首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Ivan Pichl 《Phytochemistry》1976,15(5):717-722
Globulins isolated from 6 species of the Cucurbitaceae family (C. maxima, C. pepo, C. moschata, Luffa cylindrica, Lagenaria vulgaris, and Momordica charantia) were studied. Nitrogen content of the globulins varied from 18.3 to 18.8%, with a mean of 18.6%. Of the individual amino acids, the most abundant were arginine and glutamic acid. Content of histidine, proline, serine, and tyrosine showed relatively higher variability within the group of species compared. MWs of the globulins, determined with Sephadex G 200, were 241 000 (C. maxima, C. pepo), 248 000 (C. moschata, L. cylindrica), 256 000 (L. vulgaris), and 218 000 (M. charantia). By ultracentrifugal analysis of globulins in 2 M NACl (pH 8), 3 fractions were identified in all the species except M. charantia, their sedimentation coefficients being in the range of (1) 5.2 S–7.2 S, (2) 15.3 S–17.2 S, and (3) 10.4–11.2 S. The latter fraction predominated in all the species, its amount was 94–96% of total globulins. Differences in electrophoretic properties of the globulins and their subunits produced in the presence of 8 M urea and by oxidative splitting with performic acid, respectively, and results of electrophoresis in SDS-acrylamide gels are also discussed.  相似文献   

2.
Winter HC  Dekker EE 《Plant physiology》1989,89(4):1122-1128
Aspartate aminotransferase (glutamate-oxalacetate transaminase) was partially purified from extracts of germinating seeds of peanut (Arachis hypogaea), honey locust (Gleditsia triacanthos), soybean (Glycine max), and Sophora japonica. The ability of these enzyme preparations, as well as aspartate aminotransferase purified from pig heart cytosol, to use 4-substituted glutamic acids as amino group donors and their corresponding 2-oxo acids as amino group acceptors in the aminotransferase reaction was measured. All 4-substituted glutamic acid analogs tested were poorer substrates than was glutamate or 2-oxoglutarate. 2-Oxo-4-methyleneglutarate was least effective (lowest relative Vm/Km) as a substrate for the enzyme from peanuts and honey locust, which are the two species studied that accumulate 4-methyleneglutamic acid and 4-methyleneglutamine. Of the different aminotransferases tested, the enzyme from honey locust was the least active with 2-oxo-4-hydroxy-4-methylglutarate, the corresponding amino acid of which also accumulates in that species. These results suggest that transamination of 2-oxo-4-substituted glutaric acids is not involved in the biosynthesis of the corresponding 4-substituted glutamic acids in these species. Rather, accumulation of certain 4-substituted glutamic acids in these instances may be, in part, the result of the inefficacy of their transamination by aspartate aminotransferase.  相似文献   

3.
Apomixis enables the clonal propagation of maternal genotypes through seed. If apomixis could be harnessed via genetic engineering or introgression, it would have a major economic impact for agricultural crops. In the grass species Pennisetum squamulatum and Cenchrus ciliaris (syn. P. ciliare), apomixis is controlled by a single dominant “locus”, the apospory-specific genomic region (ASGR). For P. squamulatum, 18 published sequenced characterized amplified region (SCAR) markers have been identified which always co-segregate with apospory. Six of these markers are conserved SCARs in the closely related species, C. ciliaris and co-segregate with the trait. A screen of progeny from a cross of sexual × apomictic C. ciliaris genotypes identified a plant, A8, retaining two of the six ASGR-linked SCAR markers. Additional and newly identified ASGR-linked markers were generated to help identify the extent of recombination within the ASGR. Based on analysis of missing markers, the A8 recombinant plant has lost a significant portion of the ASGR but continues to form aposporous embryo sacs. Seedlings produced from aposporous embryo sacs are 6× in ploidy level and hence the A8 recombinant does not express parthenogenesis. The recombinant A8 plant represents a step forward in reducing the complexity of the ASGR locus to determine the factor(s) required for aposporous embryo sac formation and documents the separation of expression of the two components of apomixis in C. ciliaris.  相似文献   

