首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitochondrial thymidine kinase 2 (TK2) and deoxyguanosine kinase (dGK) catalyze the initial rate limiting phosphorylation of deoxynucleosides and are essential enzymes for mitochondrial function. Chemotherapy using nucleoside analogs is often associated with mitochondrial toxicities. Here we showed that incubation of U2OS cells with didanosine (ddI, 2′,3′-dideoxyinosine), a purine nucleoside analog used in the highly active antiretroviral therapy (HAART), led to selective degradation of both mitochondrial TK2 and dGK while the cytosolic deoxycytidine kinase (dCK) and thymidine kinase 1 (TK1) were not affected. Addition of guanosine to the ddI-treated cells prevented the degradation of mitochondrial TK2 and dGK. The levels of intracellular reactive oxygen species and protein oxidation in ddI-treated and control cells were also measured. The results suggest that down-regulation of mitochondrial TK2 and dGK may be a mechanism of mitochondrial toxicity caused by antiviral and anticancer nucleoside analogs.  相似文献   

2.
Here bicyclo[3.1.0]hexane locked deoxycytidine (S-MCdC, N-MCdC), and deoxyadenosine analogs (S-MCdA and N-MCdA) were examined as substrates for purified preparations of human deoxynucleoside kinases: dCK, dGK, TK2, TK1, the ribonucleoside kinase UCK2, two NMP kinases (CMPK1, TMPK) and a NDP kinase.

dCK can be important for the first step of phosphorylation of S-MCdC in cells, but S-MCdCMP was not a substrate for CMPK1, TMPK, or NDPK.

dCK and dGK had a preference for the S-MCdA whereas N-MCdA was not a substrate for dCK, TK1, UCK2, TK2, dGK nucleoside kinases. The cell growth experiments suggested that N-MCdC and S-MCdA could be activated in cells by cellular kinases so that a triphosphate metabolite was formed.

List of abbreviations: ddC, 2′, 3′-didioxycytosine, Zalcitabine; 3TC, β-L-(-)-2′,3′-dideoxy-3′-thiacytidine, Lamivudine; CdA, 2-cloro-2′-deoxyadenosine, Cladribine; AraA, 9-β-D-arabinofuranosyladenine; hCNT 1–3, human Concentrative Nucleoside Transporter type 1, 2 and 3; hENT 1–4, human Equilibrative Nucleoside Transporter type 1, 2, 3, and 4.  相似文献   

3.
Mitochondria are major cellular targets of benzo[a]pyrene (BaP), a known carcinogen that also inhibits mitochondrial proliferation. Here, we report for the first time the effect of site-specific N2-deoxyguanosine (dG) and N6-deoxyadenosine (dA) adducts derived from BaP 7,8-diol 9,10-epoxide (BaP DE) and dA adducts from benzo[c]phenanthrene 3,4-diol 1,2-epoxide (BcPh DE) on DNA replication by exonuclease-deficient human mitochondrial DNA polymerase (pol γ) with and without the p55 processivity subunit. The catalytic subunit alone primarily misincorporated dAMP and dGMP opposite the BaP DE–dG adducts, and incorporated the correct dTMP as well as the incorrect dAMP opposite the DE–dA adducts derived from both BaP and BcPh. In the presence of p55 the polymerase incorporated all four nucleotides and catalyzed limited translesion synthesis past BaP DE–dG adducts but not past BaP or BcPh DE–dA adducts. Thus, all these adducts cause erroneous purine incorporation and significant blockage of further primer elongation. Purine misincorporation by pol γ opposite the BaP DE–dG adducts resembles that observed with the Y family pol η. Blockage of translesion synthesis by these DE adducts is consistent with known BaP inhibition of mitochondrial (mt)DNA synthesis and suggests that continued exposure to BaP reduces mtDNA copy number, increasing the opportunity for repopulation with pre-existing mutant mtDNA and a resultant risk of mitochondrial genetic diseases.  相似文献   

