首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 Seedlings of Eucalyptus tereticornis (Smith) were grown under two levels of availability each of CO2 (352 and 793 μmol mol−1), soil nutrients (1/24 and 1/4 Hoagland’s solution) and light (full and 30% sunlight). Low soil nutrient availability or high light increased the C:N ratio of leaves, leading to lower leaf nitrogen concentrations, higher leaf specific weights and higher levels of both total phenolics and condensed tannins. These results were consistent with other studies of the effect of environmental resource availability on foliage composition. Similar results were observed when the C:N ratio of leaves was increased under elevated CO2. The changes in leaf chemistry induced by the treatments affected the performance of 4th-instar larvae of Chrysophtharta flaveola (Chapuis) fed on the leaves. Increased C:N ratios of leaves reduced digestive efficiencies and pupal body sizes and increased mortality. Below a threshold nitrogen concentration of approximately 1% dry mass, severe reductions in the performance of larvae were recorded. Such changes may have significant consequences for herbivores of Eucalyptus, particularly in view of projected increases in atmospheric CO2. Received: 8 January 1996 / Accepted: 26 June 1996  相似文献   

2.
Elytropappus rhinocerotis (Asteraceae) is a dominant, fire-adapted species of renosterveld shrub communities in the Cape region of South Africa. The leaves are covered by a thick lipophilic resin comprising up to 20% of their dry weight. Approximately 80% of the leaf resin is composed of phenolic and acidic products with the methoxylated flavones cirsimaritin, hispidulin, eupafolin and the flavonol quercetin the main components. Seven benzoic and cinnamic acid derivatives are also present in minor amounts. About 20% of the resin consisted of aliphatic constituents. Bioassays indicated allelopathic effects of the resin on the seed germination of Lactuca and Raphanus. The predominance of lipophilic flavonoids and phenolics suggests a dual role of repelling herbivores and reducing cuticular transpiration. Calorimetric measurements indicated no significant contribution of the non-volatile resin to the flammability of E. rhinocerotis.  相似文献   

3.
Does Mangrove Leaf Chemistry Help Explain Crab Herbivory Patterns?   总被引:3,自引:0,他引:3  
We examined feeding by the mangrove tree crab Aratus pisonii in Tampa Bay, Florida, in relation to the percent dry weight of carbohydrate, protein, phenolics, condensed tannins, ash, carbon, nitrogen, carbonmitrogen ratio, water content, and sclerophylly for leaves of the red mangrove Rhizophora mangle. Comparisons of leaf chemistry were made among leaves that experienced variable levels of crab damage. Because R. mangle is the crab's preferred food source based on damage patterns in the field, comparisons of R. mangle leaf chemistry were made in relation to that of the black mangrove Avicennia germinans and the white mangrove Laguncularia racemosa. We observed a negative relationship between level of leaf damage and percent dry weight of nitrogen, carbohydrates, condensed tannins, and sclerophylly. In contrast, a positive relationship was found between leaf damage and the carbon:nitrogen ratio. The chemical constituents that provided the best explanation for differences in damage among the three mangrove species include condensed tannins, nitrogen, carbon:nitrogen ratio, carbohydrates, phenolics, water content, and ash. The results from this study suggest that chemistry only partially explains food preference by A. pisonii. It appears that A. pisonii feeding behavior and preference may be influenced by a more complex series of factors and interactions, which may include reproduction by, predation on, and interspecific competition with A. pisonii.  相似文献   

4.
Summary The digestion and metabolism ofEucalyptus melliodora foliage was studied in captive brushtail possums (Trichosurus vulpecula). The foliage was low in nitrogen and silica but high in lignified fibre and phenolics compared with diets consumed by most other herbivores. The high lignin content was suggested as the main cause of the low digestibility ofE. melliodora cell walls (24%); microscopic observations of plant fragments in the caecum and faeces revealed few bacteria attached to lignified tissues. The conversion of digestible energy (0.34 MJ·kg–0.75·d–1) to metabolizable energy (0.26 MJ·kg–0.75·d–1) was low compared to most other herbivores, probably because of excretion of metabolites of leaf essential oils and phenolics in the urine. When the inhibitory effect of leaf tannins on fibre digestion was blocked by supplementing the animals with polyethylene glycol (PEG), intake of dry matter, metabolizable energy and digestible fibre increased. These effects were attributed to the reversal by PEG of tanninmicrobial enzyme complexes. It was concluded that the gut-filling effect of a bulk of indigestible fibre is a major reason why the brushtail possum does not feed exclusively onEucalyptus foliage in the wild.Abbreviations ADF acid-detergent fibre - AL acid-lignin - DE digestible energy - DM dry matter - ME metabolizable energy - NDF neutral-detergent fibre - PEG polyethylene glycol  相似文献   