4.
Free amino acids are important bioactive ingredients in herbs and herbal products. Coptis herbs contain a variety of free amino acids; however, studies have not yet analyzed the relationship between free amino acids and species of Coptis herbs. In the current study, the contents of 20 free amino acids in Coptis chinensis Franch., Coptis teeta Wall., and Coptis deltoidea C.Y. Cheng et Hsiao were determined using an automatic amino acid analyzer to evaluate the differences between the three species. We found that the major amino acids (Asn, Arg, and γ-aminobutyric acid (GABA)) were significantly more in C. chinensis than in the other two species. In addition, Asp content was significantly more in C. deltoidea. The study concluded that Asn can be used to identify C. deltoidea, C. chinensis, and C. teeta, and Gln and Arg can be used to distinguish C. teeta from C. chinensis and C. deltoidea. These findings suggested that free amino acids as active ingredients can be used to identify Coptis herb species.  相似文献   

5.
A combination of limited tryptic proteolysis, reverse phasehigh performance liquid chromatography, Edman degradative sequencing, amino acid analysis, and fast-atom bombardment mass-spectrometry was used to remove and identify the first 14 to 18 N-terminal amino acid residues of the large subunit of higher plant-type ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) from Chlamydomonas reinhardtii, Marchantia polymorpha, pea (Pisum sativum), tomato (Lycopersicon esculentum), potato (Solanum tuberosum), pepper (Capsicum annuum), soybean (Glycine max), petunia (Petunia x hybrida), cowpea (Vigna sinensis), and cucumber (Cucumis sativus) plants. The N-terminal tryptic peptide from acetylated Pro-3 to Lys-8 of the large subunit of Rubisco was identical in all species, but the amino acid sequence of the penultimate N-terminal tryptic peptide varied. Eight of the 10 species examined contained a trimethyllysyl residue at position 14 in the large subunit of Rubisco, whereas Chlamydomonas and Marchantia contained an unmodified lysyl residue at this position.  相似文献   

6.
Calmodulin is one of the calcium-binding proteins and is distributed widely in eukaryotes. The amino acid sequences were studied of calmodulin taken from bovine brain, scallop (Patinopecten), sea anemone (Metridium senile) and tetrahymena (Tetrahymena pyriformis). One notable feature of the primary structure of calmodulin is its internal homology. It can be subdivided into four domains with similar amino acid sequences. This homology implies that the primary structure of calmodulin has been elongated twice by intragenic duplication. Using this intragenic duplication model, the amino acid sequences of calmodulin from those four species were analyzed in detail. This kind of approach has proved very useful for investigation of the origin and evolution of this protein.  相似文献   

7.
The amino acid compositions of the proteinaceous components of the gum exudates from Prosopis alba, P. chilensis, P. glandulosa, P. laevigata, P. torreyana and P. velutina, and for a sample of commercial gum mesquite, are presented. In agreement with data published previously for the polysaccharide components of their gums, only minor differences in composition are shown by these species. The amino acid compositions are characterized by very high proportions of hydroxyproline and by high proportions of proline and serine; these three amino acids account for 62.5% of those present in the gum from Prosopis velutina. The amino acid compositions of these Prosopis gums are remarkably similar to that established recently for the gum from Acacia senegal (gum arabic).  相似文献   

8.
Clerodendrum infortunatum L. (syn.: Clerodendrum viscosum Vent.), a member of the Lamiaceae, yielded one undescribed jasmonic acid derivative, ten acteosides, and two flavonoids. The jasmonic acid derivative was identified as 6'-O-caffeoyl-12-glucopyranosyloxyjasmonic acid. The acteosides were identified as isoacteoside, acteoside, 2''-O-acetyl-martyonside, 3''-O-acetyl-martyonside, martynoside, brachynoside, leucosceptoside A, jionoside C, jionoside D, incanoside C. The flavonoids were identified as apigenin 7-O-glucuronide and acacetin 7-O-glucuronide. The structures of the isolated components have been identified by UHPLC-HRMS, 1D and 2D NMR spectroscopic analyses, spectrometric techniques, and in comparison with published NMR data. The absolute sugar configuration was determined by GLC-MS/MS analysis of the octylated derivative of the sugar moiety after hydrolysis. Among the known compounds, ten are reported for the first time from this species, while the acteoside leucosceptoside A and the two flavonoids have been isolated for the first time from the genus Clerodendrum. The chemophenetic significance of the compounds obtained from C. infortunatum is summarized in comparison to those found in other Clerodendrum species.  相似文献   

