首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Degradation of Cell Wall Polysaccharides during Tomato Fruit Ripening   总被引:26,自引:17,他引:9       下载免费PDF全文
Changes in neutral sugar, uronic acid, and protein content of tomato (Lycopersicon esculentum Mill) cell walls during ripening were characterized. The only components to decline in amount were galactose, arabinose, and galacturonic acid. Isolated cell walls of ripening fruit contained a water-soluble polyuronide, possibly a product of in vivo polygalacturonase action. This polyuronide and the one obtained by incubating walls from mature green fruit with tomato polygalacturonase contained relatively much less neutral sugar than did intact cell walls. The ripening-related decline in galactose and arabinose content appeared to be separate from polyuronide solubilization. In the rin mutant, the postharvest loss of these neutral sugars occurred in the absence of polygalacturonase and polyuronide solubilization. The enzyme(s) responsible for the removal of galactose and arabinose was not identified; a tomato cell wall polysaccharide containing galactose and arabinose (6:1) was not hydrolyzed by tomato β-galactosidase.  相似文献   

2.
Pectic polysaccharides solubilized in vivo during ripening, were isolated using phenol, acetic acid, and water (PAW) from the outer pericarp of kiwifruit (Actinidia deliciosa [A. Chev.] C.F. Liang and A.R. Ferguson var deliciosa `Hayward') before and after postharvest ethylene treatment. Insoluble polysaccharides of the cell wall materials (CWMs) were solubilized in vitro by chemical extraction with 0.05 molar cyclohexane-trans-1,2-diamine tetraacetate (CDTA), 0.05 molar Na2CO3, 6 molar guanidinium thiocyanate, and 4 molar KOH. The Na2CO3-soluble fraction decreased by 26%, and the CDTA-soluble fraction increased by 54% 1 day after ethylene treatment. Concomitantly, an increase in the pectic polymer content of the PAW-soluble fraction occurred without loss of galactose from the cell wall. The molecular weight of the PAW-soluble pectic fraction 1 day after ethylene treatment was similar to that of the Na2CO3-soluble fraction before ethylene treatment. Four days after ethylene treatment, 60% of cell wall polyuronide was solubilized, and 50% of the galactose was lost from the CWM, but the degree of galactosylation and molecular weight of pectic polymers remaining in the CWMs did not decrease. The exception was the CDTA-soluble fraction which showed an apparent decrease in molecular weight during ripening. Concurrently, the PAW-soluble pectic fraction showed a 20-fold reduction in molecular weight. The results suggest that considerable solubilization of the pectic polymers occurred during ripening without changes to their primary structure or degree of polymerization. Following solubilization, the polymers then became susceptible to depolymerization and degalactosidation. Pectolytic enzymes such as endopolygalacturonase and β-galactosidase were therefore implicated in the degradation of solubilized cell wall pectic polymers but not the initial solubilization of the bulk of the pectic polymers in vivo.  相似文献   

3.
Propionibacterium freudenreichii plays an important role in Swiss cheese ripening (it produces propionic acid, acetic acid, and CO2). Moreover, autolysis of this organism certainly contributes to proteolysis and lipolysis of the curd because intracellular enzymes are released. By varying external factors, we determined the following conditions which promoted autolysis of both whole cells and isolated cell walls of P. freudenreichii CNRZ 725: (i) 0.1 M potassium phosphate buffer (pH 5.8) at 40°C and (ii) 0.05 to 0.1 M KCl at 40°C. We found that early-exponential-phase cells possessed the highest autolytic activity. It should be emphasized that the pH of Swiss cheese curd (pH 5.5 to 5.7) is near the optimal pH which we determined. Ultrastructural observations by electron microscopy revealed a 16-nm-thick homogeneous cell wall, as well as degradation of the cell wall that occurred concomitantly with cell autolysis. In the presence of 0.05 M potassium chloride, there was a great deal of isolated cell wall autolysis (the optical density at 650 nm decreased 77.5% ± 7.3% in 3 h), and one-half of the peptidoglycan material was released. Finally, the main autolytic activity was due to an N-acetylglucosaminidase activity.  相似文献   

4.

