首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 248 毫秒
1.
M. Teusch  G. Forkmann  W. Seyffert 《Planta》1986,168(4):586-591
In flower extracts of defined genotypes of Matthiola incana, an enzyme was demonstrated which catalyzes the transfer of the glucosyl moiety of uridine 5-diphosphoglucose (UDPGlc) to the 5-hydroxyl group of pelargonidin and cyanidin 3-glycosides and acylated derivatives. The best substrate for 5-glucosylation is the 3-xylosylglucoside acylated with p-coumarate, followed by the 3-xylosylglucoside and by the acylated (p-coumarate) 3-glucoside. The 3-glucoside itself is a very poor substrate. Besides UDPGlc, thymine 5-diphosphoglucose is a suitable glucosyl-donor, but with a reduced reaction rate (42%). The anthocyanin 5-O-glucosyltransferase exhibits a pH optimum at 7.5 and is generally inhibited by divalent ions and by ethylenediaminetetraacetic acid and p-chloromercuribenzoate. Investigations on different genotypes showed that the 5-O-glucosyltransferase activity is clearly controlled by the gene l. In confirmation of earlier chemogenetic work, enzyme activity is only present in lines with the wild-type allele l+. The anthocyanin 5-O-glucosyltransferase activity is strictly correlated with the formation of 5-glucosylated anthocyanins during bud development.Abbreviations Cg 3,5-T-cyanidin 3-sambubioside-5-glucoside - EDTA ethylene diaminetetraacetic acid - 5GT UDP-glucose: anthocyanin 5-O-glucosyltransferase - 3GT UDP-glucose: anthocyanidin/flavonol 3-O-glucosyltransferase - HPLC high-performance liquid chromatography - TLC thin-layer chromatography - UDPGlc uridine 5-diphospho-glucose  相似文献   

2.
4-Coumarate:coenzyme A (CoA) ligase (4CL, EC 6.2.1.12) in crude enzyme preparation from the developing xylem of black locust (Robinia pseudoacacia) converted sinapate to sinapoyl CoA. The sinapate-converting activity was not inhibited by other cinnamate derivatives, such as p-coumarate, caffeate or ferulate, in the mixed-substrate assay. The crude extract prepared from the developing xylem was separated by anion-exchange chromatography into three different 4CL isoforms. The isoform 4CL1 had a strong substrate preference for p-coumarate, but lacked the activity for ferulate and sinapate. On the other hand, 4CL2 and 4CL3 displayed activity toward sinapate and also possessed high activity toward caffeate as well as p-coumarate. The crude extract from the shoots exhibited a very similar substrate preference to that of the developing xylem; therefore, 4CL2 may be a major isoform in both crude enzyme preparations. These results support the hypothesis that sinapate-converting 4CL isoform is constitutively expressed in lignin-forming cells.  相似文献   

3.
Hydroxycinnamates, aromatic compounds that play diverse roles in plants, are dissimilated by enzymes encoded by the hca genes in the nutritionally versatile, naturally transformable bacterium Acinetobacter sp. strain ADP1. A key step in the hca-encoded pathway is activation of the natural substrates caffeate, p-coumarate, and ferulate by an acyl:coenzyme A (acyl:CoA) ligase encoded by hcaC. As described in this paper, Acinetobacter cells with a knockout of the next enzyme in the pathway, hydroxycinnamoyl-CoA hydratase/lyase (HcaA), are extremely sensitive to the presence of the three natural hydroxycinnamate substrates; Escherichia coli cells carrying a subclone with the hcaC gene are hydroxycinnamate sensitive as well. When the hcaA mutation was combined with a mutation in the repressor HcaR, exposure of the doubly mutated Acinetobacter cells to caffeate, p-coumarate, or ferulate at 10−6 M totally inhibited the growth of cells. The toxicity of p-coumarate and ferulate to a ΔhcaA strain was found to be a bacteriostatic effect. Although not toxic to wild-type cells initially, the diphenolic caffeate was itself converted to a toxin over time in the absence of cells; the converted toxin was bactericidal. In an Acinetobacter strain blocked in hcaA, a secondary mutation in the ligase (HcaC) suppresses the toxic effect. Analysis of suppression due to the mutation of hcaC led to the development of a positive-selection strategy that targets mutations blocking HcaC. An hcaC mutation from one isolate was characterized and was found to result in the substitution of an amino acid that is conserved in a functionally characterized homolog of HcaC.  相似文献   