9.
《Insect Biochemistry》1991,21(7):759-765
Free and protein-bound amino acids were investigated in the phytophagous bug Lygus rugulipennis and its salivary gland. Over 38 substances were separated. The total content of amino compounds in the insects was about 1400 μmol/g fr. wt (16% by weight), of which 97% was amino acid residues in proteins.The salivary glands, which comprise about 1.5% of the live weight of the insects, contain 3.5% of the total free amino acids and 1% of the whote insect. Free and protein-bound amino acids comprise, respectively, about 1.4 and 11.6% of the fresh weight of the gland. The total concentration of free amino acids in the saliva was estimated to range from 0.5 to 2.2% by weight (ca. 0.1 M).The composition of free amino acids in the salivary gland of Lugus varies markedly. In four studied species (L. rugulipennis, L. gemellatus, L. pratensis, L. punctatus), the most abundant compounds were proline, arginine, lysine, leucine, glutamic acid, methionine sulphoxide and glycerophosphoethanolamine. In whole specimens of L. rugulipennis the predominant free amino acids were proline, alanine, taurine, glutamic acid, glutamine and methionine sulphoxide. The most abundant amino acids in proteins were glutamic and aspartic acid, glycine, alanine and leucine. The results indicate that the amino acid composition in the salivary glands of Lygus species does not differ markedly from that of the whole insect. The functions of salivary amino acids are discussed.  相似文献   

10.
Chevalierinosides B (1) and C (2), two new isoflavonoid glycosides, characterized as biochanin A 7-O-[β-d-apiofuranosyl-(1→2)-β-d-glucopyranoside] and genistein 7-O-[β-d-apiofuranosyl-(1→2)-β-d-glucopyranoside], together with the known isoflavonoids, chevalierinoside A (3) and genistein 7-O-β-d-glucopyranoside (4), kaempferol 3-O-β-d-glucopyranoside (5) and triterpenes, friedelin (6), betulinic acid (7), 30-oxobetulinic acid (8), 30-hydroxybetulinic acid (9), were isolated from the stem bark of Antidesma laciniatum Muell. Arg. (syn. Antidesma chevalieri Beille). Their structures were established by direct interpretation of their spectral data, mainly HR-TOFESIMS, 1D-NMR (1H, 13C and DEPT) and 2D-NMR (COSY, NOESY, TOCSY, HSQC and HMBC), and by comparison with the literature.  相似文献   

11.
12.
The theanine content of the leaves of 27 species or varieties of Theaceae plants was investigated. Theanine was present in 21 species or varieties, but in much lower amounts (<0.2 μmol/g fresh weight) than the quantity detected in Camellia sinensis var. sinensis. The major free amino acids in leaves of four species belonging to the genera Schima and Eurya, were glutamic acid, aspartic acid, glutamine, asparagine, alanine and proline and content of these amino acids is similar to or higher than theanine. Accumulation of free amino acids in these plants was generally lower than in C. sinensis var. sinensis. The biosynthetic activity of theanine, assessed by the incorporation of radioactivity from [14C]ethylamine, was detected in seedlings of two species of Schima. The theanine biosynthetic activity in roots was higher than that of leaves.  相似文献   

13.
Quantitative Analysis of Actinomyces Cell Walls   总被引:4,自引:1,他引:3       下载免费PDF全文
Quantitative data on the amino acid composition of cell walls of five species of Actinomyces were obtained by using a Beckman-Spinco amino acid analyzer. The major amino acids in A. israelii, A. naeslundii, A. eriksonii, and A. bovis species included alanine, glutamic acid, lysine, aspartic acid, and ornithine, as reported by previous workers, whereas A. propionicus contained diaminopimelic acid. Other amino acids, including glycine, valine, leucine, proline, isoleucine, and threonine, were present in at least some of the walls in quantities equal to or slightly less than that of lysine. This raised the question of whether these may represent cross-links in the peptidoglycan or other cell wall structural components or whether the wall preparations contained nonpeptidoglycan material despite the use of electron microscopy as a standard of purity; further work is required to supply the answer. The quantitative data furnish relative molar concentrations of amino acids, which can provide definitive identification of some of the species and differentiation of Actinomyces from other members of the Actinomycetales and from morphologically similar genera such as Corynebacterium and Propionibacterium.  相似文献   