4.
Proper maintenance of the genome is of great importance. Consequently, damaged nucleotides are repaired through redundant pathways. We considered whether the genome is protected from formamidopyrimidine nucleosides (Fapy•dA, Fapy•dG) via a pathway distinct from the Escherichia coli guanine oxidation system. The formamidopyrimidines are produced in significant quantities in DNA as a result of oxidative stress and are efficiently excised by formamidopyrimidine DNA glycosylase. Previous reports suggest that the formamidopyrimidine nucleosides are substrates for endonucleases III and VIII, enzymes that are typically associated with pyrimidine lesion repair in E.coli. We investigated the possibility that Endo III and/or Endo VIII play a role in formamidopyrimidine nucleoside repair by examining Fapy•dA and Fapy•dG excision opposite all four native 2′-deoxyribonucleotides. Endo VIII excises both lesions more efficiently than does Endo III, but the enzymes exhibit similar selectivity with respect to their action on duplexes containing the formamidopyrimidines opposite native deoxyribonucleotides. Fapy•dA is removed more rapidly than Fapy•dG, and duplexes containing purine nucleotides opposite the lesions are superior substrates compared with those containing formamidopyrimidine–pyrimidine base pairs. This dependence upon opposing nucleotide indicates that Endo III and Endo VIII do not serve as back up enzymes to formamidopyrimidine DNA glycosylase in the repair of formamidopyrimidines. When considered in conjunction with cellular studies [J. O. Blaisdell, Z. Hatahet and S. S. Wallace (1999) J. Bacteriol., 181, 6396–6402], these results also suggest that Endo III and Endo VIII do not protect E.coli against possible mutations attributable to formamidopyrimidine lesions.  相似文献   

5.
The dNTP triphosphohydrolase SAMHD1 is a nuclear antiviral host restriction factor limiting HIV-1 infection in macrophages and a major regulator of dNTP concentrations in human cells. In normal human fibroblasts its expression increases during quiescence, contributing to the small dNTP pool sizes of these cells. Down-regulation of SAMHD1 by siRNA expands all four dNTP pools, with dGTP undergoing the largest relative increase. The deoxyguanosine released by SAMHD1 from dGTP can be phosphorylated inside mitochondria by deoxyguanosine kinase (dGK) or degraded in the cytosol by purine nucleoside phosphorylase. Genetic mutations of dGK cause mitochondrial (mt) DNA depletion in noncycling cells and hepato-cerebral mtDNA depletion syndrome in humans. We studied if SAMHD1 and dGK interact in the regulation of the dGTP pool during quiescence employing dGK-mutated skin fibroblasts derived from three unrelated patients. In the presence of SAMHD1 quiescent mutant fibroblasts manifested mt dNTP pool imbalance and mtDNA depletion. When SAMHD1 was silenced by siRNA transfection the composition of the mt dNTP pool approached that of the controls, and mtDNA copy number increased, compensating the depletion to various degrees in the different mutant fibroblasts. Chemical inhibition of purine nucleoside phosphorylase did not improve deoxyguanosine recycling by dGK in WT cells. We conclude that the activity of SAMHD1 contributes to the pathological phenotype of dGK deficiency. Our results prove the importance of SAMHD1 in the regulation of all dNTP pools and suggest that dGK inside mitochondria has the function of recycling the deoxyguanosine derived from endogenous dGTP degraded by SAMHD1 in the nucleus.  相似文献   

