相似文献   

6.
7.
A group of human cytochrome P450 genes encompassing the CYP2A, CYP2B, and CYP2F subfamilies were cloned and assembled into a 350-kb contig localized on the long arm of chromosome 19. Three complete CYP2A genes—CYP2A6, CYP2A7, and CYP2A13—plus two pseudogenes truncated after exon 5, were identified and sequenced. A variant CYP2A6 allele that differed from the corresponding CYP2A6 and CYP2A7 cDNAs previously sequenced was found and was designated CYP2A6ν2. Sequence differences in the CYP2A6ν2 gene are restricted to regions encompassing exons 3, 6, and 8, which bear sequence relatedness with the corresponding exons of the CYP2A7 gene, located downstream and centromeric of CYP2A6ν2, suggesting recent gene-conversion events. The sequencing of all the CYP2A genes allowed the design of a PCR diagnostic test for the normal CYP2A6 allele, the CYP2A6ν2 allele, and a variant—designated CYP2A6ν1—that encodes an enzyme with a single inactivating amino acid change. These variant alleles were found in individuals who were deficient in their ability to metabolize the CYP2A6 probe drug coumarin. The allelic frequencies of CYP2A6ν1 and CYP2A6ν2 differed significantly between Caucasian, Asian, and African-American populations. These studies establish the existence of a new cytochrome P450 genetic polymorphism.  相似文献   

8.
Eicosanoids are crucial downstream signals in the insect immune responses. Phospholipase A2 (PLA2) catalyzes phospholipids, the initial step in eicosanoid biosynthesis. In mammals, the biological roles of Ca2+-independent Phospholipase A2 (iPLA2) have been extensively studied; however, only a few studies have attempted to explore iPLA2 functions in insects. In this study, we identified two iPLA2 genes (designated as BmiPLA2A and BmiPLA2B) in the silkworm, Bombyx mori. BmiPLA2A had a 2427 base pair (bp) open reading frame (ORF) that coded for a protein with 808 amino acids. In contrast, BmiPLA2B had a 1731 bp ORF that coded for a protein with 576 amino acids. Domain analysis revealed that BmiPLA2A had six ankyrin repeat domains, but BmiPLA2B lacks these domains. BmiPLA2A and BmiPLA2B were transcribed widely in various tissues and developmental stages with different expression patterns. The administration of 20-hydroxyecdysone increased their expression levels in the epidermis and hemocytes. Furthermore, challenged with virus, fungus, Gram-negative bacteria, and Gram-positive bacteria induced the expression of BmiPLA2A and BmiPLA2B with variable degrees along with different time points. Our findings imply that BmiPLA2A and BmiPLA2B may have important biological roles in the development and innate immunity of B. mori.  相似文献   

9.
10.
Ethylene regulates multiple aspects of plant growth and development in dicotyledonous plants; however, its roles in monocotyledonous plants are poorly known. Here, we characterized a subfamily II ethylene receptor, ETHYLENE RESPONSE2 (ETR2), in rice (Oryza sativa). The ETR2 receptor with a diverged His kinase domain is a Ser/Thr kinase, but not a His kinase, and can phosphorylate its receiver domain. Mutation of the N box of the kinase domain abolished the kinase activity of ETR2. Overexpression of ETR2 in transgenic rice plants reduced ethylene sensitivity and delayed floral transition. Conversely, RNA interference (RNAi) plants exhibited early flowering and the ETR2 T-DNA insertion mutant etr2 showed enhanced ethylene sensitivity and early flowering. The effective panicles and seed-setting rate were reduced in the ETR2-overexpressing plants, while thousand-seed weight was substantially enhanced in both the ETR2-RNAi plants and the etr2 mutant compared with controls. Starch granules accumulated in the internodes of the ETR2-overexpressing plants, but not in the etr2 mutant. The GIGANTEA and TERMINAL FLOWER1/CENTRORADIALIS homolog (RCN1) that cause delayed flowering were upregulated in ETR2-overexpressing plants but downregulated in the etr2 mutant. Conversely, the α-amylase gene RAmy3D was suppressed in ETR2-overexpressing plants but enhanced in the etr2 mutant. Thus, ETR2 may delay flowering and cause starch accumulation in stems by regulating downstream genes.  相似文献   