14.
Family-group names in Coleoptera (Insecta)   总被引:1,自引:0,他引:1  
We synthesize data on all known extant and fossil Coleoptera family-group names for the first time. A catalogue of 4887 family-group names (124 fossil, 4763 extant) based on 4707 distinct genera in Coleoptera is given. A total of 4492 names are available, 183 of which are permanently invalid because they are based on a preoccupied or a suppressed type genus. Names are listed in a classification framework. We recognize as valid 24 superfamilies, 211 families, 541 subfamilies, 1663 tribes and 740 subtribes. For each name, the original spelling, author, year of publication, page number, correct stem and type genus are included. The original spelling and availability of each name were checked from primary literature. A list of necessary changes due to Priority and Homonymy problems, and actions taken, is given. Current usage of names was conserved, whenever possible, to promote stability of the classification.New synonymies (family-group names followed by genus-group names): Agronomina Gistel, 1848 syn. nov. of Amarina Zimmermann, 1832 (Carabidae), Hylepnigalioini Gistel, 1856 syn. nov. of Melandryini Leach, 1815 (Melandryidae), Polycystophoridae Gistel, 1856 syn. nov. of Malachiinae Fleming, 1821 (Melyridae), Sclerasteinae Gistel, 1856 syn. nov. of Ptilininae Shuckard, 1839 (Ptinidae), Phloeonomini Ádám, 2001 syn. nov. of Omaliini MacLeay, 1825 (Staphylinidae), Sepedophilini Ádám, 2001 syn. nov. of Tachyporini MacLeay, 1825 (Staphylinidae), Phibalini Gistel, 1856 syn. nov. of Cteniopodini Solier, 1835 (Tenebrionidae); Agronoma Gistel 1848 (type species Carabus familiaris Duftschmid, 1812, designated herein) syn. nov. of Amara Bonelli, 1810 (Carabidae), Hylepnigalio Gistel, 1856 (type species Chrysomela caraboides Linnaeus, 1760, by monotypy) syn. nov. of Melandrya Fabricius, 1801 (Melandryidae), Polycystophorus Gistel, 1856 (type species Cantharis aeneus Linnaeus, 1758, designated herein) syn. nov. of Malachius Fabricius, 1775 (Melyridae), Sclerastes Gistel, 1856 (type species Ptilinus costatus Gyllenhal, 1827, designated herein) syn. nov. of Ptilinus Geoffroy, 1762 (Ptinidae), Paniscus Gistel, 1848 (type species Scarabaeus fasciatus Linnaeus, 1758, designated herein) syn. nov. of Trichius Fabricius, 1775 (Scarabaeidae), Phibalus Gistel, 1856 (type species Chrysomela pubescens Linnaeus, 1758, by monotypy) syn. nov. of Omophlus Dejean, 1834 (Tenebrionidae). The following new replacement name is proposed: Gompeliina Bouchard, 2011 nom. nov. for Olotelina Báguena Corella, 1948 (Aderidae).Reversal of Precedence (Article 23.9) is used to conserve usage of the following names (family-group names followed by genus-group names): Perigonini Horn, 1881 nom. protectum over Trechicini Bates, 1873 nom. oblitum (Carabidae), Anisodactylina Lacordaire, 1854 nom. protectum over Eurytrichina LeConte, 1848 nom. oblitum (Carabidae), Smicronychini Seidlitz, 1891 nom. protectum over Desmorini LeConte, 1876 nom. oblitum (Curculionidae), Bagoinae Thomson, 1859 nom. protectum over Lyprinae Gistel 1848 nom. oblitum (Curculionidae), Aterpina Lacordaire, 1863 nom. protectum over Heliomenina Gistel, 1848 nom. oblitum (Curculionidae), Naupactini Gistel, 1848 nom. protectum over Iphiini Schönherr, 1823 nom. oblitum (Curculionidae), Cleonini Schönherr, 1826 nom. protectum over Geomorini Schönherr, 1823 nom. oblitum (Curculionidae), Magdalidini Pascoe, 1870 nom. protectum over Scardamyctini Gistel, 1848 nom. oblitum (Curculionidae), Agrypninae/-ini Candèze, 1857 nom. protecta over Adelocerinae/-ini Gistel, 1848 nom. oblita and Pangaurinae/-ini Gistel, 1856 nom. oblita (Elateridae), Prosternini Gistel, 1856 nom. protectum over Diacanthini Gistel, 1848 nom. oblitum (Elateridae), Calopodinae Costa, 1852 nom. protectum over Sparedrinae Gistel, 1848 nom. oblitum (Oedemeridae), Adesmiini Lacordaire, 1859 nom. protectum over Macropodini Agassiz, 1846 nom. oblitum (Tenebrionidae), Bolitophagini Kirby, 1837 nom. protectum over Eledonini Billberg, 1820 nom. oblitum (Tenebrionidae), Throscidae Laporte, 1840 nom. protectum over Stereolidae Rafinesque, 1815 nom. oblitum (Throscidae) and Lophocaterini Crowson, 1964 over Lycoptini Casey, 1890 nom. oblitum (Trogossitidae); Monotoma Herbst, 1799 nom. protectum over Monotoma Panzer, 1792 nom. oblitum (Monotomidae); Pediacus Shuckard, 1839 nom. protectum over Biophloeus Dejean, 1835 nom. oblitum (Cucujidae), Pachypus Dejean, 1821 nom. protectum over Pachypus Billberg, 1820 nom. oblitum (Scarabaeidae), Sparrmannia Laporte, 1840 nom. protectum over Leocaeta Dejean, 1833 nom. oblitum and Cephalotrichia Hope, 1837 nom. oblitum (Scarabaeidae).  相似文献   