4.
NAD+-specific glyceraldehyde 3-phosphate dehydrogenase (EC 1.2.1.12) from Escherichia coli was purified to homogeneity by a relatively simple procedure involving affinity chromatography on agarose–hexane–NAD+ and repeated crystallization. Rabbit antiserum directed against this protein produced one precipitin line in double-diffusion studies against the pure enzyme, and two lines against crude extracts of wild-type E. coli strains. Both precipitin lines represent the interaction of antibody with determinants specific for glyceraldehyde 3-phosphate dehydrogenase. Nine independent mutants of E. coli lacking glyceraldehyde 3-phosphate dehydrogenase activity all possessed some antigenic cross-reacting material to the wild-type enzyme. The mutants could be divided into three groups on the basis of the types and amounts of precipitin lines observed in double-diffusion experiments; one group formed little cross-reacting material. The cross-reacting material in crude cell-free extracts of several of the mutant strains were also tested for alterations in their affinity for NAD+ and their phosphorylative activity. The cumulative data indicate that the protein in several of the mutant strains is severely altered, and thus that glyceraldehyde 3-phosphate dehydrogenase is unlikely to have an essential, non-catalytic function such as buffering nicotinamide nucleotide or glycolytic-intermediate concentrations. Others of the mutants tested have cross-reacting material which behaved like the wild-type enzyme for the several parameters studied; the proteins from these strains, once purified, might serve as useful analogues of the wild-type enzyme.  相似文献   

5.
6.
Cultures of Polyporus hispidus grown on a liquid medium with glucose as the principal carbon source produced the yellow pigment hispidin (4-hydroxy-6-(3,4-dihydroxystyryl)-2-pyrone) (II). Tracer studies showed that DL-phenylalanine, DL-tyrosine, cinnamate, p-coumarate and caffeate were incorporated into the hispidin molecule without scrambling of the label. Good incorporation of acetate and roalonate into the pyrone portion of the molecule was observed. The related styrylpyrone, bis-noryangonin (4-hydroxy-6-(4-hydroxystyryl)-2-pyrone) (1) was also detected in extracts of cultured mycelium and a cell-free enzyme preparation was obtained which catalyzed the hydroxylation of bis-noryangonin to hispidin.  相似文献   

7.
Formation of the riboside-5′-monophosphate is a general feature of the metabolism of cytokinins in plants. As part of a study of the biological significance of the nucleotide form of cytokinins, we analyzed a mutant of Arabidopsis thaliana deficient in adenine phosphoribosyltransferase (APRT) activity for its ability to metabolize N6-benzyladenine (BA). Formation of N6-benzyladenosine-5′-monophosphate (BAMP) was assayed in vivo, by feeding tritiated BA to wild-type and mutant plantlets, and in crude plantlet extracts. Metabolites were separated by high performance liquid chromatography and quantitated by on-line liquid scintillation spectrometry. BA was rapidly absorbed by A. thaliana plantlets and primarily converted to BAMP and to BA 7- and 9-glucosides. BA was also rapidly absorbed by APRT-deficient plantlets, but its conversion to BAMP was strongly reduced. Formation of BAMP from N6-benzyladenosine was not affected in the mutant plantlets. In vitro conversion of BA to its nucleoside-5′-monophosphate was detected in crude extracts of wild-type plantlets, but not in extracts of APRT-deficient plantlets. Therefore, results of both assays indicate that APRT-deficient tissue does not convert BA to BAMP to a significant extent. Further, nondenaturing isoelectric focusing analysis of APRT activity in leaf extracts indicated that the enzyme activities which metabolize adenine and BA into their corresponding riboside-5′-monophosphate in extracts of wild-type plantlets have the same apparent isoelectric point. These activities were not detected in extracts prepared from APRT-deficient plantlets. Thus, these results demonstrate that APRT is the main enzyme which converts BA to its nucleotide form in young A. thaliana plants and that the ribophosphorylation of BA is not a prerequisite of its absorption by the plantlets.  相似文献   

