首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mounting evidence suggests that the transmission of certain parasites is facilitated by increasing temperatures, causing their host population to decline. However, no study has yet addressed how temperature and parasitism may combine to shape the functional structure of a whole host community in the face of global warming. Here, we apply an outdoor mesocosm approach supported by field surveys to elucidate this question in a diverse intertidal community of amphipods infected by the pathogenic microphallid trematode, Maritrema novaezealandensis. Under present temperature (17°C) and level of parasitism, the parasite had little impact on the host community. However, elevating the temperature to 21°C in the presence of parasites induced massive structural changes: amphipod abundances decreased species‐specifically, affecting epibenthic species but leaving infaunal species largely untouched. In effect, species diversity dropped significantly. In contrast, four degree higher temperatures in the absence of parasitism had limited influence on the amphipod community. Further elevating temperatures (19–25°C) and parasitism, simulating a prolonged heat‐wave scenario, resulted in an almost complete parasite‐induced extermination of the amphipod community at 25°C. In addition, at 19°C, just two degrees above the present average, a similar temperature–parasite synergistic impact on community structure emerged as seen at 21°C under lower parasite pressure. The heat‐wave temperature of 25°C per se affected the amphipod community in a comparable way: species diversity declined and the infaunal species were favoured at the expense of epibenthic species. Our experimental findings are corroborated by field data demonstrating a strong negative relationship between current amphipod species richness and the level of Maritrema parasitism across 12 sites. Hence, owing to the synergistic impact of temperature and parasitism, our study predicts that coastal amphipod communities will deteriorate in terms of abundance and diversity in face of anticipated global warming, functionally changing them to be dominated by infaunal species.  相似文献   

2.
Interactions between Lipophrys pholis and its amphipod prey Echinogammarus marinus were used to investigate the effect of changing water temperatures, comparing current and predicted mean summer temperatures. Contrary to expectations, predator attack rates significantly decreased with increasing temperature. Handling times were significantly longer at 19° C than at 17 and 15° C and the maximum feeding estimate was significantly lower at 19° C than at 17° C. Functional‐response type changed from a destabilizing type II to the more stabilizing type III with a temperature increase to 19° C. This suggests that a temperature increase can mediate refuge for prey at low densities. Predatory pressure by teleosts may be dampened by a large increase in temperature (here from 15 to 19° C), but a short‐term and smaller temperature increase (to 17° C) may increase destabilizing resource consumption due to high maximum feeding rates; this has implications for the stability of important intertidal ecosystems during warming events.  相似文献   

3.
Rafts of Macrocystis pyrifera (L.) C. Agardh can act as an important dispersal vehicle for a multitude of organisms, but this mechanism requires prolonged persistence of floating kelps at the sea surface. When detached, kelps become transferred into higher temperature and irradiance regimes at the sea surface, which may negatively affect kelp physiology and thus their ability to persist for long periods after detachment. To examine the effect of water temperature and herbivory on the photosynthetic performance, pigment composition, carbonic anhydrase (CA) activity, and the nitrogen (N) and carbon (C) content of floating M. pyrifera, experiments were conducted at three sites (20° S, 30° S, 40° S) along the Chilean Pacific coast. Sporophytes of M. pyrifera were maintained at three different temperatures (ambient, ambient ? 4°C, ambient + 4°C) and in presence or absence of the amphipod Peramphithoe femorata for 14 d. CA activity decreased at 20° S and 30° S, where water temperatures and irradiances were highest. At both sites, pigment contents were substantially lower in the experimental algae than in the initial algae, an effect that was enhanced by grazers. Floating kelps at 20° S could not withstand water temperatures >24°C and sank at day 5 of experimentation. Maximal quantum yield decreased at 20° S and 30° S but remained high at 40° S. It is concluded that environmental stress is low for kelps floating under moderate temperature and irradiance conditions (i.e., at 40° S), ensuring their physiological integrity at the sea surface and, consequently, a high dispersal potential for associated biota.  相似文献   