5.
In the present study, ethanolic extracts of ten cyanobacterial strains cultivated under different nitrogen conditions were assessed for the phenolic content and antioxidant activity. The amount of detected phenolic compounds ranged from 14.86 to 701.69 μg g?1 dry weight (dw) and HPLC-MS/MS analysis revealed gallic acid, chlorogenic acid, quinic acid, catechin, epicatechin, kaempferol, rutin and apiin. Only catechin, among the detected phenolics, was present in all the tested strains, while quinic acid was the most dominant compound in all the tested Nostoc strains. The results also indicated the possibility of increasing the phenolic content in cyanobacterial biomass by manipulating nitrogen conditions, such as in the case of quinic acid in Nostoc 2S7B from 70.83 to 594.43 μg g?1 dw. The highest radical scavenging activity in DPPH assay expressed Nostoc LC1B with IC50 value of 0.04?±?0.01 mg mL?1, while Nostoc 2S3B with IC50 =?9.47?±?3.61 mg mL?1 was the least potent. Furthermore, the reducing power determined by FRAP assay ranged from 8.36?±?0.08 to 21.01?±?1.66 mg AAE g?1, and it was significantly different among the tested genera. The Arthrospira strains exhibited the highest activity, which in the case of Arthrospira S1 was approximately twofold higher in comparison to those in nitrogen-fixing strains. In addition to this, statistical analysis has indicated that detected phenolics were not major contributor to antioxidant capacities of tested cyanobacteria. However, this study highlights cyanobacteria of the genera Nostoc, Anabaena, and Arthrospira as producers of antioxidants and phenolics with pharmacological and health-beneficial effects, i.e., quinic acid and catechin in particular.  相似文献   

6.
Four sesquiterpene leaf resin components were isolated and identified from Copaifera leaf resin. Additional GC and mass spectrometric evidence support the close similarity of Copaifera leaf pocket resin composition with that of the related genus, Hymenaea.  相似文献   

7.
Selective pressures imposed by herbivores are often positively correlated with investments that plants make in defense. Research based on the framework of an evolutionary arms race has improved our understanding of why the amount and types of defenses differ between plant species. However, plant species are exposed to different selective pressures during the life of a leaf, such that expanding leaves suffer more damage from herbivores and pathogens than mature leaves. We hypothesize that this differential selective pressure may result in contrasting quantitative and qualitative defense investment in plants exposed to natural selective pressures in the field. To characterize shifts in chemical defenses, we chose six species of Inga, a speciose Neotropical tree genus. Focal species represent diverse chemical, morphological, and developmental defense traits and were collected from a single site in the Amazonian rainforest. Chemical defenses were measured gravimetrically and by characterizing the metabolome of expanding and mature leaves. Quantitative investment in phenolics plus saponins, the major classes of chemical defenses identified in Inga, was greater for expanding than mature leaves (46% and 24% of dry weight, respectively). This supports the theory that, because expanding leaves are under greater selective pressure from herbivores, they rely more upon chemical defense as an antiherbivore strategy than do mature leaves. Qualitatively, mature and expanding leaves were distinct and mature leaves contained more total and unique metabolites. Intraspecific variation was greater for mature leaves than expanding leaves, suggesting that leaf development is canalized. This study provides a snapshot of chemical defense investment in a speciose genus of tropical trees during the short, few‐week period of leaf development. Exploring the metabolome through quantitative and qualitative profiling enables a more comprehensive examination of foliar chemical defense investment.  相似文献   