Objectives

Caspofungin, currently used as salvage therapy for invasive pulmonary aspergillosis (IPA), strangely only causes morphological changes in fungal growth in vitro but does not inhibit the growth. In vivo it has good efficacy. Therefore the question arises how this in vivo activity is reached. Caspofungin is known to increase the amount of chitin in the fungal cell wall. Mammals produce two chitinases, chitotriosidase and AMCase, which can hydrolyse chitin. We hypothesized that the mammalian chitinases play a role in the in vivo efficacy of caspofungin.

Methods

In order to determine the role of chitotriosidase and AMCase in IPA, both chitinases were measured in rats which did or did not receive caspofungin treatment. In order to understand the role of each chitinase in the breakdown of the caspofungin-exposed cells, we also exposed caspofungin treated fungi to recombinant enzymes in vitro.

Results

IPA in immunocompromised rats caused a dramatic increase in chitinase activity. This increase in chitinase activity was still noted when rats were treated with caspofungin. In vitro, it was demonstrated that the action of both chitinases were needed to lyse the fungal cell wall upon caspofungin exposure.

Conclusion

Caspofungin seemed to alter the cell wall in such a way that the two chitinases, when combined, could lyse the fungal cell wall and assisted in clearing the fungal pathogen. We also found that both chitinases combined had a direct effect on the fungus in vitro.  相似文献   

5.
Nock LP  Smith CJ 《Plant physiology》1987,84(4):1044-1050
Cell walls of Zea mays (cv L.G.11) seedlings labeled with 14C were treated with α-amylase from Bacillus subtilis to remove starch and mixed linkage glucans. These walls released arabinose, xylose, galactose, and galacturonic acid in addition to glucose when they were allowed to autolyze. Methylation analysis was performed on samples of wall which had been incubated autolytically and the results indicated that degradation of the major polymer of the wall, the glucoarabinoxylan, had occurred. A number of glycanases could be dissociated from the wall by use of 3 m LiCL. The proteins which were released were found to contain a number of exoglycosidase activities in addition to being effective in degrading the polysaccharide substrates, araban, xylan, galactan, laminarin, mannan, and polygalacturonic acid. The effects of these enzymes on the wall during autolysis appear to result from endo-activity in addition to exo-activity. The structural changes that occurred in the cell walls during autolysis were found to be related to the changes previously found to occur in cell walls during auxin induced extension.  相似文献   

6.
A series of in vitro experiments were conducted to assess three fibrolytic enzyme preparations as potential feed additives in equine diets. The three fibrolytic enzyme preparations were a concentrated cellulase (E1), an acid cellulase (E2) and a concentrated xylanase (E3). The enzymes were evaluated on their ability to modify the cell wall fraction of high-temperature dried lucerne (HTL) under various experimental conditions including differences in temperature, pH, incubation period, substrate levels and particle size to enable selection of the enzyme preparation most effective in the hydrolysis of lucerne. Results showed enzyme activities (as measured by reducing sugar assays) to be greatest at 50 °C, pH 5 and over an incubation period of greater than 20 h. E1 exhibited the greatest effect on total monosaccharide release from the HTL compared to E2 and E3. Moreover, dry matter (DM) and total non-starch polysaccharide (TNSP) losses were also greater in HTL treated with E1 compared to E2 and E3. Therefore, since the cell wall fraction of HTL contained substantial amounts of cellulose, the enzyme with the highest cellulase activity (Enzyme 1) was most effective in hydrolysing the cell walls of HTL. Consequently, it would appear that the application of exogenous fibrolytic enzyme preparations to forages requires the chemical characterisation of the target forage to enable selection of enzymes that are (a) most suitable to degrade the cell wall components of the candidate forage and (b) effective under field conditions.  相似文献   

7.
8.
Basal and Na+-K+ stimulated ATPase (ATP phosphohydrolase, E.C. 3.6.1.3) are both present in isolated preparations of purified cell wall and plasma membrane from cotyledon tissue of Phaseolus vulgaris. A comparison of the enzymes in the two fractions has revealed that the specific activities of basal and cation-sensitive ATPase are markedly higher in isolated cell wall than in the plasma membrane fraction. In addition, enrichments of both enzymes calculated on a protein basis relative to corresponding homogenates were considerably higher for cell wall than for plasma membrane. Thus, while part of the ATP-hydrolyzing activity of the wall may be attributable to the enzymatic properties of imbedded plasma membrane, there must also be additional non-membranous ATPase in the protein complement of the wall itself.  相似文献   