4.
The supratidal amphipod Talorchestia longicornis Say has a circadian rhythm in activity, in which it is active on the substrate surface at night and inactive in burrows during the day. The present study determined: (1) the circadian rhythms in individual versus groups of amphipods; (2) the range of temperature cycles that entrain the circadian rhythm; (3) entrainment by high-temperature cycles versus light?:?dark cycles, and (4) seasonal substrate temperature cycles. The circadian rhythm was determined by monitoring temporal changes in surface activity using a video system. Individual and groups of amphipods have similar circadian rhythms. Entrainment occurred only to temperature cycles that included temperatures below 20°C (10–20, 15–20, 17–19, 15–25°C) but not to temperatures above 20°C (20–25, 20–30°C), and required only a 2°C temperature cycle (17–19°C). Diel substrate temperatures were above 20°C in the summer and below 20°C during the winter. Upon simultaneous exposure to a diel high-temperature cycle (20–30°C) and a light?:?dark cycle phased differently, amphipods entrained to the light?:?dark cycle. Past studies found that a temperature cycle below 20°C overrode the light?:?dark cycle for entrainment. The functional significance of this change in entrainment cues may be that while buried during the winter, the activity rhythm remains in phase with the day?:?night cycle by the substrate temperature cycles. During the summer, T. longicornis switches to the light?:?dark cycle for entrainment, perhaps as a mechanism to phase activity precisely to the short summer nights.  相似文献   

5.
Macroalgal rafts frequently occur floating in coastal waters of temperate regions of the world’s oceans. These rafts are considered important dispersal vehicles for associated organisms with direct development. However, environmental factors may limit the floating potential of kelp and thereby the dispersal of associated organisms. To examine the effect of water temperature and grazing on growth, reproductive output, and survival of floating Macrocystis spp., experiments were conducted in outdoor tanks during austral summer 2006/2007 at three sites along the Chilean Pacific coast (20° S, 30° S, 40° S). At each site, Macrocystis spp. was maintained individually at three different water temperatures (ambient, ambient − 4°C, ambient + 4°C) and in the presence or absence of the amphipod grazer Peramphithoe femorata for 14 d. High water temperatures (>20°C) provoked rapid degradation of Macrocystis spp. rafts. At moderate temperatures (15°C–20°C), algal survival depended on the presence of associated grazers. In the absence of grazers, algal rafts gained in biomass while grazing caused considerable losses of algal biomass. Algal survival was the highest under cooler conditions (<15°C), where raft degradation was slow and grazer-induced biomass losses were compensated by continuing algal growth. Our results indicate that floating kelp rafts can survive for long time periods at the sea surface, but survival depends on the interaction between temperature and grazing. We suggest that these processes limiting the survival of kelp rafts in warmer temperatures may act as a dispersal barrier for kelp and its associated passengers.  相似文献   

6.
7.
The effects of light on the metabolic rates of the hypogean amphipod Niphargus stygius and the epigean amphipod Gammarus fossarum were compared by measuring oxygen consumption and respiratory electron transport system (ETS) activity. They were exposed to light intensities of 720 and 4700?lx at 10°C. Oxygen consumption increased significantly in N. stygius exposed to both low and high intensities of light, but no significant increase was observed in G. fossarum at either intensity. The increase of oxygen consumption in N. stygius was significantly greater at the higher light intensity. This indicates a stress response in which exploitation of half the metabolic potential for energy production in N. stygius during exposure to high light intensity constitutes an adverse effect on its metabolism, since this species usually uses less than 25% of its total metabolic potential for standard metabolic demands.  相似文献   