11.
Motto M  Marotta R  Di Fonzo N  Soave C  Salamini F 《Genetics》1986,112(1):121-133
Transposon mutagenesis has been used to isolate mutable alleles at the Opaque-2 (O2) locus of maize. Plants with the Activator-Dissociation (Ac-Ds) system of transposable elements and O2 were crossed as males to a stable o2 tester line. Among a population of 200,000 kernels, 198 exceptional kernels with somatic instability were recovered. In four cases, designated O2-m1, o2-m2, O2-m3 and O2-m4, variegated phenotypes appeared in F2 and subsequent generations. Genetic analyses indicated that the presence of Ds near or within the O2 gene was responsible for the observed somatic instability at the O2 locus. The phenotypes of the newly induced alleles were of two types. Alleles O2-m1, O2-m3 and O2-m4, in the absence of Ac, were characterized by kernel phenotypes indistinguishable from the wild type; in the presence of Ac they generated kernels with opaque sectors interspersed within a vitreous background. In contrast, the mutable allele o2-m2, in the absence of Ac, was characterized by kernels with a recessive phenotype similar to o2 recessive mutants. In the presence of Ac, it reverted somatically to wild-type-producing kernels with vitreous spots in an o2 background. The association of the Ds element with the O2 locus may prove a valuable tool directed to the isolation of DNA fragments bearing the O2 gene.  相似文献   

12.
13.
Mutations that reduce the expression of ribosomal proteins (RPs) or limit the activity of ribosome biogenesis-related factors frequently cause physiological and morphological changes in Arabidopsis. Arabidopsis OLI2/NOP2A, a homolog of yeast Nop2, encodes a nucleolar methyltransferase that is required for the maturation of the 25S ribosomal RNA of the 60S large ribosomal subunit. Mutant oli2 plants exhibit pointed leaves and shortened primary roots. In this study, detailed phenotypic analysis of oli2 mutant and OLI2 overexpressor lines revealed a range of phenotypes. Seeds produced by oli2 mutant and OLI2 overexpressor plants were lighter and heavier than wild-type seeds, respectively. Seeds of the oli2 mutant also showed delayed germination, whereas seeds from the OLI2 overexpressor lines germinated earlier than the wild type. The oli2 mutant also had fewer and shorter lateral roots than the wild type. The lateral root development phenotype in the oli2 mutant was similar to that of auxin-related mutants, but was not enhanced by exogenously supplied auxin. Furthermore, the oli2 mutant and OLI2 overexpressor lines were hypersensitive and less sensitive to high concentrations of sugar, respectively. Split-GFP-based bimolecular fluorescence complementation analysis revealed that OLI2 interacted with a nucleolar protein, BRX1-2, which is involved in rRNA processing for the large ribosomal subunit. Moreover, overexpression of OLI2 and BRX1-2 caused similar morphological changes, including extension of plant lifespans. These results suggest that the functions of OLI2 and its interactor BRX1-2 are intimately associated with a range of developmental events in Arabidopsis.  相似文献   