9.
Huang B  Lin W  Cheung PC  Wu J 《Current microbiology》2011,62(4):1160-1167
Autolysis is an important physiological process found in fungal cultivation. However, there is hitherto no report on the autolysis of Pleurotus tuber-regium. We have investigated the enzymes secreted by temperature-induced (40°C as treatment versus 10°C as control) autolysis of the mycelium of P. tuber-regium grown in submerged cultivation. A comparison between the intracellular proteins (inside the mycelium) and the extracellular proteins (in the culture medium) of the treatment and control by proteomic analysis involving 2D PAGE and MALDI–TOF–MS was made. Twenty-two up-regulated protein spots were detected and eight proteins were identified. They included proteasome which participates in the ubiquitin–proteasome pathway; β-1,3-glucanosyltransferase and tubulin which are involved in the renewal and repair of cell wall; protease and endoglucanase which promote the natural degradation of cell wall and cytoplasm; 14-3-3 protein which takes part in cell signal transduction; and two putative proteins presumably relate to the autolysis process. These identified proteins suggest partially the metabolic processes of the autolysis in the P. tuber-regium mycelium.  相似文献   

10.
Nelson  Phillip G.  Lanuza  Maria A.  Jia  Min  Li  Min-Xu  Tomas  Josep 《Brain Cell Biology》2003,32(5-8):803-816
We have studied developmental activity-dependent synapse diminution in both an in vitro tissue culture chamber system and at the intact rodent neuromuscular junction (nmj). In both types of preparations, pre- and postsynaptic alterations in synapse structure and function are produced by manipulations of thrombin (Thr) and protein kinase C (PKC) activity. An opposing postsynaptic effect of PKC and protein kinase A (PKA) action on the acetycholine receptor (AChR) can be shown in vitro with PKA stabilizing and PKC destabilizing the nmj synapses. In vivo studies of normal junctional maturation show that changes in axonal inputs and postsynaptic receptor cluster morphology occur, to a substantial degree, independently of one another. Presynaptic actions of PKA are involved in the activity dependent synapse modulation that can be demonstrated in vitro. Late in the elimination process, (>12 days in vivo) the process becomes independent of PKC, implying that diverse, redundant mechanisms are involved in this important developmental process.  相似文献   

11.
Adsorption of ØX174 to cell wall fragments fromE. coli labeled with3H-diaminopimel ic acid results in limited degradation of murein due to stimulation of autolysis. Pure murein was not degraded by ØX174.  相似文献   

12.
Kassis A. I. and Tanner C. E. 1976. The role of complement in hydatid disease: in vitro studies. International Journal for Parasitology6: 25–35. Fresh sera from normal humans, guinea pigs, sheep, cotton rats, B10.D2/n Sn mice or infected cotton rats lyse viable protoscoleces of Echinococcus granulosus and E. multilocularis in vitro. This protoscolecidal activity can be abolished by heating at 56°C, EDTA or incubating with cobra venom factor, suggesting that complement proteins participate in this lytic process. Crude unfiltered hydatid fluid, as well as complement-lysed dead protoscoleces, are anticomplementary in vitro and, as such, probably protect viable protoscoleces in vivo against the action of complement. This anticomplementary activity was found to be associated with the calcareous corpuscles. A hypothesis is presented which relates these in vitro findings to the development of the parasite in vivo. It is suggested that the use of formalin during surgery to kill the parasite should be replaced by fresh serum.  相似文献   

