首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fatty acid compositions in growing and resting cells of several strains of Pseudomonas putida (P8, NCTC 10936, and KT 2440) were studied, with a focus on alterations of the saturation degree, cis-trans isomerization, and cyclopropane formation. The fatty acid compositions of the strains were very similar under comparable growth conditions, but surprisingly, and contrary to earlier reports, trans fatty acids were not found in either exponentially growing cells or stationary-phase cells. During the transition from growth to the starvation state, cyclopropane fatty acids were preferentially formed, an increase in the saturation degree of fatty acids was observed, and larger amounts of hydroxy fatty acids were detected. A lowered saturation degree and concomitant higher membrane fluidity seemed to be optimal for substrate uptake and growth. The incubation of cells under nongrowth conditions rapidly led to the formation of trans fatty acids. We show that harvesting and sample preparation for analysis could provoke the enzyme-catalyzed formation of trans fatty acids. Freeze-thawing of resting cells and increased temperatures accelerated the formation of trans fatty acids. We demonstrate that cis-trans isomerization only occurred in cells that were subjected to an abrupt disturbance without having the possibility of adapting to the changed conditions by the de novo synthesis of fatty acids. The cis-trans isomerization reaction was in competition with the cis-to-cyclopropane fatty acid conversion. The potential for the formation of trans fatty acids depended on the cyclopropane content that was already present.  相似文献   

2.
The regulation of the nature and quantity of the fatty acids produced in vivo by Acholeplasma laidlawii B in the presence of various exogenous fatty acids has been investigated. In the presence of exogenous medium- or long-chain fatty acids, the organism appears to reduce the amounts of de novo biosynthesized fatty acids in its cellular lipid pool by two distinct mechanisms: an excretion of biosynthesized fatty acids to the growth medium as free fatty acids, and a reduction in total de novo biosynthetic output. These two mechanisms do not suffice to maintain constant total membrane lipid levels, but they do appear to significantly moderate the effect of exogenous fatty acids on the level of membrane lipid. In the presence of short-chain fatty acids, total membrane lipid levels are not elevated. Exogenous fatty acids can cause shifts in the average chain length of de novo biosynthesized fatty acids; the magnitudes and directions of these shifts can be correlated with the specificity of the exogenous species for esterification to the 1- or the 2-position of the glycerol moiety of membrane glycerolipids. As the various endogenously synthesized fatty acids differ in their positional specificity for glycerolipid esterification, we propose that the competition of an exogenous species with significant specificity for a particular position with the endogenously derived fatty acids specific for that position can selectively depress the synthesis of such endogenously derived species, thereby altering the overall product spectrum of de novo fatty acid biosynthesis in vivo.  相似文献   

3.
The objective of this study was to determine the role of a lactococcal branched-chain amino acid aminotransferase gene, ilvE, in the production of branched-chain fatty acids. Lactococcus lactis subsp. lactis LM0230 and an ilvE deletion mutant, JLS450, produced branched-chain fatty acids from amino and α-keto acids at levels above α-keto acid spontaneous degradation and the fatty acids' flavor thresholds. The deletion mutant produced the same amounts of branched-chain fatty acids from precursor amino acids as did the parent. This was not the case, however, for the production of branched-chain fatty acids from the corresponding precursor α-keto acids. The deletion mutant produced a set of fatty acids different from that produced by the parent. We concluded from these observations that ilvE plays a role in the specific type of fatty acids produced but has little influence on the total amount of fatty acids produced by lactococci.  相似文献   

4.
Neisseria is a Gram-negative pathogen with phospholipids composed of straight chain saturated and monounsaturated fatty acids, the ability to incorporate exogenous fatty acids, and lipopolysaccharides that are not essential. The FabI inhibitor, AFN-1252, was deployed as a chemical biology tool to determine whether Neisseria can bypass the inhibition of fatty acid synthesis by incorporating exogenous fatty acids. Neisseria encodes a functional FabI that was potently inhibited by AFN-1252. AFN-1252 caused a dose-dependent inhibition of fatty acid synthesis in growing Neisseria, a delayed inhibition of growth phenotype, and minimal inhibition of DNA, RNA, and protein synthesis, showing that its mode of action is through inhibiting fatty acid synthesis. Isotopic fatty acid labeling experiments showed that Neisseria encodes the ability to incorporate exogenous fatty acids into its phospholipids by an acyl-acyl carrier protein-dependent pathway. However, AFN-1252 remained an effective antibacterial when Neisseria were supplemented with exogenous fatty acids. These results demonstrate that extracellular fatty acids are activated by an acyl-acyl carrier protein synthetase (AasN) and validate type II fatty acid synthesis (FabI) as a therapeutic target against Neisseria.  相似文献   