14.
We have identified the seven genes that constitute the A43 mating-type factor of Coprinus cinereus and compare the organisation of A43 with the previously characterised A42 factor. In both, the genes that trigger clamp cell development, the so-called specificity genes, are separated into α and β loci by 7 kb of noncoding sequence and are flanked by homologous genes α-fg and β-fg. The specificity genes are known to encode two classes of dissimilar homeodomain (HD1 and HD2) proteins and have different allelic forms which show little or no cross-hybridisation. By partial sequencing we identified a divergently transcribed HD1 (a1-2) and HD2 (a2-2) gene in the A43 α locus. a2-2 failed to elicit clamp cell development in three different hosts, suggesting that it is non-functional. a1-2 elicited clamp cells in an A42 host that has only an HD2 gene (a2-1) in its α locus, thus demonstrating that the compatible Aα mating interaction is between an HD1 and an HD2 protein. The A43 β locus contains three specificity genes, the divergently transcribed HD1 and HD2 genes b1-2 and b2-2 and a third HD1 gene (d1-1) that was shown by hybridisation and transformation analyses to be functionally equivalent to d1-1 in A42. An untranscribed footprint of a third A42 HD1 gene, c1-1, was detected between the A43 b2-2 and d1-1 genes by Southern hybridisation.  相似文献   

15.
Lee M. Silver 《Cell》1982,29(3):961-968
Naturally occurring t haplotypes suppress recombination over a region of mouse chromosome 17 that includes the H-2 complex. Each of these t haplotypes is associated with a specific set of H-2 alleles and can be placed into one of a limited number of complementation groups. Genetic studies have demonstrated the existence of a basic homology in genomic organization among all t haplotypes. We used an H-2 cDNA probe to investigate, at the molecular level, possible relationships among the H-2 regions of different t haplotypes. We identified a family of t haplotype-specific restriction fragments that carry DNA sequences homologous to the H-2-like genes. Surprisingly, the H-2-defined restriction patterns from all five complete t haplotypes analyzed are highly homologous, even though H-2 gene products expressed are antigenically distinct. These data lead to two major conclusions. First, all t haplotypes were derived from a small number of closely related ancestors. Second, the H-2 complex region associated with each primordial t chromosome has been maintained within at least the five present-day t haplotypes analyzed here. Hence the H-2 complex is an integral component of naturally occurring t haplotypes.  相似文献   

16.
Active transport across the outer membrane in gram-negative bacteria requires the energy that is generated by the proton motive force in the inner membrane. This energy is transduced to the outer membrane by the TonB protein in complex with the proteins ExbB and ExbD. In the pathogen Vibrio anguillarum we have identified two TonB systems, TonB1 and TonB2, the latter is used for ferric-anguibactin transport and is transcribed as part of an operon that consists of orf2, exbB2, exbD2, and tonB2. This cluster was identified by a polar transposon insertion in orf2 that resulted in a strain deficient for ferric-anguibactin transport. Only the entire cluster (orf2, exbB2, exbD2 and tonB2) could complement for ferric-anguibactin transport, while just the exbB2, exbD2, and tonB2 genes were unable to restore transport. This suggests an essential role for this Orf2, designated TtpC, in TonB2-mediated transport in V. anguillarum. A similar gene cluster exists in V. cholerae, i.e., with the homologues of ttpC-exbB2-exbD2-tonB2, and we demonstrate that TtpC from V. cholerae also plays a role in the TonB2-mediated transport of enterobactin in this human pathogen. Furthermore, we also show that in V. anguillarum the TtpC protein is found as part of a complex that might also contain the TonB2, ExbB2, and ExbD2 proteins. This novel component of the TonB2 system found in V. anguillarum and V. cholerae is perhaps a general feature in bacteria harboring the Vibrio-like TonB2 system.  相似文献   

