首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined mitochondrial DNA (mtDNA) sequences and allozymes to assess possible modes of origin, clonal diversity, and evolutionary age in a triploid all-female fish of the genus Poeciliopsis from the state of Sinaloa, Mexico. Analysis of multilocus allozymes revealed that the Rio Mocorito biotype (Poeciliopsis monacha-lucida-viriosa) is trihybrid, carrying haploid genomes from three sexually reproducing species, Poeciliopsis monacha, Poeciliopsis lucida, and Poeciliopsis viriosa. Composite allozyme and mtDNA genotypes identified four clones, all bearing closely related mitochondrial haplotypes originally derived from P. monacha. Apparently these trihybrids arose endemically by addition of a haploid genome from P. viriosa, a local sexual species, to an allodiploid biotype, P. monacha-lucida, also found in the Rio Mocorito. The present analysis clearly revealed that P. monacha-lucida-viriosa arose independently of the two allotriploid biotypes that live in a river to the north (Rio Fuerte). Although the origins of allotriploidy in Poeciliopsis are less constrained phylogenetically and geographically than previously thought, known triploid biotypes all had relatively recent origins, which supports the notion that most asexual lineages are evolutionarily short-lived.  相似文献   

2.
CYP2E1 expression was examined within, among, and in F(1) and backcross progeny of strains (P. monacha S68-5; P. viriosa M65-23) of the viviparous fish Poeciliopsis. CYP 2E1 activity varied dramatically in P. monacha, and P. viriosa (3.9+/-0.8 and 9.6+/-1.3 microg/min/mg) as well as the temperature which gave maximal activity (T(0)=25 degrees C and 31 degrees C). F(1) individuals from a crosses between P. monacha and P. viriosa, produced progeny whose CYP2E1 activity segregated into three different groups: (1) phenotypically the same as P. viriosa; (2) intermediate between the two parental strains; and (3) phenotypically the same as P. monacha. When a male P. monacha was crossed with a female P. viriosa 25% of the offspring had an intermediate phenotype and 65% the maternal P. viriosa phenotype. From the same cross, 85% of the females progeny had the maternal phenotype, while 80% of male progeny had the intermediate and paternal phenotype, suggesting an effect of the maternal genome on the F(1) phenotype. Among F(1) fish the T(0) was evenly distributed between parental values. In the backcross of a F(1) female to a male P. viriosa, CZX-6-hydroxylase activity segregated into the same three phenotypes with 60% of the progeny expressing the P. monacha phenotype. From the same cross, 70% of females and 40% of males expressed the P. monacha phenotype. The T(0) in the backcross were evenly distributed between the two parental values and the sex ratio among progeny was different than expected.  相似文献   

3.
Unisexual vertebrates (i.e., those produced through clonal or hemiclonal reproduction) are typically incapable of purging deleterious mutations, and, as a result, are considered short-lived in evolutionary terms. In hemiclonal reproduction (hybridogenesis), one parental genome is eliminated during oogenesis, producing haploid eggs containing the genome of a single parent. Hemiclonal hybrids are usually produced by backcrossing hemiclonal hybrids with males of the paternal species. When hemiclonal hybrids from a genus of greenlings (Hexagrammos) are crossed with males of the maternal species, the progeny are phenotypically similar to the maternal species and produce recombinant gametes by regular meiosis. The present study was conducted to determine if the hemiclonal genome is returned to the gene pool of the maternal species in the wild. Using a specific cytogenetic marker to discriminate between such progeny and the maternal species, we observed that Hexagrammos hybrids mated with maternal and paternal ancestors at the same frequency. This two-way backcrossing in which clonal genomes are returned to the gene pool where they can undergo recombination plays an important role in increasing the genetic variability of the hemiclonal genome and reducing the extinction risk. In this way, hybrid lineages may have survived longer than predicted through occasional recombinant generation.  相似文献   