8.
Abstract Diapause larvae of the European corn borer (Ostrinia nubilalis (Hubn.)) and the related Mediterranean noctuid Sesamia cretica Led. possess sufficient supercooling ability to avoid freezing over their normal environmental temperature ranges. In progressive chilling experiments (10 days acclimation at each 5° step in the temperature range from 15 to ?5°C), mean supercooling points (measured at a cooling rate of 0.1°C min?1) were lowered from ?20.4°C at 15°C to ?24.0°C at 5°C (lower lethal temperatures: c.?28°C) in O.nubilalis, compared with ?15.0 to ?17.2°C (lower lethal temperatures: ?15 to ?17°C respectively) in S.cretica. Concentrations of glycerol and trehalose determined by gas chromatography of whole body extracts were consistently higher in the former than in the latter species at both 15 and 5°C, and may be responsible for the deeper supercooling in O.nubilalis larvae. Acclimation to 5°C increased glycerol levels in O. nubilalis extracts compared with 15°C, and this was enhanced in larvae exposed for a further 10 days at each of 0 and ?5°C (glycerol being 438μmol ml?1 body water). Haemolymph glycerol concentrations showed a similar pattern to whole body extracts in this species. Fat body glycogen was reduced during low temperature acclimation in both species. Body water contents did not change with acclimation in O.nubilalis, whilst S.cretica, containing significantly more water, lost c.7% during acclimation from 15 to 5°C. Haemolymph osmolalities increased during acclimation, especially in Ostrinia larvae, probably as a result of the accumulation of cryoprotectants. The majority of O.nubilalis larvae survived freezing under the conditions of the cooling experiments, whilst larvae of S.cretica did not, thereby confirming an element of freezing tolerance in the former.  相似文献   

9.
The survival and oxygen uptake of the supralittoral amphipod Chroestia lota Marsden & Fenwick were investigated in humid air and sea water between 15 and 35°C. Seven-day exposure experiments were made on three size groups of amphipods at 6 constant temperatures (15, 20, 25, 30, 35, 40 °C) and three cyclic temperatures (15–25, 20–30, 25–35°C) in air and in sea water at 34 and 17%. salinity. Neither size, treatment nor temperature affected survival between 15 and 30°C. Mortality increased > 30°C with large individuals being consistently less tolerant than medium and small amphipods. While amphipods exposed to cyclic temperatures during submersion had reduced survival compared with constant temperatures, those individuals exposed to cyclic conditions in humid air showed the greatest resistance. Oxygen uptake of Chroestia increased with dry body wt and, over the range 15–35°C, this semi-terrestrial beach flea could maintain its aerial VO2 following submersion. Oxygen uptake increased directly in proportion to gill area and the weight specific gill area was low, consistent with the need to reduce desiccation. It is suggested that total gill area does not limit oxygen uptake in Chroestia and that cutaneous respiration may be important especially in aquatic conditions.  相似文献   

10.
The life table parameters ofAphis gossypii Glover were evaluated in tow sets of experiments onCucurbita pepo. The first set was conducted at six constant temperatures (5°C increments from 10–35°C) with 12 h photophase. The second set of experiments was conducted at 6, 12, and 18 h photophase at 25°C. Nymphal survivorship was 100% at 15, 20, 25 and 30°C. However, it was 80 and 0% at 10 and 35°C, respectively. The optimum temperature for body length was 10°C, and body length decreased with increasing temperature.A. gossypii attained its optimum growth and reproduction at 25°C. At this temperature, the net reproductive rate (79.7), intrinsic rate of increase (0.496) and finite rate of increase (1.6) were largest while generation time (6.6 d) and population doubling time (1.4 d) were smallest. Temperatures above and below 25°C reduced the net reproductive rate, and the intrinsic and finite rates of increase. The intrinsic and finite rates of increase ofA. gossypii reared at 18 h photophase (0.53 and 1.7) were significantly higher than at 12 (0.43 and 1.5) and 6 h daylength (0.49 and 1.6).  相似文献   