5.
Lipid and fatty acid metabolism has been well studied in model microbial organisms like Escherichia coli and Bacillus subtilis. The major precursor of fatty acid biosynthesis is also the major product of fatty acid degradation (β-oxidation), acetyl-CoA, which is a key metabolite for all organisms. Controlling carbon flux to fatty acid biosynthesis and from β-oxidation allows for the biosynthesis of natural products of biotechnological importance. Ralstonia eutropha can utilize acetyl-CoA from fatty acid metabolism to produce intracellular polyhydroxyalkanoate (PHA). R. eutropha can also be engineered to utilize fatty acid metabolism intermediates to produce different PHA precursors. Metabolism of lipids and fatty acids can be rerouted to convert carbon into other value-added compounds like biofuels. This review discusses the lipid and fatty acid metabolic pathways in R. eutropha and how they can be used to construct reagents for the biosynthesis of products of industrial importance. Specifically, how the use of lipids or fatty acids as the sole carbon source in R. eutropha cultures adds value to these biotechnological products will be discussed here.  相似文献   

6.
7.
The usefulness of urea adducts for the fractionation of natural fatty acids has been demonstrated. Stearic acid has been isolated and identified from the fat of Fusarium lini Bolley by purification of the solid fraction obtained from the urea adduct of its fatty acids. The conversion of stearic acid to fatty material with a higher iodine value has provided further evidence for the enzymatic formation of unsaturated fatty acids in Fusarium lini Bolley by means of the action of a fatty acid dehydrogenase system.  相似文献   

8.
The binding of cAMP to the chemotactic cAMP receptor in intact Dictyostelium discoideum cells and isolated membranes is strongly inhibited by unsaturated fatty acids. In isolated membranes, cis-unsaturated fatty acids decreased the number of accessible cAMP binding sites, without significantly altering their affinity. Most potent were C18 and C20 cis-poly unsaturated fatty acids, like arachidonic acid, linoleic acid and linolenic acid. Trans-unsaturated fatty acid was less potent than its cis isomer, while saturated fatty acids did not affect the binding of cAMP to receptors at all. Oxidation reactions were not important for the effect of unsaturated fatty acids. When membranes were preincubated with millimolar concentrations of Ca2+, the effect of unsaturated fatty acids was strongly diminished. Mg2+ was ineffective. Ca2+, if presented after the incubation of membranes with unsaturated fatty acids, did not reverse the inhibitory effect. The specificity of the fatty acid effect, and the interference with Ca2+, but not Mg2+, suggest that the properties of the cAMP receptor are changed as a result of alterations in the lipid bilayer structure of the membrane.  相似文献   

9.
Growth of Escherichia coli in the presence of ethanol results in the synthesis of lipids containing elevated proportions of unsaturated fatty acids. Previous in vivo experiments indicated that the ethanol-induced changes in fatty acid composition result from a preferential inhibition of saturated fatty acid synthesis. In this study, the inhibition of saturated fatty acid synthesis by ethanol was confirmed in vitro. This inhibition was not membrane mediated and resulted from a direct action of ethanol on the soluble enzymes of fatty acid synthesis. The addition of ethanol resulted in a decrease in chain length of both saturated and unsaturated acyl products in vitro. Experiments with enzymes prepared from several fatty acid synthesis mutants of E. coli indicate that β-hydroxydecanoyl-acyl carrier protein dehydrase is not the site of the ethanol inhibition of saturated fatty acid synthesis. The two condensing enzymes are the probable sites for inhibition by ethanol.  相似文献   