6.
Deoxycytidine kinase (dCK) is an essential nucleoside kinase critical for the production of nucleotide precursors for DNA synthesis. This enzyme catalyzes the initial conversion of the nucleosides deoxyadenosine (dA), deoxyguanosine (dG), and deoxycytidine (dC) into their monophosphate forms, with subsequent phosphorylation to the triphosphate forms performed by additional enzymes. Several nucleoside analog prodrugs are dependent on dCK for their pharmacological activation, and even nucleosides of the non-physiological L-chirality are phosphorylated by dCK. In addition to accepting dC and purine nucleosides (and their analogs) as phosphoryl acceptors, dCK can utilize either ATP or UTP as phosphoryl donors. To unravel the structural basis for substrate promiscuity of dCK at both the nucleoside acceptor and nucleotide donor sites, we solved the crystal structures of the enzyme as ternary complexes with the two enantiomeric forms of dA (D-dA, or L-dA), with either UDP or ADP bound to the donor site. The complexes with UDP revealed an open state of dCK in which the nucleoside, either D-dA or L-dA, is surprisingly bound in a manner not consistent with catalysis. In contrast, the complexes with ADP, with either D-dA or L-dA, adopted a closed and catalytically competent conformation. The differential states adopted by dCK in response to the nature of the nucleotide were also detected by tryptophan fluorescence experiments. Thus, we are in the unique position to observe differential effects at the acceptor site due to the nature of the nucleotide at the donor site, allowing us to rationalize the different kinetic properties observed with UTP to those with ATP.  相似文献   

7.
Efficient synthetic route to novel 4′-trifluoromethylated 5′-deoxycarbocyclic nucleoside phosphonic acids was described from α-trifluoromethyl-α,β-unsaturated ester. Coupling of purine nucleosidic bases with cyclopentanol using a Mitsunobu reaction gave the nucleoside intermediates which were further phosphonated and hydrolyzed to reach desired nucleoside analogs. Synthesized nucleoside analogs were tested for anti-HIV activity as well as cytotoxicity. Adenine analog 22 shows significant anti-HIV activity (EC50 = 8.3 μM) up to 100 μM.  相似文献   

8.
In previous papers of this series the temperature-dependent Raman spectra of poly(dA)·poly(dT) and poly(dA–dT)·poly(dA–dT) were used to characterize structurally the melting and premelting transitions in DNAs containing consecutive A·T and alternating A·T/T·A base pairs. Here, we describe procedures for obtaining thermodynamic parameters from the Raman data. The method exploits base-specific and backbone-specific Raman markers to determine separate thermodynamic contributions of A, T and deoxyribosyl-phosphate moieties to premelting and melting transitions. Key findings include the following: (i) Both poly(dA)·poly(dT) and poly(dA–dT)· poly(dA–dT) exhibit robust premelting transitions, due predominantly to backbone conformational changes. (ii) The significant van’t Hoff premelting enthalpies of poly(dA)·poly(dT) [ΔHvHpm = 18.0 ± 1.6 kcal·mol–1 (kilocalories per mole cooperative unit)] and poly(dA–dT)·poly(dA–dT) (ΔHvHpm = 13.4 ± 2.5 kcal·mol–1) differ by an amount (~4.6 kcal·mol–1) estimated as the contribution from three-centered inter-base hydrogen bonding in (dA)n·(dT)n tracts. (iii) The overall stacking free energy of poly(dA)· poly(dT) [–6.88 kcal·molbp–1 (kilocalories per mole base pair)] is greater than that of poly(dA–dT)· poly(dA–dT) (–6.31 kcal·molbp–1). (iv) The difference between stacking free energies of A and T is significant in poly(dA)·poly(dT) (ΔΔGst = 0.8 ± 0.3 kcal· molbp–1), but marginal in poly(dA–dT)·poly(dA–dT) (ΔΔGst = 0.3 ± 0.3 kcal·molbp–1). (v) In poly(dA)· poly(dT), the van’t Hoff parameters for melting of A (ΔHvHA = 407 ± 23 kcal·mol–1, ΔSvHA = 1166 ± 67 cal·°K–1·mol–1, ΔGvH(25°C)A = 60.0 ± 3.2 kcal·mol–1) are clearly distinguished from those of T (ΔHvHT = 185 ± 38 kcal·mol–1, ΔSvHT = 516 ± 109 cal·°K–1·mol–1, ΔGvH(25°C)T = 27.1 ± 5.5 kcal·mol–1). (vi) Similar relative differences are observed in poly(dA–dT)· poly(dA–dT) (ΔHvHA = 333 ± 54 kcal·mol–1, ΔSvHA = 961 ± 157 cal·°K–1·mol–1, ΔGvH(25°C)A = 45.0 ± 7.6 kcal· mol–1; ΔHvHT = 213 ± 30 kcal·mol–1, ΔSvHT = 617 ± 86 cal·°K–1·mol–1, ΔGvH(25°C)T = 29.3 ± 4.9 kcal·mol–1). The methodology employed here distinguishes thermodynamic contributions of base stacking, base pairing and backbone conformational ordering in the molecular mechanism of double-helical B DNA formation.  相似文献   