11.
Abstract The effect of a high temperature, i. e. 32°C. on vitellogenesis of the Japanese oak silkworm, Antheraea yamamai (Lepidoptera: Saturniidae) was markedly significant. Its extent was dependent on the development stage of the silkworm exposed to 32°C. When exposed to 32 °C since the 1st day after cocooning, titres of both vitellogenin (Vg) and soluble proteins in the fat body and hemolymph of mature larvae were evidently lower than those at 26°C. When pupae were maintained at 32°C since the 1st day after pupation. the titres of Vg in the fat body showed no significant difference from those at 26°C, but those in the hemolymph and the titres of vitellin (Vt) in the ovary mostly were obviously lower in contrast to those at 26°C. While exposed to 32°C since the 6th day after pupation, at most instance the tires of Vg both in the fat body and hemolymph were not markedly different from those at 26°C, and those of Vt in the ovary were significantly higher than those at 26°C, In addition, the changes in the titres of soluble proteins in the fat body and hemolymph as well as the ovary were monitored when pupae were maintained at 32°C since the 1st or 6th day after pupation. It is recommended that both mature larvae and pupae at cocooning stage and earlier pupal stage should not be exposed to 32°C when the silkworm is reared for egg raising.  相似文献   

12.
Summary The krill Euphausia superba, unlike the amphipod, Eusirus antarcticus, tolerates being frozen into solid sea-ice at temperatures down to about-4°C. Cooled in air, the amphipod and the krill freeze and will die at temperatures of-11° and-9°C respectively, representing the supercooling points of the animals. The krill is an osmoconformer in the salinity range of 25 to 45 ppt, while the amphipod conforms in the salinity range of 26 to 40 ppt. The animals thereby lower the melting point of their body fluids in the vicinity of the freezing sea ice, preventing internal ice formation at low temperatures. The mean oxygen consumption rates, at raised and lowered salinities, were not significantly different from rates obtained in normal (35 ppt.) seawater, indicating that salinity has little effect on the metabolism of either species.  相似文献   

13.
Distribution, population dynamics, growth and aspects of reproductive biology of Corophium insidiosum were investigated in Monolimni lagoon. Samples were collected in July 1997 (at 30 psu S) and during February 1998–May 1999 (at 0.1–5.7 psu S). Corophium insidiosumwas almost exclusively found in the outer part of the lagoon, which showed a higher water renewal rate. Population density gradually decreased during winter and spring, when salinity was lower than 1 psu and the amphipod finally vanished from the lagoon. Salinity increase during summer (1.2–5.7 psu) was followed by the re-occurrence of C. insidiosum with a time lag of 2–3 months. Population density increased in autumn and peaked in early winter at salinities 1.6–4.2 psu. Three cohorts appeared in the population during September 1998–March 1999. Breeding activity peaked in early autumn (14–21?°C, 4 psu S) and ceased after December (2–6.5?°C, ¡1.5 psu S). The preponderance of females in the large size classes resulted in a female- biased sex ratio in the whole population. The population showed a growth rate of 7.5–11.2 μm d?1 being faster in autumn (9–21?°C, 3–4 psu S) than in winter (2–12?°C, 0.2–3 psu). An exponential relation existed between body length and cephalic length or dry body weight, while brood size was directly related to body length. Mean brood size was small (4.96 early embryos) and egg loss during development high (53%), possibly as a consequence of low salinities.  相似文献   

14.
Heterothermy, a variability in body temperature beyond the limits of homeothermy, has been advanced as a key adaptation of Arabian oryx (Oryx leucoryx) to their arid-zone life. We measured body temperature using implanted data loggers, for a 1-year period, in five oryx free-living in the deserts of Saudi Arabia. As predicted for adaptive heterothermy, during hot months compared to cooler months, not only were maximum daily body temperatures higher (41.1 ± 0.3 vs. 39.7 ± 0.1°C, P = 0.0002) but minimum daily body temperatures also were lower (36.1 ± 0.3 vs. 36.8 ± 0.2°C, P = 0.04), resulting in a larger daily amplitude of the body temperature rhythm (5.0 ± 0.5 vs. 2.9 ± 0.2°C, P = 0.0007), while mean daily body temperature rose by only 0.4°C. The maximum daily amplitude of the body temperature rhythm reached 7.7°C for two of our oryx during the hot-dry period, the largest amplitude ever recorded for a large mammal. Body temperature variability was influenced not only by ambient temperature but also water availability, with oryx displaying larger daily amplitudes of the body temperature rhythm during warm-dry months compared to warm-wet months (3.6 ± 0.6 vs. 2.3 ± 0.3°C, P = 0.005), even though ambient temperatures were the same. Free-living Arabian oryx therefore employ heterothermy greater than that recorded in any other large mammal, but water limitation, rather than high ambient temperature, seems to be the primary driver of this heterothermy.  相似文献   