10.
Lipids are the major form of carbon storage in arbuscular-mycorrhizal fungi. We studied fatty acid synthesis by Glomus intraradices and Gigaspora rosea. [14C]Acetate and [14C]sucrose were incorporated into a synthetic culture medium to test fatty acid synthetic ability in germinating spores (G. intraradices and G. rosea), mycorrhized carrot roots, and extraradical fungal mycelium (G. intraradices). Germinating spores and extraradical hyphae could not synthesize 16-carbon fatty acids but could elongate and desaturate fatty acids already present. The growth stimulation of germinating spores by root exudates did not stimulate fatty acid synthesis. 16-Carbon fatty acids (16:0 and 16:1) were synthesized only by the fungi in the mycorrhized roots. Our data strongly suggest that the fatty acid synthase activity of arbuscular-mycorrhizal fungi is expressed exclusively in the intraradical mycelium and indicate that fatty acid metabolism may play a major role in the obligate biotrophism of arbuscular-mycorrhizal fungi.  相似文献   

11.
An analysis is given of the fatty acid composition of 18 yeast species, predominantly of the genus Saccharomyces; respiratory deficient mutant strains are included. The results are discussed from chemotaxonomical and physiological viewpoints, with special attention to unsaturated fatty acids and their relation to the petite mutation. The fatty acid composition of anaerobically grown Saccharomyces cerevisiae remains restricted, as far as unsaturated fatty acids are concerned, to those added to the medium and it may thus differ considerably from the composition after aerobic growth. Depending on the acids added, the cells may contain either palmitoleic or linoleic acids as the sole unsaturated fatty acid after anaerobic growth and as the predominant unsaturated fatty acid after aerobic growth. In contrast to all other known eukaryotes, Schizosaccharomyces japonicus seems to possess an anaerobic pathway for synthesis of unsaturated fatty acids.  相似文献   

12.
The fatty acid pattern in hydrocarbon- and ketone-utilizing bacteria after growth on various substrates was examined. The fatty acid composition of one hydrocarbon-utilizing organism (Mycobacterium sp. strain OFS) was investigated in detail after growth on n-alkanes, 1-alkenes, ketones, and n-alcohols. n-Alkanes shorter than C13 or longer than C17 were not incorporated into cellular fatty acids without some degradation. Strain OFS incorporated C14 to C17 1-alkenes into cellular fatty acids as the ω-monoenoic fatty acid. Methyl ketones were incorporated into strain OFS after removal of one- or two-carbon fragments from the carbonyl end of the molecule. An organism isolated by enrichment on methyl ketones was incapable of n-alkane utilization but could grow on, although not incorporate, ketones or long chain n-alcohols into cellular fatty acids.  相似文献   

13.
The development of a system for modifying the membrane fatty acid composition of cultured soybean cells (Glycine max [L.] Merr.) is described. Tween-fatty acid esters carrying specific fatty acids were synthesized and added to the medium of suspension cultures. Cells transferred large quantities of exogenous fatty acids from Tweens to all acylated membrane lipids; up to 50% of membrane fatty acids were exogenously derived. C15 to C20 saturated fatty acids and C16, C18, and C20 unsaturated fatty acids with either cis or trans double bonds were incorporated into lipids. Cells elongated saturated fatty acids of C16 or less, and unsaturated fatty acids with cis double bonds were further desaturated. No other types of modifications were observed. Growth ceased in cells treated with excessive concentrations of Tween-fatty acid esters, but frequently not for several days. Cessation of cell growth was correlated with changes in membrane fatty acid composition resulting from incorporation of large amounts of exogenous fatty acids into membrane lipids, although cells tolerated large variations in fatty acid composition. Maximum tolerable Tween concentrations varied widely according to the fatty acid supplied. Potential uses of this system and implications of the observed modifications on the pathway of incorporation are discussed.  相似文献   