8.
A pot experiment was carried out to explore the role of glycinebetaine (GB) as foliar spray foliar on two pea (Pisum sativum L.) varieties (Pea 09 and Meteor Fsd) under saline and non-saline conditions. Thirty-two-day-old plants were subjected to two levels 0 and 150 mM of NaCl stress. Salt treatment was applied in full strength Hoagland’s nutrient solution. Three levels 0, 5 and 10 mM of GB were applied as foliar treatment on 34-day-old pea plants. After 2 weeks of foliar treatment with GB data for various growth and physiochemical attributes were recorded. Rooting-medium applied salt (150 mM NaCl) stress decreased growth, photosynthesis, chlorophyll, chlorophyll fluorescence and soluble protein contents, while increasing the activities of enzymatic (POD and CAT) and non-enzymatic (ascorbic acid and total phenolics) antioxidant enzymes. Foliar application of GB decreased root and shoot Na+ under saline conditions, while increasing shoot dry matter, root length, root fresh weight, stomatal conductance (g s), contents of seed ascorbic acid, leaf phenolics, and root and shoot Ca2+ contents. Of three GB (0, 5, 10 mM) levels, 10 mM proved to be more effective in mitigating the adverse effects of salinity stress. Overall, variety Pea 09 showed better performance in comparison to those of var. Meteor Fsd under both normal and salinity stress conditions. GB-induced modulation of seed ascorbic acid, leaf phenolics, g s, and root Ca2+ values might have contributed to the increased plant biomass, reduction of oxidative stress, increased osmotic adjustment and better photosynthetic performance of pea plants under salt stress.  相似文献   

9.
A study was conducted to find out the role of ascorbic acid (AsA) in modulating growth and different physio-biochemical attributes of canola plants under well-watered as well as water-deficit conditions. Drought stress imposed on 60 % field capacity significantly decreased the shoot and root fresh and dry weights, leaf chlorophyll contents, shoot and root P, root K+, and activity of CAT enzyme, while increased chlorophyll a/b contents, MDA, NPQ, leaf total phenolics, free proline and GB contents in both canola cultivars. Foliar-applied varying levels (50, 100 and 150 mg L?1) of AsA enhanced shoot and root fresh and root dry weights, qN, NPQ, shoot and root P, AsA as well as the activity of POD enzyme particularly under drought stress conditions. Of both canola cultivars, cv. Dunkeld was higher in shoot fresh weights, ETR and F v /F m, MDA, proline and GB contents, and POD activity, however, cv. Cyclone in total phenolics and qN under well-watered and water-deficit conditions. Overall, the foliar-applied AsA had a positive effect, though not marked, on salt sensitive cv. Cyclone in terms of improved growth and other attributes, whereas exogenously applied AsA had a non-significant effect on relatively salt tolerant cv. Dunkeld.  相似文献   

10.
During leaf senescence, macromolecule breakdown occurs and nutrients are translocated to support growth of new vegetative tissues, seeds, or other storage organs. In this study, we determined the fatty acid levels and profiles in Arabidopsis (Arabidopsis thaliana), Brachypodium distachyon, and switchgrass (Panicum virgatum) leaves during natural senescence. In young leaves, fatty acids represent 4% to 5% of dry weight and approximately 10% of the chemical energy content of the leaf tissues. In all three species, fatty acid levels in leaves began to decline at the onset of leaf senescence and progressively decreased as senescence advanced, resulting in a greater than 80% decline in fatty acids on a dry weight basis. During senescence, Arabidopsis leaves lost 1.6% of fatty acids per day at a rate of 2.1 μg per leaf (0.6 μg mg−1 dry weight). Triacylglycerol levels remained less than 1% of total lipids at all stages. In contrast to glycerolipids, aliphatic surface waxes of Arabidopsis leaves were much more stable, showing only minor reduction during senescence. We also examined three Arabidopsis mutants, acx1acx2, lacs6lacs7, and kat2, which are blocked in enzyme activities of β-oxidation and are defective in lipid mobilization during seed germination. In each case, no major differences in the fatty acid contents of leaves were observed between these mutants and the wild type, indicating that several mutations in β-oxidation that cause reduced breakdown of reserve oil in seeds do not substantially reduce the degradation of fatty acids during leaf senescence.  相似文献   