4.
Most tributaries of the Río Fuerte in northwestern Mexico contain one or more clones of allotriploid fish of the genus Poeciliopsis. We used multilocus allozyme genotypes and mitochondrial DNA (mtDNA) haplotypes to examine several potential modes of origin of these gynogenetic all-female fish. The allozyme studies corroborated earlier morphological work revealing the hybrid constitution of two triploid biotypes, Poeciliopsis 2 monacha-lucida and Poeciliopsis monacha-2 lucida. Each biotype carries one or two whole genomes from the each of the sexual species P. monacha and P. lucida. Restriction site analysis of mtDNA revealed that P. monacha was the maternal ancestor of five electrophoretically distinguishable triploid clones. Four of five clones were marked by closely related, composite, allozyme/mtDNA genotypes, suggesting they had common origins from an allodiploid clone of the P. monacha-lucida biotype. Genotypic analysis revealed that all five clones arose via the "genome addition" pathway. Fertilization of unreduced ova in P. monacha-lucida females by sperm from P. monacha and P. lucida males, respectively, gave rise to both biotypes.  相似文献   

5.
Hybrid matings between the sexual species Poeciliopsis monacha and Poeciliopsis lucida produced a series of diploid all-female lineages of P. monacha-lucida that inhabit the Río Fuerte of northwestern Mexico. Restriction site analyses of mitochondrial DNA (mtDNA) clearly revealed that P. monacha was the maternal ancestor of these hybrids. The high level of mtDNA diversity in P. monacha was mirrored by similarly high levels in P. monacha-lucida; thus hybridizations giving rise to unisexual lineages have occurred many times. However, mtDNA variability among P. monacha-lucida lineages revealed a geographical component. Apparently the opportunity for the establishment of unisexual lineages varies among tributaries of the Río Fuerte. We hypothesize that a dynamic complex of sexual and clonal fishes appear to participate in a feedback process that maintains genetic diversity in both the sexual and asexual components.  相似文献   

6.
European water frog hybrids Rana esculenta reproduce hemiclonally, by hybridogenesis: In the germ line they exclude the genome of the parental species Rana lessonae and produce haploid, unrecombined gametes with a genome of the parental species Rana ridibunda . These hybrids coexist with and depend as sexual parasites on the host parental species R. lessonae (the L-E population system); matings with R. lessonae restore somatic hybridity in each generation of R. esculenta . We investigated 15 L-E system populations in northern Switzerland, which is outside R. ridibunda 's native range. Frequency of hybrids in samples varied from 8% in marsh ponds to 100% in gravel pits and forest ponds. Clonal diversity (variation among R. ridibunda genomes of hybrids), detected by six protein electrophoretic marker loci, revealed a total of eight hemiclones and locally ranged from uniclonal populations in southern parts of the survey region to six coexisting hemiclones in the north. All alleles distinguishing hemiclones occur commonly in the nearest native R. ridibunda populations of east-central Europe; the most probable source of clonal diversity in our samples is multiple clone formation by primary hybridizations in the sympatry area of R. ridibunda and R. lessonae and subsequent dispersal of hemiclonal lineages. A positive correlation between amount of clonal diversity and hybrid frequency, predicted by the Frozen Niche Variation (FNV) model (each hemiclone is characterized by a relatively narrow niche, coexistence is possible through niche partitioning), was not found; this contrasts with hemiclonally reproducing fish hybrids ( Poeciliopsis ). Historical factors, such as availability of different colonizing hemiclones may be strong enough to override the signal from operation of the FNV.  相似文献   