9.
Oligodeoxyribonucleotides containing the nucleoside analog 1-(2'-deoxy-beta-D-ribofuranosyl) imidazole-4-carboxamide (1) were synthesized by solid phase phosphoramidite technology. Nucleoside 1, which contains a reactive exocyclic amide moiety, was incorporated into synthetic oligodeoxyribonucleotides with the use of a benzoyl protecting group. The corresponding oligodeoxyribonucleotides with dI or dA in the same position in the sequence were synthesized for UV comparison of helix-coil transitions. The thermal melting studies indicate that 1, which could conceptually adopt either a dA- or a dI-like hydrogen bond configuration, pairs with significantly higher affinity to T than to dC. Nucleoside 1 further resembles dA in the relative order of its base pairing preferences (T >dG >dA >dC), but may be less discriminating than dA in its bias for base pairing with T over dG.  相似文献   

10.
Human DNA polymerase ι (polι) is a Y-family polymerase whose cellular function is presently unknown. Here, we report on the ability of polι to bypass various stereoisomers of benzo[a]pyrene (BaP) diol epoxide (DE) and benzo[c]phenanthrene (BcPh) DE adducts at deoxyadenosine (dA) or deoxyguanosine (dG) bases in four different template sequence contexts in vitro. We find that the BaP DE dG adducts pose a strong block to polι-dependent replication and result in a high frequency of base misincorporations. In contrast, misincorporations opposite BaP DE and BcPh DE dA adducts generally occurred with a frequency ranging between 2 × 10–3 and 6 × 10–4. Although dTMP was inserted efficiently opposite all dA adducts, further extension was relatively poor, with one exception (a cis opened adduct derived from BcPh DE) where up to 58% extension past the lesion was observed. Interestingly, another human Y-family polymerase, polκ, was able to extend dTMP inserted opposite a BaP DE dA adduct. We suggest that polι might therefore participate in the error-free bypass of DE-adducted dA in vivo by predominantly incorporating dTMP opposite the damaged base. In many cases, elongation would, however, require the participation of another polymerase more specialized in extension, such as polκ.  相似文献   

11.
Deoxyinosine (dI) and deoxyxanthosine (dX) are both formed in DNA at appreciable levels in vivo by deamination of deoxyadenosine (dA) and deoxyguanosine (dG), respectively, and can miscode. Structure-activity relationships for dA pairing have been examined extensively using analogs but relatively few studies have probed the roles of the individual hydrogen-bonding atoms of dG in DNA replication. The replicative bacteriophage T7 DNA polymerase/exonuclease and the translesion DNA polymerase Sulfolobus solfataricus pol IV were used as models to discern the mechanisms of miscoding by DNA polymerases. Removal of the 2-amino group from the template dG (i.e., dI) had little impact on the catalytic efficiency of either polymerase, as judged by either steady-state or pre-steady-state kinetic analysis, although the misincorporation frequency was increased by an order of magnitude. dX was highly miscoding with both polymerases, and incorporation of several bases was observed. The addition of an electronegative fluorine atom at the 2-position of dI lowered the oligonucleotide Tm and strongly inhibited incorporation of dCTP. The addition of bromine or oxygen (dX) at C2 lowered the Tm further, strongly inhibited both polymerases, and increased the frequency of misincorporation. Linear activity models show the effects of oxygen (dX) and the halogens at C2 on both DNA polymerases as mainly due to a combination of both steric and electrostatic factors, producing a clash with the paired cytosine O2 atom, as opposed to either bulk or perturbation of purine ring electron density alone.  相似文献   

12.