15.
2(S),3′(S)-N-(3-Amino-3-carboxypropyl)azetidine-2-carboxylic acid and 2(S),3′(S),3″(S)-N-[N-(3-amino-3-carboxypropyl)-3-amino-3-carboxypropyl]azetidine-2-carboxylic acid have been isolated from seeds of Fagus silvatica L. (beechnuts). The structures have been established by PMR- and 13C-NMR-spectroscopy and by synthesis from l-azetidine-2-carboxylic acid. The second of the new amino acids is identical with nicotianamine. previously isolated from Nicotiana tabacum but assigned a different formula. The ring opening reactions of azetidine-2-carboxylic acid in neutral solution have been studied and the chemical and possibly biochemical precursor role of this amino acid for various amino acids including the two new ones described here, nicotianine [N-(3-amino-3-carboxypropyl)nicotinic acid] and methionine is discussed.  相似文献   

16.
Australian gum specimens from Acacia aestivalis, A. chrysella, A. jennerae and A. microbotrya (five specimens differing slightly in some morphological characters) have been studied. These species, placed within Bentham's Series 1, subseries 6F (Uninerves racemosae) are closely related, forming part of the recognized A. microbotrya group. The five specimens from A. microbotrya show minor variations, similar in extent to those established previously for gums from other species. The gums from A. chrysella and A. jennerae are similar to those from A. microbotrya in chemical composition. The gum from A. aestivalis differs from those from A. microbotrya, A. chrysella and A. jennerae in two main respects: it is more acidic and has a much higher methoxyl content. Thus significant differences in gum composition can be shown by some species that differ only slightly in morphological characters. Data for the amino acid compositions of the proteinaceous components of the gums from A. aestivalis, A. jennerae and A. microbotrya, differ considerably from those for the gums from other species belonging to the Uninerves racemosae, e.g. A. saliciformis and A. xanthina, which are much more viscous and have higher proteinaceous contents containing much higher proportions of the amino acids commonly involved in linkages with sugars. Of the closely related species studied, A. aestivalis is closer to A. microbotrya than A.jennerae in terms of the amino acid compositions of their gums, a reversal in the relative affinities shown by their polysaccharide parameters. Thus amino acid compositions are of interest chemotaxonomically and also in terms of the tertiary structures of Acacia gum exudates.  相似文献   