7.
SYNOPSIS. Two genera of fishes, Poecilia and Poeciliopsis, bothin the family Poeciliidae, have established unisexual populations.One "species," Poecilia formosa, is a diploid form that reliesupon sperm from Poecilia latipinna or P. mexicana to initiateparthenogenetic development (gynogenesis). Triploid individualsof P. formosa have also been discovered but the mode of reproductionand the significance of such fish to natural populations haveyet to be established. In the genus Poeciliopsis three gynogenetic triploids are known.Each is superimposed on a different bisexual host: Poeciliopsislucida, P. monacha or P. viriosa. Five diploid hybridogeneticformsalso have been identified. These are fertilized by either P.lucida, P. latidens, or P. occidentalis. In hybridogenetic forms,sperm actually feitilizes the egg. A hybrid with maternal andpaternal characters is produced, but only maternal genes aretransmitted through the egg to the next generation. Because of their sperm dependency, all unisexual fishes mustreside with at least one of the parental species. They areforcedto compete with them for sperm, space, and other limited resources.The ability to produce two females for every one that bisexualsproduce suggests that the unisexuals have the potential to winthis competition; but in so doing, they would lose their sexualsupport and eliminate themselves. A density-dependent mate selectionsystem plays a role in establishing a workable balance betweenthe competing elements. Unisexual forms of both Poecilia and Poeciliopsis are of hybridorigin. For most of them, the parental precursors and the proportionof genetic material that each contributed to the unisexual isknown. The various genomes that make up the unisexuals are adaptedto a variety of habitats. Once these genomes are combined ina unisexual hybrid, potential for adaptation to multiple nichesexists; this coupled with heterosis contributes greatly to thesuccess of gynogenetic and hybridogenetic fishes.  相似文献   

8.
Hybridogenetic reproduction has been demonstrated in both vertebrate and invertebrate unisexual hybrids. Its most peculiar feature is the transmission to the progeny of one invariant genome (hemiclone) through the egg and the replacement of the other by host fathering males. Bacillus hybridogens are the only known example of hemiclonal invertebrates; their comparison to Poeciliopsis and Rana systems helps in understanding peculiar and shared features of vertebrate and insect hybridogenesis. In P. monacha-lucida, the experimental production of non-hybrid progeny through the reunion of the maternal hemiclone with a homospecific paternal genome provided by males of the maternal ancestor leads to inviable or severely impaired sterile specimens, whereas in Rana esculenta viable offspring are the rule. The comparable synthetic B. rossius progeny (Rr) embodying the maternal R hemiclone and a paternal r haploset, appear perfectly viable and fertile, clearly demonstrating compatibility between the two homospecific genomes, and also supporting a lack of deterioration of the R hemiclone. This condition can be ascribed to the recent origin of the hemiclones, and also to the absence of lethal recessives, owing to their most likely derivation from an automictic doubling in the parthenogenetic mechanisms of the maternal ancestor. However, the hybridogenetic system breaks down in the gamete production of the majority of Rr females, since normal allele segregation also occurs in their progeny. These reproductive modes suggest a likely evolutionary dynamic for newly originated hybridogens: to achieve stability, an interruption of reproductive interactions with the maternal ancestor seems necessary. In stick insects, this constraint appears to be fulfilled in both areas of sympatry. The microevolutionary pathway suggested by the ecological scenario also supports the possibility that a shift of hemiclonal stick insect strains to clonality has occurred.  相似文献   

9.
Two natural, hemiclonal hybrid strains were discovered in three Hexagrammos species. The natural hybrids, all of which were females that produced haploid eggs containing only the Hexagrammos octogrammus genome (maternal ancestor; hereafter Hoc), generated F1 hybrid‐type offspring by fertilization with haploid sperm of Hexagrammos agrammus or Hexagrammos otakii (paternal species; Hag and Hot, respectively). This study was performed to clarify the extent of diversification between the two hybrids and the maternal ancestor. Genealogical analysis using mtDNA revealed that all 38 Hoc/Hot hybrids formed a branch (Branch I) with 18 of the 33 Hoc/Hag hybrids. No haplotype sharing was observed with the maternal ancestor. Further, microsatellite DNA analysis suggested that the members of Branch I shared the same hemiclonal genome set. The results suggested that Hoc/Hot hybrids originated by anomalous hybridization, or “host switching,” between Hoc/Hag and Hot, and not from interspecific hybridization between Hoc and Hot. The remaining 9 of 11 Hoc/Hag haplotypes and all of the 27 Hoc haplotypes were mixed within the genealogical tree, as if they had originated from multiple mutations. However, Hoc/Hag could also mate with Hoc. Although offspring from this host switch (Backcross‐Hoc) have the same genome as normal Hoc, a part of their genome retains genetic factors capable of producing hemiclones. Consequently, when a descendant of a BC‐Hoc hybrid mates with Hag males, a new hemiclone lineage will arise. Multiple haplotype revival through host switching from a single mutation in hybrids is another possible hypothesis for the observed mixing of Hoc/Hag haplotypes within the mtDNA genealogical tree.  相似文献   