15.
To elucidate population-increasing factors in the diving beetle Cybister tripunctatus lateralis (Fabricius) (Coleoptera: Dytiscidae) in Japan in recent years, life histories and oviposition patterns were compared among three endangered diving beetle species, Cybister brevis Aubé (qualified by the Japanese Red Data List as ‘near threatened’), Cybister chinensis Motschulsky (vulnerable), and C. tripunctatus lateralis (vulnerable). Oviposition in C. brevis, C. chinensis, and C. tripunctatus lateralis was observed from late April to mid-June, from late April to early July, and from late May to mid-August, respectively, under semi-outdoor conditions. There were no interspecies differences in total hatchling production during the reproductive season. In rearing experiments at various temperatures (20, 23, 25, 28, and 30 °C), the mortality of C. tripunctatus lateralis larvae was higher at 20 °C, and gradually lower with increasing temperature up to 30 °C. Adult body size of females in C. tripunctatus lateralis is larger than that of males but there were no significant differences among temperatures (25–30 °C). Cybister brevis had a higher emergence rate at 23–28 °C than at 20 and 30 °C. In C. brevis, the body size of adults reared at 25 or 28 °C was significantly larger than at other temperatures. Cybister chinensis did not differ in emergence rate and adult body size among the five temperature conditions. The developmental zero (i.e., the lower developmental threshold) from the first instar to adult emergence was 11.1 °C for C. brevis, 8.7 °C for C. chinensis, and 16.8 °C for C. tripunctatus lateralis. We speculate how the influence of global warming may have a positive impact on the growth and survival of C. tripunctatus lateralis.  相似文献   

16.
SUMMARY 1. Clones of Bosmina cornuta and B. pellucida (B. longirostris species complex) were derived from samples collected from Scheuermühlenteich and Lake Windsborn(westernGermany). Experimental temperature change (to 10 °C and 20 °C) and exposure to Acanthocyclops vernalis copepods (12 L?1) significantly altered external morphology in laboratory cultures of the two species. Morphological traits were derived from eight log10‐transformed and standardised morphometric distances by factorial analysis: factor 1 represented body size, factor 2, size of appendages and factor 3, the head size. 2. Acclimation of clones to cold water (10 °C, >14 days) led to an increase in body, antennule and mucrone size in B. cornuta and B. pellucida. Moreover, at 10 °C, B. cornuta cultures usually collapsed within a few weeks. Compared to the trials at 10 °C, acclimation to 20 °C (the two species) and to 15 °C (B. pellucida only) left the size of body appendages unchanged. Individuals were unequivocally assigned to each species by discriminant functions. Conspecific individuals that were acclimated to different temperatures between 10 and 20 °C also differed in external morphology, but discriminant analysis yielded misclassification rates of 5.3–23.3%. 3. Morphological response to the presence of copepod predators was weaker than that caused by temperature change. Long‐term exposure of clones to copepod predators induced a significant increase in size of appendages in the two species but left body size unaffected. Again, species identification by discriminant functions could be made without any error, whereas conspecific controls and experimentals were misclassified at rates between 19.4 and 29.5%. 4. It is suggested that temperature is the main proximal cue for Bosmina cyclomorphosis. The distinct response to temperature of B. pellucida and B. cornuta may also account for seasonal differences in abundance observed in field.  相似文献   

17.
The development of the Oriental latrine fly, Chrysomya megacephala (Fabricius), and hairy maggot blowfly, C. rufifacies (Macquart) (Diptera: Calliphoridae), was studied at four different temperatures (22°C, 25°C, 29°C and 31°C) in order to draw correlations between larval age, body length and body dry weight. The mean larval body length increased steadily from a minimum of 1.4 mm for C. megacephala and 1.8 mm for C. rufifacies to a maximum of 17.4 mm for C. megacephala and 15.9 mm for C. rufifacies at different temperatures. Similarly, the mean dry weight increased steadily from a minimum of 0.0007 g for C. megacephala (second instar) and 0.0008 g for C. rufifacies (second instar) to a maximum of 0.0290 g for C. megacephala and 0.0270 g for C. rufifacies at different temperatures. Entomological evidence is often used to estimate the minimum postmortem interval (mPMI) and both of these species are important from a forensic point of view. Graphs of age of larvae vs. body length and age of larvae vs. dry body weight at different temperatures can be used to estimate the larval age of these two species.  相似文献   