14.
15.
This paper describes a method for manipulating plant membrane fatty acid compositions without altering growth temperature or other conditions. Tween-fatty acid esters carrying specific fatty acids were synthesized and applied to various organs of plants growing axenically in glass jars. Treated plants incorporated large amounts of exogenous fatty acids into all acylated membrane lipids detected. Fatty acids were taken up by both roots and leaves. Fatty acids applied to roots were found in leaves, while fatty acids applied to leaves appeared in both leaves higher on the plant and in roots, indicating translocation (probably in the phloem). Foliar application was most effective; up to 20% of membrane fatty acids of leaves above the treated leaf and up to 40% of root membrane fatty acids were exogenously derived. Plants which took up exogenous fatty acids changed their patterns of fatty acid synthesis such that ratios of saturated to unsaturated fatty acids remained essentially unaltered. Fatty acid uptake was most extensively studied in soybean (Glycine max [L.] Merr.), but was also observed in other species, including maize (Zea mays L.), mung beans (Vigna radiata L.), peas (Pisum sativum L.), petunia (Petunia hybrida L.) and tomato (Lycopersicon esculentum Mill.). Potential applications of this system include studying internal transport of fatty acids, regulation of fatty acid and membrane synthesis, and influences of membrane fatty acid composition on plant physiology.  相似文献   

16.

Background

Direct conversion of solar energy and carbon dioxide to drop in fuel molecules in a single biological system can be achieved from fatty acid-based biofuels such as fatty alcohols and alkanes. These molecules have similar properties to fossil fuels but can be produced by photosynthetic cyanobacteria.

Results

Synechocystis sp. PCC6803 mutant strains containing either overexpression or deletion of the slr1609 gene, which encodes an acyl-ACP synthetase (AAS), have been constructed. The complete segregation and deletion in all mutant strains was confirmed by PCR analysis. Blocking fatty acid activation by deleting slr1609 gene in wild-type Synechocystis sp. PCC6803 led to a doubling of the amount of free fatty acids and a decrease of alkane production by up to 90 percent. Overexpression of slr1609 gene in the wild-type Synechocystis sp. PCC6803 had no effect on the production of either free fatty acids or alkanes. Overexpression or deletion of slr1609 gene in the Synechocystis sp. PCC6803 mutant strain with the capability of making fatty alcohols by genetically introducing fatty acyl-CoA reductase respectively enhanced or reduced fatty alcohol production by 60 percent.

Conclusions

Fatty acid activation functionalized by the slr1609 gene is metabolically crucial for biosynthesis of fatty acid derivatives in Synechocystis sp. PCC6803. It is necessary but not sufficient for efficient production of alkanes. Fatty alcohol production can be significantly improved by the overexpression of slr1609 gene.  相似文献   

17.
Mature seed samples of twenty-four Boraginaceae taxa collected from their natural habitats in Turkey were analysed by GC for total oil content and fatty acid composition. The range of total fat in the taxa varied between 7.0 and 35.7%. The amounts of palmitic (16:0) and stearic (18:0) acids determined were 5.65–17.81 and 1.49–5.08%, respectively. Mono-unsaturated fatty acids were in the range 8.83–55.32% for oleic, 0.22–6.21% for eicosenoic, 0.04–8.94% for erucic, and 0.08–2.71% for nervonic acid. Poly-unsaturated fatty acids were between 1.41 and 68.44% for linoleic, 0.12 and 43.0% for α-linolenic, 0.04 and 24.03% for γ-linolenic, and 0.02 and 14.59% for stearidonic acid. Total saturated (9.3–23.7%), mono-unsaturated (10.59–73.28%), and poly-unsaturated fatty acids (13.91–68.78%) varied substantially. Total unsaturated fatty acids ranged from 70.12 to 90.29%. There were significant differences between fatty acid profiles at taxa (P < 0.05) at genera levels, based on mono-unsaturated and poly-unsaturated fatty acid concentrations (P < 0.05). Segregation at the generic level by principle-component analysis was accomplished based on nine major fatty acids. The fatty acid patterns, their relative proportions, and quantities of unusual fatty acids as additional biochemical markers seem to be useful in the taxonomy of Boraginaceae at generic and infrageneric levels. All taxa are, in general, rich in linoleic and α-linolenic acids as essential fatty acids for dietary reference intakes. Seed oils of Symphytum, Anchusa, and Trachystemon orientalis for γ-linolenic acid and Echium for both γ-linolenic and stearidonic acid may be evaluated as alternative wild sources.  相似文献   

18.

Background

Trans fatty acids are produced either by industrial hydrogenation or by biohydrogenation in the rumens of cows and sheep. Industrial trans fatty acids lower HDL cholesterol, raise LDL cholesterol, and increase the risk of coronary heart disease. The effects of conjugated linoleic acid and trans fatty acids from ruminant animals are less clear. We reviewed the literature, estimated the effects trans fatty acids from ruminant sources and of conjugated trans linoleic acid (CLA) on blood lipoproteins, and compared these with industrial trans fatty acids.