11.
An initial destabilization of functions triggered by drought stress in plants is followed by acclimatization and acquisition of tolerance; however, knowledge remains limited on drought-mediated changes in plant quality for herbivores. We tested whether a water-stressed fast-growing plant negatively affects host-specialist insects in both sap-sucking and leaf-chewing feeding guilds. Collards (Brassica oleracea var. acephala) were grown in well-watered, slightly water-stressed and severely water-stressed conditions. Decreasing soil moisture adversely affected plant development, assessed as a reduction in leaf number and size, stomatal size and relative water content. Severely stressed plants had less fiber and glucosinolates; however, they showed more total nitrogen and lipids. Larval survival, pupal weight, reproductive rate (Ro) and rate of population growth (r) were lower when the leaf-chewing Plutella xylostella was reared with severely stressed collards. In multiple-choice tests, moths laid fewer eggs on leaf discs of collard that were exposed to drought. The fecundity of the sap-sucking Brevicoryne brassicae was higher and the development of alates was lower when insects were fed on plants kept in well-watered regime as compared to slight-stress and severe-stress. Despite higher nitrogen content and fewer glucosinolates, a higher level of leaf surface wax in severely stressed collards possibly decreased food quality for both herbivores. Thus, host-specific herbivores of different guilds showed similar responses to drought-stressed, fast-growing plants. Water-stressed crops could discourage the attack of specialist insects, but the intensity of the stress that is required to achieve this effect will greatly reduce crop production, in terms of plant growth or foliage increment.  相似文献   

12.
Construction costs (CC) and parameters of leaf structure (specific leaf weight, dry matter content, volume of photosynthesizing cells, and the number of cells per leaf area unit) were determined for 19 species of aquatic higher plants. The CC of 1 g dry matter varied from 0.98 g glucose in Lemna gibba L. to 1.48 g glucose in Nuphar pumila (Timm) DC. and Potamogeton natans L. The CC of leaf area unit varied to a greater extent than the CC of 1 g dry wt (from 10 to 97 g glucose/m2) and depended on the type of mesophyll structure. In leaves of hydrophytes with dorsoventral mesophyll structure, the CC of 1 m2 leaf area was 3–9 times larger than in leaves with homogeneous structure. Variations in CC of 1 m2 leaf area in hydrophytes were affected insignificantly (by 2% only) by variations of CC per 1 g dry wt and were mainly determined (by 82%) by changes in specific leaf weight. Two-factor analysis of variance has shown that the CC of 1 g dry wt in hydrophytes depended on the attachment of plants to the sediment: the CC was 1.2 times larger in rooted hydrophytes than in free floating plants. The second factor (the extent of submergence) potentiated the effect of rooting on CC. Reliable differences were found between the leaf CC for hydrophytes belonging to four groups distinguished by the extent of their contact with water and sediment. In a group series: rooted hydrophytes with floating leaves → submerged rooted hydrophytes → free floating submerged hydrophytes → free floating surface inhabiting hydrophytes, the CC of 1 g dry wt decreased by 1.3 times. Path analysis has shown that this trend was due to the increase in photosynthesizing cell volume and to reduction in number of cells per leaf area unit, which caused the decrease in dry matter content. The decrease in the content of leaf dry matter was accompanied by changes in its chemical composition: the content of carbon and nitrogen decreased. This led to a consistent decrease in leaf CC expressed per 1 g dry wt upon the increase in extent of plant hydrophilicity.  相似文献   

13.
Antioxidant activities and phenolic contents of 26 species extracts from 20 botanical families grown in north-western Himalaya were investigated. Antioxidant activities were determined using DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging and ferric reducing antioxidant power (FRAP) assays. Total phenolic content (TPC) was determined using a Folin-Ciocalteu assay. Quantitative and qualitative analysis of phenolic compounds was also carried out by reverse phase high performance liquid chromatography (RP-HPLC) using diode array detector (DAD). Major phenolics determined using RP-HPLC in analyzed species were gallic acid, chlorogenic acid, p-hydroxy benzoic acid, caffeic acid, vanillic acid, syringic acid, p-coumaric acid and ferulic acid. Antiradical efficiency (1/EC50) determined using DPPH radical scavenging assay ranged from 0.13 to 5.46. FRAP values ranged from 8.66 to 380.9 μmol Fe(II)/g dw. Similarly, the total phenolic content in the analyzed species varied from 3.01 to 69.96 mg of gallic acid equivalents (GAE)/g dry weight. Gallic acid was found in the majority of the samples, being most abundant compound in Syzygium cumini bark (92.64 mg/100 g dw). Vanillic acid was the predominant phenolic compound in Picrorhiza kurroa root stolen (161.2 mg/100 g dry weight). The medicinal plants with highest antioxidant activities were Taxus baccata and Syzygium cumini. A significant positive correlation, R 2?=?0.9461 and R 2?=?0.9112 was observed between TPC determined using Folin-Ciocalteu method and antiradical efficiency and FRAP values respectively, indicating that phenolic compounds are the major contributor of antioxidant activity of these medicinal plants.  相似文献   