18.
The microclimate at Thermocline Cave (lat, 30° 45′S, long, 149° 43′E) was investigated by measuring air temperature and relative humidity at five stations on 18 occasions from September 1971 to December, 1973. The activity, body weight and roosting sites of the bat Miniopterus schreibersii blepotis in the cave were recorded on each visit. Relative humidity in the cave was generally high and paralleled temperature. The cave exhibited a range of temperatures from 9 to 19.5°C but bats selected roosting sites only in a part of this range. During the autumn when the bats arrived and were feeding, their body weights were low, and they roosted in a domed area at the rear of the cave with a temperature of 19.5°C. As they became less active and body weight increased they moved to cooler parts (9.5-11°C) towards the front of the cave and underwent periods of torpor, in one case lasting for at least 12 days. From July to September body weight decreased. The bats became more active in September and most had left the cave by October. It appears that M.s. blepotis can detect temperature differences of 1°C. They used this ability to select cold areas with stable high humidity in Thermocline Cave to under go periods of winter torpor.  相似文献   

19.
Behavioural thermoregulation of 3Pieris butterfly species,P. rapae, P. melete andP. napi, was examined in relation to the intensity of solar radiation. To evaluate solar radiation intensity, the temperature (Twr) was measured with a mercury thermometer whose bulb was covered with white cloth and exposed to direct sunlight. On clear days, the diurnal air temperature was between 16 and 28°C. The Twt varied between 18 and 45°C, while the temperature in the shade was under 25°C. When the Twt was under 28°C, the body temperatures (Th) of butterflies closely coincided with it. Butterflies with Tb's under 26°C were resting, while those with Tb's between 26 and 28°C were basking. When Twr was between 28 and 40°C, the butterflies were active and their Tb's were always lower than Twr, never exceeding 36°C, though body temperatures could be artificially elevated easily up to the level of Twr. When Twr exceeded 40°C, butterflies showed species-specific heat-avoiding behaviour.P. rapae, whose habitat resources exist in the sun, intercepted solar radiation by closing the wings over the body.P. melete andP. napi, however, whose main habitat resources exist in the shade, moved into the shade. Strictly speaking, it is concluded that both butterflies, in many cases, leave shaded habitats for sunny habitats to elevate their Tb rather than enter the shaded habitats for heat-avoiding.  相似文献   

20.
We acclimated adults of Takydromus septentrionalis (northern grass lizard) from four localities (populations) under identical thermal conditions to examine whether local thermal conditions have a fixed influence on thermal preference and thermal tolerance in the species. Selected body temperature (Tsel), critical thermal minimum (CTMin), and critical thermal maximum (CTMax) did not differ between sexes and among localities in lizards kept under identical laboratory conditions for ∼5 months, and the interaction effects between sex and locality on these measures were not significant. Lizards acclimated to the three constant temperatures (20, 25, and 35°C) differed in Tsel, CTMin, and CTMax. Tsel, CTMin, and CTMax all shifted upward as acclimation temperature increased, with Tsel shifting from 32.0 to 34.1°C, CTMin from 4.9 to 8.0°C, and CTMax from 42.0 to 44.5°C at the change-over of acclimation temperature from 20 to 35°C. Lizards acclimated to the three constant temperatures also differed in the range of viable body temperatures; the range was widest in the 25°C treatment (38.1°C) and narrowest in the 35°C treatment (36.5°C), with the 20°C treatment in between (37.2°C). The results of this study show that local thermal conditions do not have a fixed influence on thermal preference and thermal tolerance in T. septentrionalis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号