13.
Cell-free extracts and culture fluids ofSchizophyllum commune were assayed for enzymatic activity effecting the degradation of an alkali-insoluble cell-wall component of this mushroom, a glucan containingβ-(1→3) linkages (R-glucan). The activity of R-glucanase as determinedin vitro with isolated R-glucan as a substrate was found to increase from the onset of pileus formation, a process accompanied by R-glucan degradation in the mycelium. This R-glucanase activity is influenced by the presence of glucose in the culture medium, probably through a mechanism by which glucose represses synthesis of the enzyme. A morphological mutant (cup mutant) producing no pilei and exhibiting a lower degradation of R-glucanin vivo, produced levels of R-glucanase comparable to those of the wild-type stock and gave even higher levels in young cultures. The difference between the wild-type stock and the cup mutant with respect to degradation of R-glucan during development is most probably to be sought in the structure of the cell wall, the R-glucan in isolated cell walls of the cup mutant being less susceptible to enzymatic attack. High resistance to R-glucanase activity was also encountered in certain cell-wall preparations of the wild-type stock e.g. in those prepared from developing pilei. This suggests that cell-wall glucan degradation during pileus formation is controlled by both the level of R-glucanase, as influenced by glucose in the medium, and differences in protection of R-glucan in the cell wall against enzymatic attack.  相似文献   

14.
《Life sciences》1997,61(21):PL321-PL326
In the last few years, considerable evidence has appeared concerning the importance of the opioid systems in the action mechanism of some antidepressant drugs. This action mechanism could be mediated through the inhibition of the enzymes reponsible for enkephalin degradation. In this sense, imipramine treatment in vivo increases the enkephalin levels, and this effect is enhanced by inhibitors of enkephalin-degrading enzymes. The present work shows the effects in vitro of imipramine and its active metabolite desipramine on the activities of two membrane-bound enkephalin-degrading aminopeptidases present in rat brain. Imipramine and desipramine in vitro do not affect the aminopeptidase M activity, but they reversibly inhibits the aminoeptidase MII. The enzyme kinetic analysis shows that this enzyme molecule has two different binding sites for each drug, which exert a mixed type enzyme inhibition.  相似文献   

15.
It is widely accepted that β-lactam antimicrobials cause cell death through a mechanism that interferes with cell wall synthesis. Later studies have also revealed that β-lactams modify the autolysis function (the natural process of self-exfoliation of the cell wall) of cells. The dynamic equilibrium between growth and autolysis is perturbed by the presence of the antimicrobial. Studies with Staphylococcus aureus to determine the minimum inhibitory concentration (MIC) have revealed complex responses to methicillin exposure. The organism exhibits four qualitatively different responses: homogeneous sensitivity, homogeneous resistance, heterogeneous resistance and the so-called ‘Eagle-effect’. A mathematical model is presented that links antimicrobial action on the molecular level with the overall response of the cell population to antimicrobial exposure. The cell population is modeled as a probability density function F(x,t) that depends on cell wall thickness x and time t. The function F(x,t) is the solution to a Fokker-Planck equation. The fixed point solutions are perturbed by the antimicrobial load and the advection of F(x,t) depends on the rates of cell wall synthesis, autolysis and the antimicrobial concentration. Solutions of the Fokker-Planck model are presented for all four qualitative responses of S. aureus to methicillin exposure.  相似文献   

16.
Partially purified and crude mouse L cell interferon preparations inhibited the in vitro plaque-forming cell (PFC) response of mouse C57B1/6 spleen cells to the T-cell independent lipopolysaccharide antigen of Escherichia coli 0127. PFC responses of 5-day cultures were inhibited approximately 70–90% by 100–200 NIH reference units of interferon/culture. A similar inhibitory effect was obtained with spleen cells from athymic (nude) mice homozygous for the nu/nu allele. Spleen cultures depleted of adherent cells were also inhibited in their anti-0127 PFC response by interferon. Interferon, then, appears capable of inhibiting the PFC response to E. coli 0127 via direct action on B cells. Heating experiments along with the use of interferon preparations of different specific activities suggest that the inhibition was due to the interferon in the preparations.  相似文献   