14.
15.
The leaf non-structural carbohydrate (NSC) content and total non-structural carbohydrate content (TNC) were measured on a dry weight basis and on a leaf area basis in three altitudinal (3100, 3550 and 4200 m a.s.l.) populations ofE. schultzii. The values of leaf dry weight per area (LWA) increase with altitude. The leaf non-structural carbohydrate content (expressed as g/kg dry weight) does not show statistically significant difference among populations, but the values expressed on an area basis (g/m2) show a statistically significant increase with altitude. Significant correlations were observed between LWA and TNC (r 2=0.65); insoluble carbohydrate (r 2=0.78); total soluble carbohydrate (r 2=0.53); reducing sugars (r 2=0.47) expressed on area basis. Correlations between LWA and NSC for any fraction and TNC on a dry weight basis were not significant. It appears that along this altitudinal gradient the leaf area is more affected than the leaf dry weight. Since the NSC is known to play a role in the freezing tolerance of plants, the results indicate that the freezing tolerance does not change among the populations along the gradient.  相似文献   

16.
Despite a growing knowledge of nutrient limitation for mangrove species and how mangroves adapt to low nutrients, there is scant information about the relative importance of N:P ratio and leaf phenolics variability in determining nutrient conservation. In this study, we evaluated possible nutrient conservation strategies of a mangrove Rhizophora stylosa under nutrient limitation. 1. The leaf nutrient concentrations of R. stylosa changed with season, with the highest N concentration in winter and the highest P concentration in spring for both mature and senescent leaves. Leaf N and P concentrations decreased significantly during leaf senescence. Based on N:P ratios R. stylosa forest was N-limited. Accordingly, the nitrogen resorption efficiency (NRE) was significantly higher than phosphorus resorption efficiency (PRE) for the R. stylosa leaves during leaf senescence. The NRE and PRE both reached the highest in the autumn. Average N and P concentrations in the senescent leaves were 0.15% and 0.06% for R. stylosa, respectively, indicating a complete resorption of N and an incomplete resorption of P. There was a significant negative correlation between nitrogen resorption proficiency (NRP) and NRE, meanwhile phosphorus resorption proficiency (PRP) and PRE correlation was also highly significantly. 2. R. stylosa leaves contained relatively high tannin level. Total phenolics, extractable condensed tannins and total condensed tannins contents increased during leaf senescence, and changed between seasons. The lowest concentrations of total phenolics, extractable condensed tannins and total condensed tannins occurred in summer, total phenolics concentrations were inversely related to nitrogen or phosphorus concentrations. 3. Our results confirmed that resorption efficiency during leaf senescence depends on the type of nutrient limitation, and NRE was much higher than PRE under N-limited conditions. R. stylosa forest developed several nutrient conservation strategies in the intertidal coastline surroundings, including high nitrogen resorption efficiency, low nutrient losses and high tannins level.  相似文献   

17.
  1. Leaf shelter construction by herbivorous insects can improve leaf quality, sometimes changing resultant herbivory. In two experiments in a Missouri (USA) deciduous forest we quantified the impact of leaf tie construction and changes to leaf quality on subsequent leaf damage.
  2. First, using eight Quercus species, we compared damage to single leaves versus experimental leaf ties that had been stocked with either Pseudotelphusa quercinigracella (Gelechiidae) or Psilocorsis cryptolechiella (Depressariidae) to determine how initial leaf quality (total phenolics) influenced damage caused by shelter inhabitants. Skeletonization by leaf tying caterpillars and leaf edge chewing by free feeding species were 12.2× and 1.3× greater on tied than on non-tied leaves, respectively. July and September leaf phenolic content had a slight positive effect on the probability of skeletonization, none on the probability of edge damage, and a weakly positive or negative effect on the intensity of skeletonization and edge damage, depending on leaf position.
  3. Second, we created experimental leaf ties, protected from herbivores, on the same Quercus species to determine whether tie formation changes leaf quality (total phenolics, nitrogen, water, toughness). Tie formation decreased phenolics, but this change was predicted to add only 0.8% leaf area loss.
  4. Synthesis. Herbivory increased dramatically when leaves were in ties, with the effect mostly due to the tie itself rather than a change in leaf quality. We predict that the advantages of building and using leaf ties in this system are more likely to be escape from natural enemies and changes in abiotic factors.
  相似文献   