8.
The anaerobic acetogenic bacterium Acetobacterium woodii couples reduction of caffeate with electrons derived from molecular hydrogen to the synthesis of ATP by a chemiosmotic mechanism with sodium ions as coupling ions. Caffeate is activated to caffeyl coenzyme A (caffeyl-CoA) prior to its reduction, and the caffeate reduction operon encodes an ATP-dependent caffeyl-CoA synthetase that is thought to catalyze the initial caffeate activation. The operon also encodes a potential CoA transferase, the product of carA, which was thought to be involved in subsequent ATP-independent caffeate activation. To prove the proposed function of carA, we overproduced its protein in Escherichia coli and then purified it. Purified CarA drives the formation of caffeyl-CoA from caffeate with hydrocaffeyl-CoA as the CoA donor. The dependence of the reaction on caffeate and hydrocaffeyl-CoA followed Michaelis-Menten kinetics, with apparent Km values of 75 ± 5 μM for caffeate and 8 ± 2 μM for hydrocaffeyl-CoA. The enzyme activity had broad ranges of pH and temperature optima. In addition to being able to use caffeate, CarA could use p-coumarate and ferulate but not cinnamate, sinapate, or p-hydroxybenzoate as a CoA acceptor. Neither acetyl-CoA nor butyryl-CoA served as the CoA donor for CarA. The enzyme uses a ping-pong mechanism for CoA transfer and is the first classified member of a new subclass of family I CoA transferases that has two catalytic domains on one polypeptide chain. Apparently, CarA catalyzes an energy-saving CoA loop for caffeate activation in the steady state of caffeate respiration.  相似文献   

9.
It is not known how plants make the benzenoid ring of ubiquinone, a vital respiratory cofactor. Here, we demonstrate that Arabidopsis thaliana uses for that purpose two separate biosynthetic branches stemming from phenylalanine and tyrosine. Gene network modeling and characterization of T-DNA mutants indicated that acyl-activating enzyme encoded by At4g19010 contributes to the biosynthesis of ubiquinone specifically from phenylalanine. CoA ligase assays verified that At4g19010 prefers para-coumarate, ferulate, and caffeate as substrates. Feeding experiments demonstrated that the at4g19010 knockout cannot use para-coumarate for ubiquinone biosynthesis and that the supply of 4-hydroxybenzoate, the side-chain shortened version of para-coumarate, can bypass this blockage. Furthermore, a trans-cinnamate 4-hydroxylase mutant, which is impaired in the conversion of trans-cinnamate into para-coumarate, displayed similar defects in ubiquinone biosynthesis to that of the at4g19010 knockout. Green fluorescent protein fusion experiments demonstrated that At4g19010 occurs in peroxisomes, resulting in an elaborate biosynthetic architecture where phenylpropanoid intermediates have to be transported from the cytosol to peroxisomes and then to mitochondria where ubiquinone is assembled. Collectively, these results demonstrate that At4g19010 activates the propyl side chain of para-coumarate for its subsequent β-oxidative shortening. Evidence is shown that the peroxisomal ABCD transporter (PXA1) plays a critical role in this branch.  相似文献   