17.
18.
Giardia duodenalis cysteine proteases have been identified as key virulence factors and have been implicated in alterations to intestinal goblet cell activity and mucus production during Giardia infection. The present findings demonstrate a novel mechanism by which Giardia cysteine proteases modulate goblet cell activity via cleavage and activation of protease-activated receptor 2. Giardia duodenalis (assemblage A) increased MUC2 mucin gene expression in human colonic epithelial cells in a manner dependent upon both protease-activated receptor 2 activation and Giardia cysteine protease activity. Protease-activated receptor 2 cleavage within the N-terminal activation domain by Giardia proteases was confirmed using a nano-luciferase tagged recombinant protease-activated receptor 2. In keeping with these observations, the synthetic protease-activated receptor 2-activating peptide 2fLIGRLO-amide increased Muc2 gene expression in a time-dependent manner. Calcium chelation and inhibition of the ERK1/2 mitogen activated protein kinase pathway inhibited Muc2 upregulation during Giardia infection, consistent with canonical protease-activated receptor 2 signaling pathways. Giardia cysteine proteases cleaved both recombinant protease-activated receptor 1 and protease-activated receptor 2 within their extracellular activation domains with isolate-dependent efficiency that correlated with the production of cysteine protease activity. Protease-activated receptors represent a novel target for Giardia cysteine proteases, and these findings demonstrate that protease-activated receptor 2 can regulate mucin gene expression in intestinal goblet cells.  相似文献   

19.
The synthesis of polyunsaturated fatty acids (PUFAs), the most abundant fatty acids in plants, begins with a reaction catalyzed by fatty acid desaturase 2 (FAD2; EC 1.3.1.35), also called microsomal oleate Δ12-desaturase. Since the FAD2 gene was first identified in Arabidopsis thaliana, FAD2 research has gained wide interest as the essential enzyme for synthesizing PUFA. Grapes are one of the most frequently cultivated fruits in the world, with most commercial growers cultivating Vitis vinifera and V. labrusca. Grapeseed oil contains a high proportion, 60–70% of linoleic acid (18:2). We cloned two putative FAD2 genes from V. labrusca cv. Campbell Early based on V. vinifera genome sequences. Deduced amino acid sequences of two putative genes showed that VlFAD2s show high similarity to Arabidopsis FAD2 and commonly contain six transmembrane domain, three histidine boxes and endoplasmic reticulum (ER) retrieval motif representing the characteristics of fatty acid desaturase. Phylogenetic analyses of various plant FAD2s showed that VlFAD2-1 and VlFAD2-2 are separately grouped with constitutive and seed-type FAD2s, respectively. Southern blot showed that one or two bands are found in each lane. Because Campbell Early is a hybrid cultivar, FAD2-1 and FAD2-2 genes may exist as one copy in V. labrusca. Expression analysis in different tissues indicated that VlFAD2-1 is a constitutive gene but VlFAD2-2 is a seed-type gene. Complementation experiments of fad2-1 mutant Arabidopsis with VlFAD2-1 or VlFAD2-2 demonstrated that VlFAD2-1 and VlFAD2-2 can restore low PUFA proportion of fad2 to normal PUFA proportion.  相似文献   

20.
Disconnected (disco)-interacting protein 2 homolog A is a member of the DIP2 protein family encoded by Dip2a gene. Dip2a expression pattern has never been systematically studied. Functions of Dip2a in embryonic development and adult are not known. To investigate Dip2a gene expression and function in embryo and adult, a Dip2a-LacZ mouse model was generated by insertion of β-Gal cDNA after Dip2a promoter using CRISPR/Cas9 technology. Dip2a-LacZ mouse was designed to be a lacZ reporter mouse as well as a Dip2a knockout mouse. Heterozygous mice were used to study endogenous Dip2a expression and homozygotes to study DIP2A-associated structure and function. LacZ staining indicated that Dip2a is broadly expressed in neuronal, reproductive and vascular tissues, as well as in heart, kidney, liver and lung. Results demonstrate that Dip2a is expressed in ectoderm-derived tissues in developing embryos. Adult tissues showed rich staining in neurons, mesenchymal, endothelial, smooth muscle cells and cardiomyocytes by cell types. The expression pattern highly overlaps with FSTL1 and supports previous report that DIP2A to be potential receptor of FSTL1 and its protective roles of cardiomyocytes. Broad and intense embryonic and adult expression of Dip2a has implied their multiple structural and physiological roles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号