18.
Summary Digestion and energy metabolism in an arboreal marsupial, the koalaPhascolarctos cinereus, fed mature foliage from a common food tree, the grey gumEucalyptus punctata, were investigated. Six feeding (balance) experiments, at various times of year, and one slaughter experiment were performed and average daily oxygen consumption was measured.The average apparent digestibilities of dietary constituents were: dry matter 54%; total cell-contents 69%; available carbohydrate 92%; crude lipid 43%; total nitrogen 45%; total phenolics 91%; total cell walls 25%; hemicellulose 24%; acid-detergent fibre 25%; cellulose 31%; lignin 19%.Average digestible and metabolizable energy intakes were 0.50 and 0.43 MJ kg–0.75 d–1 respectively of which only 0.28 MJ kg–0.75 d–1 was expended in oxidative metabolism. The digestible energy intake required for maintenance was estimated to be 0.33 MJ kg–0.75 d–1, which is lower than that of eutherian and of other marsupial herbivores. The principal sources of metabolizable energy were non-structural carbohydrate and lipid.It is postulated that the ability of koalas to utilizeEucalyptus foliage as a sole source of nutrients is facilitated by their low requirement for energy and their ability to maximize intake of non cell-wall constituents.E. punctata foliage has a high digestible energy content compared with the foliage of many other trees and this may be a factor in its selection by koalas.Abbreviations DMI dry matter intake - DMD dry matter digestibility - DE digestible energy - ME metabolizable energy  相似文献   

19.
Polymorphisms in plants are main factors that determine the diversity of associated animal communities and their population dynamics. Typically, Persicaria lapathifolia var. lapathifolia (Polygonaceae) has no trichomes on leaf surfaces (glabrous type), but a hairy type does sometimes occur. Based on a cultivation experiment, the presence or absence of trichomes is clarified to be under genetic control. To reveal the defensive function of trichomes against herbivores, laboratory experiments were conducted using a major herbivore, Galerucella grisescens (Coleoptera: Chrysomelidae). In both choice and no-choice feeding tests, the glabrous type was significantly more consumed by G. grisescens adults, while the hairy type was not consumed. In the hairy leaf treatment, larval duration tended to become longer, the adult body weight became significantly lower, and adults laid significantly more eggs than in the glabrous leaf treatment. Hairy leaves contained significantly more total phenolics and condensed tannins than glabrous leaves, suggesting that the hairy type allocates more resources for physical and chemical defence. Because no significant differences in leaf consumption were detected in the feeding experiment using powdered host leaves, G. grisescens seems to have adapted to the chemical defences of P. lapathifolia var. lapathifolia. These results clearly indicate that leaf trichomes of P. lapathifolia var. lapathifolia effectively act as a physical defence against G. grisescens.  相似文献   

20.
Parts of the nitrogen cycle involving two dominants (Lithraea caustica andQuillaja saponaria) in the Chilean piedmont matorral have been studied over a 15-month period. Analyses showed that 8.2 kg N ha?1 yr?1 entered the system in rainfall and dry deposition, though impaction of N-containing compounds on vegetation (not measured) may elevate this value.L. caustica, by virtue of its greater percent cover, contributed more leaf litter than didQ. saponaria to the system (1089,vs 737 kg dry matter ha?1 yr?1, respectively), although on an individual basisQ. saponaria produced more litter (640,vs 350 g dry leaf litter m?2 yr?1 rL. caustica). This plus the greater nitrogen release ofL. caustica leaf litter during decomposition (2.61,vs 0.60 g N kg dry litter?1 yr?1 forQ. saponaria) andQ. saponaria's higher N-content of dropped leaves (0.54,vs 0.37% N forL. caustica) may indicate a more external cycling of nitrogen inQ. saponaria relative to that inL. caustica. These two species may therefore represent two different strategies of individual nitrogen cycling, external and internal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号