10.
4-Coumarate:CoA ligase (EC 6.2.1.12) was isolated from 8-day-old cell suspension cultures of parsley (Petroselinum hortense Hoffm.) which had been irradiated with ultraviolet light for 15 h. The enzyme was partially purified by fractionation with MnCl2 and (NH4)2SO4 and by column chromatography on diethylaminoethyl cellulose, hydroxyapatite, and aminohexyl-Sepharose. A 90-fold increase in specific activity with an overall yield of 20% was achieved. Analytical gel electrophoresis indicated the occurrence of only one 4-coumarate:CoA ligase species in the final enzyme preparation. The enzyme was largely specific for 4-coumarate and other derivatives of cinnamic acid. 4-Coumarate had the lowest apparent Km and the highest VKm values (1.4 × 10?5, m and 14.7 × 105 pkatal × m?1, respectively) of all substrates tested. Only the trans isomer of 4-coumarate was activated. The two cosubstrates, ATP and CoA, exhibited sigmoidal saturation kinetics, which were interpreted as indicating homotropic, allo-steric effects. A molecular weight of about 67,000 was estimated for 4-coumarate:CoA ligase. The substrate specificity of the enzyme was in agreement with its proposed function in flavonoid biosynthesis.  相似文献   

11.
The rate of ascorbate and nicotinamide adenine dinucleotide plus hydrogen (NADH) cooxidation (i.e., their nonenzymic oxidation by peroxidase/H2O2-generated phenoxyl radicals of three hydroxycinnamates: caffeate, ferulate and p-coumarate) was studied in vitro. The reactions initiated by different sources of peroxidase (EC 1.11.1.7) [isolates from soybean (Glycine max L.) seed coat, maize (Zea mays L.) root-cell wall, and commercial horseradish peroxidase] were monitored. Native electrophoresis of samples and specific staining for peroxidase activity revealed various isoforms in each of the three enzyme sources. The peroxidase sources differed both in the rate of H2O2-dependent hydroxycinnamate oxidation and in the order of affinity for the phenolic substrates. The three hydroxycinnamates did not differ in their ability to cooxidize ascorbate, whereas NADH cooxidation was affected by substitution of the phenolic ring. Thus, p-coumarate was more efficient than caffeate in NADH cooxidation, with ferulate not being effective at all. Metal ions (Zn2+ and Al3+) inhibited the reaction of peroxidase with p-coumarate and affected the cooxidation rate of ascorbate and the peroxidase reaction in the same manner with all substrates used. However, inhibition of p-coumarate oxidation by metal ions did not affect NADH cooxidation rate. We propose that both the ascorbate and NADH cooxidation systems can function as mechanisms to scavenge H2O2 and regenerate phenolics in different cellular compartments, thus contributing to protection from oxidative damage. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
The anaerobic acetogenic bacterium Acetobacterium woodii can conserve energy by oxidation of various substrates coupled to either carbonate or caffeate respiration. We used a cell suspension system to study the regulation and kinetics of induction of caffeate respiration. After addition of caffeate to suspensions of fructose-grown cells, there was a lag phase of about 90 min before caffeate reduction commenced. However, in the presence of tetracycline caffeate was not reduced, indicating that de novo protein synthesis is required for the ability to respire caffeate. Induction also took place in the presence of CO2, and once a culture was induced, caffeate and CO2 were used simultaneously as electron acceptors. Induction of caffeate reduction was also observed with H2 plus CO2 as the substrate, but the lag phase was much longer. Again, caffeate and CO2 were used simultaneously as electron acceptors. In contrast, during oxidation of methyl groups derived from methanol or betaine, acetogenesis was the preferred energy-conserving pathway, and caffeate reduction started only after acetogenesis was completed. The differential flow of reductants was also observed with suspensions of resting cells in which caffeate reduction was induced prior to harvest of the cells. These cell suspensions utilized caffeate and CO2 simultaneously with fructose or hydrogen as electron donors, but CO2 was preferred over caffeate during methyl group oxidation. Caffeate-induced resting cells could reduce caffeate and also p-coumarate or ferulate with hydrogen as the electron donor. p-Coumarate or ferulate also served as an inducer for caffeate reduction. Interestingly, caffeate-induced cells reduced ferulate in the absence of an external reductant, indicating that caffeate also induces the enzymes required for oxidation of the methyl group of ferulate.  相似文献   