Background

Intermittent hypoxia (IH) plays a critical role in sleep breathing disorder-associated hippocampus impairments, including neurocognitive deficits, irreversible memory and learning impairments. IH-induced neuronal injury in the hippocampus may result from reduced precursor cell proliferation and the relative numbers of postmitotic differentiated neurons. However, the mechanisms underlying IH-induced reactive oxygen species (ROS) generation effects on cell proliferation and neuronal differentiation remain largely unknown.

Results

ROS generation significantly increased after 1–4 days of IH without increased pheochromocytoma-12 (PC12) cell death, which resulted in increased protein phosphatase 2A (PP2A) mRNA and protein levels. After 3–4 days of IH, extracellular signal-regulated kinases 1/2 (ERK1/2) protein phosphorylation decreased, which could be reversed by superoxide dismutase (SOD), 1,10-phenanthroline (Phe), the PP2A phosphorylation inhibitors, okadaic acid (OKA) and cantharidin, and the ERK phosphorylation activator nicotine (p < 0.05). In particular, the significantly reduced cell proliferation and increased proportions of cells in the G0/G1 phase after 1–4 days of IH (p < 0.05), which resulted in decreased numbers of PC12 cells, could be reversed by treatment with SOD, Phe, PP2A inhibitors and an ERK activator. In addition, the numbers of nerve growth factor (NGF)-induced PC12 cells with neurite outgrowths after 3–4 days of IH were less than those after 4 days of RA, which was also reversed by SOD, Phe, PP2A inhibitors and an ERK activator.

Conclusions

Our results suggest that IH-induced ROS generation increases PP2A activation and subsequently downregulates ERK1/2 activation, which results in inhibition of PC12 cell proliferation through G0/G1 phase arrest and NGF-induced neuronal differentiation.  相似文献   

13.
Suicide genes that sensitize cells to drugs that are normally nontoxic at therapeutic levels represent an important approach in human gene therapy research. We have developed an in vitro screening assay to assess the modulation of nucleoside analogs after transfection of a vector expressing the herpes simplex virus thymidine kinase gene (HSV-TK). The thymidine kinase gene enhances nucleoside phosphorylation to nucleotides that kill cells by blocking DNA elongation. Cells lines used are 3T3-NIH fibroblasts (parental cells) and 3T3-TKc3 (HSV-TK gene-transfected 3T3-NIH). Two types of analysis are performed: a cytotoxicity assay, the neutral red uptake assay to assess the IC50 on the two cell lines, and an HPLC analysis coupled to a radiochemical flow detector to evaluate metabolic profiles after incubation of cells with tritiated analogs. Results show that cells expressing the HSV-TK gene are more sensitive than the parent cells to the effect of acyclovir or ganciclovir, the reference purine analog drugs, and also to the effect of pyrimidine analogs, bromodeoxyuridine, bromovinyldeoxyuridine, and ethyldeoxyuridine. Promising nucleoside analogs for gene therapy that can be achieved by HSV-TK could be evaluated using this model.Abbreviations ACV acyclovir - ACV-MP acyclovir monophosphate - ACV-DP acyclovir diphosphate - ACV-TP acyclovir triphosphate - BDU bromodeoxyuridine - BVDU bromovinyldeoxyuridine - EDU ethyldeoxyuridine - FDU fluorodeoxyuridine - GCV ganciclovir - HSV-TK herpes simplex virus thymidine kinase gene - IDU iododeoxyuridine - NA nucleoside analog  相似文献   