17.
18.
The DNA barcode approach was used to identify and establish association of Colletotrichum species complex with fruit rot disease of chili (Capsicum annuum L.) in North-Western Himalayan region of India. Twenty isolates of five morphologically identified Colletotrichum species collected from commercial chili growing areas were identified using deoxyribonucleic acid (DNA) barcode marker genes, 5.8S ribosomal ribonucleic acid flanking internal transcribed spacers 1 & 2 and β-tubulin gene. Morpho-cultural identification requires expertise to delineate C. gloeosporioides, C. boninense and C. acutatum complexes from each other, as these species possess minute variation in spore shape and size. Ribosomal DNA and β-tubulin sequence analysis along with species-specific marker amplification established the association of seven Colletorichum spp. viz., C. truncatum (syn. Colletotrichum capsici), C. coccodes, C. karstii, C. kahawae, C. nymphaeae, C. fructicola and C. gloeosporioides complex with fruit rot of chili. Phylogenetic analysis of 35 Colletotrichum sequences including authentic type sequences validated the identified sequences with strong bootstrap support. This approach delineated morphologically identified species with great ease into more reliable genotype based speciation of various Colletorichum complexes. The DNA barcode markers have direct implications for plant pathologists in relation to diagnostics in fields and for the purpose of quarantine and disease management.  相似文献   

19.
Diastereoisomeric 4-substituted acidic amino acids occur in characteristic associations in the green parts of some species of the Filicinae. Subspecies of Phyllitis scolopendrium accumulate 2(S),4(R)-4-methylglutamic acid, 2(S)-4-methyleneglutamic acid and the two diastereoisomers of 2(S)-4-hydroxy-4-methylglutamic acid, the last two occurring at relative concentrations of 3: 1. All Asplenium species investigated were distinctive in accumulating 2(S),4(R)-4-methylglutamic acid, the two diastereoisomers of 2(S)-4-hydroxy-4-methylglutamic acid, and the two diastereoisomers of 2(S)-4-hydroxy-2-aminopimelic acid in a characteristic concentration ratio. Some Polystichum species do not accumulate 4-substituted acidic amino acids whereas others accumulate both diastereoisomers of 2(S)-4-hydroxy-4-methylglutamic acid and 'of 2(S)-4-hydroxy-2-aminopimelic acid, and thus resemble Asplenium species. The seasonal variation in the concentration of 4-substituted acidic amino acids in the green parts of Phyllitis, Asplenium and Polystichum species has also been determined.  相似文献   

20.
3-(3-Carboxyphenyl)-DL-[2-14C]alanine has been incorporated into four species of iris. In all species extensive metabolization takes place. In Iris × hollandica, in which both the alanine derivative and 3′-carboxyphenylglycine occur, the products identified are the glycine derivative, 3′-carboxyphenylacetate acid, 3′-carboxymandelic acid, and 3′-carboxyphenylglyoxylic acid. In I. sanguinea, in which the alanine and glycine derivatives also occur, the products identified are the glycine and acetic acid derivatives but the major product is 3-(3-hydroxymethylphenyl)alanine, a naturally occurring amino acid in this species. In I. tectorum, in which only the carboxy-substituted alanine derivative occurs, the products identified are the acetic acid and glyoxylic acid derivatives. In I. pallida, not containing any of the meta-substituted amino acids, the products identified are again the acetic acid and glyoxylic acid derivatives. The results have been further substantiated by incorporation of labelled 3′-carboxyphenylacetic acid and 3′-carboxymandelic acid into I. × hollandica and I. sanguinea.The results demonstrate three different metabolic patterns for the alanine derivative and confirm previous results on the pathway from the alanine to the glycine derivative. Furthermore, the results may be of significance for the elucidation of the catabolism of phenylalanine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号