13.
《Plant science》2001,160(2):229-236
The yellow coloration of snapdragon (Antirrhinum majus) flowers is mainly provided by the 6-glucosides of aureusidin and bracteatin. However, the biochemical mechanism of aurone biosynthesis is not well understood. In this study, we have identified aurone-biosynthesizing activity in the extracts of yellow snapdragon flowers. Incubation of 2′,4′,6′,4-tetrahydroxychalcone (THC) with an enzyme preparation in the presence of H2O2 caused the enzymatic formation of a single product, aureusidin, without the formation of a previously proposed 2-(α-hydroxybenzyl)coumaranone intermediate. The formation of aureusidin from THC was specifically observed with yellow flowers as well as aurone-accumulating flowers of other colors. The pH optimum for the enzymatic formation of aureusidin was around 5.4. Stoichiometric studies showed that one mole of aureusidin formation was accompanied by the consumption of one mole of oxygen with no detectable consumption of H2O2, which may work as an enzyme activator. The oxidative formation of aureusidin from THC could be explained in terms of the action of a single enzyme, an internal monooxygenase catalyzing the 3-hydroxylation and oxidative cyclization of THC. Incubation of 2′,4′,6′,3,4-pentahydroxychalcone (PHC) with an enzyme yielded both aureusidin and bracteatin at an approximate molar ratio of 6:1. In this case, H2O2 was not required for enzyme activity but rather inhibited the reaction. The 4′-glucosides of THC and PHC could also act as substrates for the formation of the 6-glucosides of aurones. These results suggest that aureusidin can be produced from either THC or PHC, whereas bracteatin is not produced through the 5′-hydroxylation of aureusidin but arise solely from PHC.  相似文献   

14.
Elicitor induction of phenylpropanoid metabolism was investigated in suspension-cultured cells of the fast-growing poplar hybrid (Populus trichocarpa Torr. & Gray × Populus deltoides Marsh) H11-11. Treatment of cells with polygalacturonic acid lyase or two fungal elicitors resulted in rapid and transient increases in extractable l-phenylalanine ammonia lyase and 4-coumarate:coenzyme A ligase enzyme activities. The substrate specificity of the inducible 4-coumarate:coenzyme A ligase enzyme activity appeared to differ from substrate specificity of 4-coumarate:coenzyme A ligase enzyme activity in untreated control cells. Large and transient increases in the accumulation of l-phenylalanine ammonia-lyase and 4-coumarate:coenzyme A ligase mRNAs preceded the increases in enzyme activities and were detectable by 30 minutes after the start of elicitor treatment. Chalcone synthase, cinnamyl alcohol dehydrogenase, and coniferin β-glucosidase enzyme activities were unaffected by the elicitors, but a large and transient increase in β-glucosidase activity capable of hydrolyzing 4-nitrophenyl-β-glucoside was observed. Subsequent to increases in l-phenylalanine ammonialyase and 4-coumarate:coenzyme A ligase enzyme activities, cell wall-bound thioglycolic acid-extractable compounds accumulated in elicitor-treated cultures, and these cells exhibited strong staining with phloroglucinol, suggesting the accumulation of wall-bound phenolic compounds.  相似文献   