14.
Mitochondrial deoxyguanosine kinase (dGK), is an enzyme responsible for activation of nucleoside analogs (NAs) to phosphorylated compounds which exert profound cytotoxicity, especially in hematological malignancies. Screening malignant melanoma cell lines against NAs revealed high sensitivity to several of them. This was believed to be due to the high levels of dGK expression in these cells. Downregulation of dGK in the melanoma cell line RaH5 using siRNA did not cause resistance to NAs as expected, but instead cells became more sensitive. This was probably partly due to the increased activity of another mitochondrial enzyme, thymidine kinase 2, seen in transfected cells.  相似文献   

15.
A new type of interstrand DNA–DNA cross-link between abasic (Ap) sites and 2′-deoxyadenosine (dA) residues was recently reported, but the chemical structure and properties of this lesion were not rigorously established. Here we characterized the nucleoside cross-link remnant released by enzymatic digestion of duplex DNA containing the dA-Ap cross-link. A synthetic standard was prepared for the putative nucleoside cross-link remnant 6 in which the anomeric carbon of the 2-deoxyribose residue was connected to the exocyclic N6-amino group of dA. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis showed that the synthetic material 6 matched the authentic cross-link remnant released by enzymatic digestion of cross-linked DNA. These findings establish the chemical structure of the dA-Ap cross-link released from duplex DNA and may provide methods for the detection of this lesion in cellular DNA. Both the nucleoside cross-link remnant 6 and the cross-link in duplex DNA were quite stable at pH 7 and 37°C, suggesting that the dA-Ap cross-link could be a persistent lesion with the potential to block the action of various DNA processing enzymes.  相似文献   

16.
5'-Phosphorylation, catalyzed by human deoxycytidine kinase (dCK), is a crucial step in the metabolic activation of anticancer and antiviral nucleoside antimetabolites, such as cytarabine (AraC), gemcitabine, cladribine (CdA), and lamivudine. Recently, crystal structures of dCK (dCKc) with various pyrimidine nucleosides as substrates have been reported. However, there is no crystal structure of dCK with a bound purine nucleoside, although purines are good substrates for dCK. We have developed a model of dCK (dCKm) specific for purine nucleosides based on the crystal structure of purine nucleoside bound deoxyguanosine kinase (dGKc) as the template. dCKm is essential for computer aided molecular design (CAMD) of novel anticancer and antiviral drugs that are based on purine nucleosides since these did not bind to dCKc in our docking experiments. The active site of dCKm was larger than that of dCKc and the amino acid (aa) residues of dCKm and dCKc, in particular Y86, Q97, D133, R104, R128, and E197, were not in identical positions. Comparative docking simulations of deoxycytidine (dC), cytidine (Cyd), AraC, CdA, deoxyadenosine (dA), and deoxyguanosine (dG) with dCKm and dCKc were carried out using the FlexX docking program. Only dC (pyrimidine nucleoside) docked into the active site of dCKc but not the purine nucleosides dG and dA. As expected, the active site of dCKm appeared to be more adapted to bind purine nucleosides than the pyrimidine nucleosides. While water molecules were essential for docking experiments using dCKc, the absence of water molecules in dCKm did not affect the ability to correctly dock various purine nucleosides.  相似文献   