Methodology/Principal Findings

We searched Medline and scanned reference lists for intervention trials that reported effects of industrial trans fatty acids, ruminant trans fatty acids or conjugated linoleic acid on LDL and HDL cholesterol in humans. The 39 studies that met our criteria provided results of 29 treatments with industrial trans fatty acids, 6 with ruminant trans fatty acids and 17 with CLA. Control treatments differed between studies; to enable comparison between studies we recalculated for each study what the effect of trans fatty acids on lipoprotein would be if they isocalorically replaced cis mono unsaturated fatty acids. In linear regression analysis the plasma LDL to HDL cholesterol ratio increased by 0.055 (95%CI 0.044–0.066) for each % of dietary energy from industrial trans fatty acids replacing cis monounsaturated fatty acids The increase in the LDL to HDL ratio for each % of energy was 0.038 (95%CI 0.012–0.065) for ruminant trans fatty acids, and 0.043 (95% CI 0.012–0.074) for conjugated linoleic acid (p = 0.99 for difference between CLA and industrial trans fatty acids; p = 0.37 for ruminant versus industrial trans fatty acids).

Conclusions/Significance

Published data suggest that all fatty acids with a double bond in the trans configuration raise the ratio of plasma LDL to HDL cholesterol.  相似文献   

19.
Lipid content and fatty acid profiles of corals and their dinoflagellate endosymbionts are known to vary in response to high-temperature stress. To better understand the heat-stress response in these symbionts, we investigated cultures of Symbiodinium goreauii type C1 and Symbiodinium sp. clade subtype D1 grown under a range of temperatures and durations. The predominant lipids produced by Symbiodinium are palmitic (C16) and stearic (C18) saturated fatty acids and their unsaturated analogs, the polyunsaturated fatty acid docosahexaenoic acid (C22:6, n-3; DHA), and a variety of sterols. Prolonged exposure to high temperature causes the relative amount of unsaturated acids within the C18 fatty acids in Symbiodinium tissue to decrease. Thermal stress also causes a decrease in abundance of fatty acids relative to sterols, as well as the more specific ratio of DHA to an algal 4-methyl sterol. These shifts in fatty acid unsaturation and fatty acid-to-sterol ratios are common to both types C1 and D1, but the apparent thermal threshold of lipid changes is lower for type C1. This work indicates that ratios among free fatty acids and sterols in Symbiodinium can be used as sensitive indicators of thermal stress. If the Symbiodinium lipid stress response is unchanged in hospite, the algal heat-stress biomarkers we have identified could be measured to detect thermal stress within the coral holobiont. These results provide new insights into the potential role of lipids in the overall Symbiodinium thermal stress response.  相似文献   

20.
Recently, microalgae have gained a lot of attention because of their ability to produce fatty acids in their surrounding environments. The present paper describes the influence of organic carbon on the different fatty acid pools including esterified fatty acids, intracellular free fatty acids and extracellular free fatty acids in Ochromonas danica. It also throws light on the ability of O. danica to secrete free fatty acids in the growth medium under photoautotrophic and mixotrophic conditions. Biomass production of photoautotrophically grown O. danica was higher than that of mixotrophically grown, where a cellular biomass formation of 1.8 g L?1 was observed under photoautotrophic condition which was about five folds higher than that under mixotrophic conditions. Contrary, the esterified fatty acid content reached up to 99 mg g?1 CDW under photoautotrophic conditions at the late exponential phase, while during mixotrophic conditions a maximum of 212 mg g?1 CDW was observed at the stationary phase. Furthermore, O. danica cells grown under mixotrophic conditions showed higher intracellular free fatty acid and extracellular free fatty acid contents (up to 51 and 20 mg g?1 CDW, respectively) than cells grown under photoautotrophic conditions (up to 26 and 4 mg g?1 CDW, respectively). The intra- and extracellular free fatty acids consisted of a high proportion of polyunsaturated fatty acids, mainly C18:2n?6, C18:3n?3 and C20:4n?6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号