15.
Approximately 10–15% of individuals infected with Helicobacter pylori will develop ulcer disease (gastric or duodenal ulcer), while most people infected with H. pylori will be asymptomatic. The majority of infected individuals remain asymptomatic partly due to the inhibition of synthesis of cholesteryl α-glucosides in H. pylori cell wall by α1,4-GlcNAc-capped mucin O-glycans, which are expressed in the deeper portion of gastric mucosa. However, it has not been determined how cholesteryl α-glucosyltransferase (αCgT), which forms cholesteryl α-glucosides, functions in the pathogenesis of H. pylori infection. Here, we show that the activity of αCgT from H. pylori clinical isolates is highly correlated with the degree of gastric atrophy. We investigated the role of cholesteryl α-glucosides in various aspects of the immune response. Phagocytosis and activation of dendritic cells were observed at similar degrees in the presence of wild-type H. pylori or variants harboring mutant forms of αCgT showing a range of enzymatic activity. However, cholesteryl α-glucosides were recognized by invariant natural killer T (iNKT) cells, eliciting an immune response in vitro and in vivo. Following inoculation of H. pylori harboring highly active αCgT into iNKT cell-deficient (Jα18−/−) or wild-type mice, bacterial recovery significantly increased in Jα18−/− compared to wild-type mice. Moreover, cytokine production characteristic of Th1 and Th2 cells dramatically decreased in Jα18−/− compared to wild-type mice. These findings demonstrate that cholesteryl α-glucosides play critical roles in H. pylori-mediated gastric inflammation and precancerous atrophic gastritis.  相似文献   

16.
N-Acyl-phosphatidylethanolamines (NAPEs), a minor class of membrane glycerophospholipids, accumulate along with their bioactive metabolites, N-acylethanolamines (NAEs) during ischemia. NAPEs can be formed through N-acylation of phosphatidylethanolamine by cytosolic phospholipase A2ε (cPLA2ε, also known as PLA2G4E) or members of the phospholipase A and acyltransferase (PLAAT) family. However, the enzyme responsible for the NAPE production in brain ischemia has not yet been clarified. Here, we investigated a possible role of cPLA2ε using cPLA2ε-deficient (Pla2g4e?/?) mice. As analyzed with brain homogenates of wild-type mice, the age dependency of Ca2+-dependent NAPE-forming activity showed a bell-shape pattern being the highest at the first week of postnatal life, and the activity was completely abolished in Pla2g4e?/? mice. However, liquid chromatography-tandem mass spectrometry revealed that the NAPE levels of normal brain were similar between wild-type and Pla2g4e?/? mice. In contrast, post-mortal accumulations of NAPEs and most species of NAEs were only observed in decapitated brains of wild-type mice. These results suggested that cPLA2ε is responsible for Ca2+-dependent formation of NAPEs in the brain as well as the accumulation of NAPEs and NAEs during ischemia, while other enzyme(s) appeared to be involved in the maintenance of basal NAPE levels.  相似文献   

17.
Glycosylation plays a central role in plant defense against xenobiotics, including mycotoxins. Glucoconjugates of Fusarium toxins, such as deoxynivalenol-3-O-β-d-glucoside (DON-3G), often cooccur with their parental toxins in cereal-based food and feed. To date, only limited information exists on the occurrence of glucosylated mycotoxins and their toxicological relevance. Due to a lack of analytical standards and the requirement of high-end analytical instrumentation for their direct determination, hydrolytic cleavage of β-glucosides followed by analysis of the released parental toxins has been proposed as an indirect determination approach. This study compares the abilities of several fungal and recombinant bacterial β-glucosidases to hydrolyze the model analyte DON-3G. Furthermore, substrate specificities of two fungal and two bacterial (Lactobacillus brevis and Bifidobacterium adolescentis) glycoside hydrolase family 3 β-glucosidases were evaluated on a broader range of substrates. The purified recombinant enzyme from B. adolescentis (BaBgl) displayed high flexibility in substrate specificity and exerted the highest hydrolytic activity toward 3-O-β-d-glucosides of the trichothecenes deoxynivalenol (DON), nivalenol, and HT-2 toxin. A Km of 5.4 mM and a Vmax of 16 μmol min−1 mg−1 were determined with DON-3G. Due to low product inhibition (DON and glucose) and sufficient activity in several extracts of cereal matrices, this enzyme has the potential to be used for indirect analyses of trichothecene-β-glucosides in cereal samples.  相似文献   