17.
Nine compounds (MO1–MO9) containing the morpholine moiety were assessed for their inhibitory activities against monoamine oxidases (MAOs) and acetylcholinesterase (AChE). Most of the compounds potently inhibited MAO-B; MO1 most potently inhibited with an IC50 value of 0.030 µM, followed by MO7 (0.25 µM). MO5 most potently inhibited AChE (IC50 = 6.1 µM), followed by MO9 (IC50 = 12.01 µM) and MO7 most potently inhibited MAO-A (IC50 = 7.1 µM). MO1 was a reversible mixed-type inhibitor of MAO-B (Ki = 0.018 µM); MO5 reversibly competitively inhibited AChE (Ki = 2.52 µM); and MO9 reversibly noncompetitively inhibited AChE (Ki = 7.04 µM). MO1, MO5 and MO9 crossed the blood–brain barrier, and were non-toxic to normal VERO cells. These results show that MO1 is a selective inhibitor of MAO-B and that MO5 is a dual-acting inhibitor of AChE and MAO-B, and that both should be considered candidates for the treatment of Alzheimer’s disease.  相似文献   

18.
The synthesis and incorporation into oligodeoxy­nucleotides of two novel, conformationally restricted abasic (AB) site analogs are described. The stability of oligonucleotide 18mer duplexes containing one such AB site opposite any of the four natural DNA bases was investigated by UV melting curve analysis and compared to that of duplexes containing a conformationally flexible propanediol unit 1 or a tetrahydrofuran unit 2 as an AB site analog. No major differences in the melting temperatures (ΔTm 0–3°C) between the different abasic duplexes were observed. All AB duplexes were found to have Tms that were lower by 9–15°C relative to a fully matched 18mer control duplex, and by 4–10°C relative to the corresponding 19mer duplexes in which the AB site is replaced by a mismatched nucleobase. Thus we conclude that the loss of stability of a duplex that is encountered by removal of a nucleobase from the stack cannot be compensated with conformational restriction of the AB site. From the van’t Hoff transition enthalpies obtained from the melting curves, it appears that melting cooperativity is higher for the duplexes containing the conformationally rigid AB sites. Fluorescence quenching experiments with duplexes containing the fluorescent base 2-amino­purine (2AP) opposite the AB sites showed a weak tendency towards more efficient stacking of this base in duplexes containing the conformationally constrained AB sites. Thus, such AB sites may structurally stabilize the cavity formed by the removal of a base. Potential applications emerging from the properties of such conformationally constrained AB sites in DNA diagnostics are discussed.  相似文献   

19.
On the basis of the discovery that the threosyl nucleoside phosphonate PMDTA is a potent anti-HIV compound, we synthesized several 4′-trifluoromethyl-5′-deoxyapiosyl nucleoside phosphonic acids and evaluated their anti-HIV activity. An efficient synthetic route was optimized, starting from an α-trifluoromethyl-α,β-unsaturated ester. Glycosylation of the purine nucleosidic bases with a glycosyl donor yielded modified nucleoside intermediates, which were then phosphonated and hydrolyzed to provide the targeted nucleoside analogs. Once synthesized, the anti-HIV and cytotoxic activities of each analog were evaluated. None of the analogs showed significant anti-HIV activity at concentrations up to 100 μM.  相似文献   

20.
The binding of the antibiotics netropsin and distamycin A to DNA has been studied by thermal melting, CD and sedimentation analysis. Netropsin binds strongly at antibiotic/nucleotide ratios up to at least 0.05. CD spectra obtained using DNA model polymers reveal that netropsin binds tightly to poly (dA) · poly (dT), poly (dA-dT) · poly(dA-dT) and poly (dI-dC) · poly (dI-dC) but poorly, if at all, to poly (dG) · poly (dC). Binding curves obtained with calf thymus DNA reveal one netropsin-binding site per 6.0 nucleotides (Ka=2.9 · 105 M−1); corresponding values for distamycin A are one site per 6.1 nucleotides with Ka= 11.6 · 105 M−1. Binding sites apparently involve predominantly A·T-rich sequences whose specific conformation determines their high affinity for the two antibiotics. It is suggested that the binding is stabilized primarily by hydrogen bonding and electrostatic interactions probably in the narrow groove of the DNA helix, but without intercalation. Any local structural deformation of the helix does not involve unwinding greater than approximately 3° per bound antibiotic molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号