17.
Cryptococcus gattii is a fungal pathogen that can cause life-threatening respiratory and disseminated infections in immune-competent and immune-suppressed individuals. Currently, there are no standardized vaccines against cryptococcosis in humans, underlying an urgent need for effective therapies and/or vaccines. In this study, we evaluated the efficacy of intranasal immunization with C. gattii cell wall associated (CW) and/or cytoplasmic (CP) protein preparations to induce protection against experimental pulmonary C. gattii infection in mice. BALB/c mice immunized with C. gattii CW and/or CP protein preparations exhibited a significant reduction in pulmonary fungal burden and prolonged survival following pulmonary challenge with C. gattii. Protection was associated with significantly increased pro-inflammatory and Th1-type cytokine recall responses, in vitro and increased C. gattii-specific antibody production in immunized mice challenged with C. gattii. A number of immunodominant proteins were identified following immunoblot analysis of C. gattii CW and CP protein preparations using sera from immunized mice. Immunization with a combined CW and CP protein preparation resulted in an early increase in pulmonary T cell infiltrates following challenge with C. gattii. Overall, our studies show that C. gattii CW and CP protein preparations contain antigens that may be included in a subunit vaccine to induce prolonged protection against pulmonary C. gattii infection.  相似文献   

18.
I discuss the range of oxidative phenolic coupling products formed from the tyrosine residues of cell wall glycoproteins and from the feruloyl residues of wall polysaccharides possibly by the action of peroxidases and/or laccases. In the cases of both tyrosine- and ferulate-coupling, the coupling products are not confined to dimers but include trimers and probably higher oligomers, which are sometimes predominant. Thus, some previous assays, in which specifically dimers were monitored, will have underestimated the extent of phenolic coupling. The possibility is discussed that some of the phenolic coupling products, in both glycoproteins and polysaccharides, are inter-polymeric and that they may therefore act as cross-links in the cell wall. The limitations in the evidence for this hypothesis are stressed. The sub-cellular site of oxidative phenolic coupling is discussed. In-vivo radiolabelling of cultured maize cells with [14C]cinnamate has shown that, especially in young, rapidly growing cultures, much oxidative coupling of feruloyl-arabinoxylans occurs within the endomembrane system, before secretion of the polysaccharides into the cell wall. Appreciable feruloyl coupling within the cell wall depended on the supply of H2O2 and on culture age. The situation with tyrosine coupling in glycoproteins is also debated. Although peroxidase activity has long been known to occur in the endomembrane system, the recent finding of intraprotoplasmic feruloyl coupling provided the first evidence that peroxidases (and/or laccases) may act in this sub-cellular location in vivo. I draw attention to the distinction between peroxidase action (in vivo) and activity (assayed in vitro), and to the unknown origin of H2O2 within the endomembrane system.  相似文献   

19.
GALLEGO  P. P.; ZARRA  I. 《Annals of botany》1997,79(6):695-701
Changes in both cell wall and water-soluble polysaccharide compositionduring the growth of kiwifruits [Actinidia deliciosa (A. chev.) C. F. Liang and A. R. Ferguson var. deliciosa ‘Hayward’]were investigated. Cellulose was the major wall polysaccharide,with galactose and uronics the main non-cellulosic sugars. Muchsolubilization of cell wall pectic polysaccharides was detected.While wall-galactose solubilization started 3 months after anthesis,polyuronide degradation did not start until the fifth month,1 month prior to the harvest date. Parallel to these processes,a linear increase in water-soluble polysaccharides was detected.These mainly comprised galactose-rich polymers in the first3 months and little-branched polyuronides after the fifth month.Two different mechanisms for galactose and uronic acid solubilizationfrom kiwifruit cell walls during fruit development are proposed. Actinidia deliciosa ; cell wall; fruit growth; kiwifruit; water-soluble polysaccharides  相似文献   

20.
Cell wall isolated from pericarp of normal tomato (Lycopersicon esculentum Mill. cv `Rutgers') fruit released pectic polymers in a reaction apparently mediated by wall-bound polygalacturonase that appears with the onset of ripening. Release was negligible in wall preparations from normal green and the ripening mutant rin fruit. Pectin solubilization was most extensive at pH 2.5 with a less significant peak at 5.5. Brief exposure to low (1.5) or high (7.5) pH resulted in reduction of autolytic activity, which was also inhibited by high temperature, Ca2+, and treatments employed to dissociate protein from cell wall. Uronic acid solubilization was significantly enhanced by 150 millimolar NaCl and by increasing temperature within the physiological range. These data indicate that the release of polyuronide from isolated cell walls is enzymic and may provide a convenient and reliable system for the study of softening metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号