18.
Hydroxycinnamates are plant products catabolized through the diphenol protocatechuate in the naturally transformable bacterium Acinetobacter sp. strain ADP1. Genes for protocatechuate catabolism are central to the dca-pca-qui-pob-hca chromosomal island, for which gene designations corresponding to catabolic function are dca (dicarboxylic acid), pca (protocatechuate), qui (quinate), pob (p-hydroxybenzoate), and hca (hydroxycinnamate). Acinetobacter hcaC had been cloned and shown to encode a hydroxycinnamate:coenzyme A (CoA) SH ligase that acts upon caffeate, p-coumarate, and ferulate, but genes for conversion of hydroxycinnamoyl-CoA to protocatechuate had not been characterized. In this investigation, DNA from pobS to an XbaI site 5.3 kb beyond hcaC was captured in the plasmid pZR8200 by a strategy that involved in vivo integration of a cloning vector near the hca region of the chromosome. pZR8200 enabled Escherichia coli to convert p-coumarate to protocatechuate in vivo. Sequence analysis of the newly cloned DNA identified five open reading frames designated hcaA, hcaB, hcaK, hcaR, and ORF1. An Acinetobacter strain with a knockout of HcaA, a homolog of hydroxycinnamoyl-CoA hydratase/lyases, was unable to grow at the expense of hydroxycinnamates, whereas a strain mutated in HcaB, homologous to aldehyde dehydrogenases, grew poorly with ferulate and caffeate but well with p-coumarate. A chromosomal fusion of lacZ to the hcaE gene was used to monitor expression of the hcaABCDE promoter. LacZ was induced over 100-fold by growth in the presence of caffeate, p-coumarate, or ferulate. The protein deduced to be encoded by hcaR shares 28% identity with the aligned E. coli repressor, MarR. A knockout of hcaR produced a constitutive phenotype, as assessed in the hcaE::lacZ-Kmr genetic background, revealing HcaR to be a repressor as well. Expression of hcaE::lacZ in strains with knockouts in hcaA, hcaB, or hcaC revealed unambiguously that hydroxycinnamoyl-CoA thioesters relieve repression of the hcaABCDE genes by HcaR.  相似文献   

19.
A gene encoding cinnamoyl esterase (CE), which breaks down chlorogenic acid (ChA) into caffeic and quinic acids, was cloned from Lactobacillus helveticus KCCM 11223. The gene with an open reading frame of 759 nucleotides was expressed in Escherichia coli, which resulted in a 51.6-fold increase in specific activity compared to L. helveticus KCCM 11223. The recombinant CE exists as a monomeric enzyme having a molecular weight of 27.4?kDa. Although the highest activity was observed at pH 7, the enzyme showed stable activity at pH 4.0–10.0. Its optimum temperature was 65°C, and it also possessed a thermophilic activity: the half-life of CE was 24.4?min at 65°C. The half-life of CE was 145.5, 80.5, and 24.4?min at 60, 62, and 65°C, respectively. The Km and Vmax values for ChA were 0.153?mM and 559.6?µM/min, respectively. Moreover, the CE showed the highest substrate specificity with methyl caffeate among other methyl esters of hydroxycinnamic acids such as methyl ferulate, methyl sinapinate, methyl p-coumarate, and methyl caffeate. Ca2+, Cu2+, and Fe2+ significantly reduced the relative activity on ChA up to 70%. This is the first report on a thermostable CE from lactic acid bacteria that can be useful to hydrolyze ChA from plant cell walls.  相似文献   

20.
Determination of acid hydrolases in human platelets   总被引:3,自引:0,他引:3  
A method is described which allows the preparation of pure cinnamoyl-CoA thiolesters in high yields. This procedure utilizes a partially purified cinnamoyl-CoA ligase obtained from a strain of Pseudomonas putida and some properties of this new enzyme are described. Product isolation involves polyamide column chromatography which allows the purification of 50-mg batches of thiolesters. The method is applicable to a range of cinnamic acids, and is particularly suitable in preparing the biologically important CoA esters of p-coumarate, ferulate, and caffeate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号