10.
Two accessions of Brachiaria brizantha under cytological analysis showed 2 n  = 5x = 45 chromosomes. Pentaploidy probably resulted from natural hybridization between two species that were not closely related: an apomictic tetraploid male (2 n  = 4x = 36), and a sexual diploid female (2 n  = 2x = 18). The lack of affinity between genomes was clearly indicated by asynchrony during meiosis. The haploid genome ( n  = 9) showed unique behaviour, remaining univalent during prophase I and metaphase I, and undergoing sister-chromatid segregation and lagging at anaphase I. The laggard genome did not always reach the poles in time to be included in the telophase nucleus. However, when the inclusion was effective, this genome was distributed peripherally, changing the otherwise spherical nucleus shape. In the second division, the haploid genome behaved similarly, but as there was sister-chromatid segregation during the first division, the chromatids were slow to reach the poles, forming several micronuclei at telophase II. The two accessions were characterized as allo-autopentaploids, with the tetraploid genome (2 n  = 4x = 36) designated as B (from B. brizantha ) and the haploid genome as X, representing a species with a distinct genome having little affinity with the B genome. Thus, the hybrids' genome composition is represented by BBBBX. By comparing their meiotic behaviour with that observed in synthetic hybrids between B. brizantha and B. ruziziensis analysed previously, B. ruziziensis is the putative diploid sexual parent species in these pentaploid accessions.  © 2006 The Linnean Society of London , Botanical Journal of the Linnean Society , 2006, 150 , 441–446.  相似文献   

11.
Despite the major importance of sex determination in aquaculture, no master sex-determining gene has been identified so far in teleost fish. In the platyfish Xiphophorus maculatus, this master gene is flanked by two receptor tyrosine kinase genes, the Xmrk oncogene responsible for melanoma formation in some Xiphophorus interspecific hybrids, and its proto-oncogenic counterpart. Both Xmrk genes, which have already been characterised at the molecular level, delimit a region of about 1 Mb that contains other gene loci involved in sexual maturity, pigmentation and melanoma formation. We have constructed a genomic bacterial artificial chromosome (BAC) library of X. maculatus with a tenfold coverage of the haploid genome and walked on both X and Y sex chromosomes starting from both Xmrk genes. This led to the assembly of BAC contigs from the sex-determining region covering approximately 950 kb of the X and 750 kb of the Y chromosome. To our knowledge, these are the largest contigs reported so far for sex chromosomes in fish. Molecular analysis suggests that the sex-determining region of X. maculatus frequently undergoes retrotranspositions and other kinds of rearrangements. This genomic plasticity might be related to the high genetic variability observed in Xiphophorus for sex determination, sexual maturity, pigmentation and melanoma formation, which are encoded by gene loci located in the sex-determining region.  相似文献   

12.
Evolution based on the benefits of acquiring “good genes” in sexual selection is only plausible with the reliable transmission of genetic quality from one generation to the next. Accumulating evidence suggests that sexually antagonistic (SA) genes with opposite effects on Darwinian fitness when expressed in the two different sexes may be common in animals and plants. These SA genes should weaken the potential indirect genetic benefits of sexual selection by reducing the fitness of opposite-sex progeny from high-fitness parents. Here we use hemiclonal analysis in the fruit fly, Drosophila melanogaster, to directly measure the inheritance of fitness across generations, over the entire genome. We show that any potential genetic benefits of sexual selection in this system are not merely weakened, but completely reversed over one generation because high-fitness males produce low-fitness daughters and high-fitness mothers produce low-fitness sons. Moreover, male fitness was not inherited by sons, consistent with both theory and recent evidence connecting this form of SA variation with the X chromosome. This inheritance pattern may help to explain how genetic variation for fitness is sustained despite strong sexual selection, and why the ZW sex chromosome system found in birds and butterflies appears to foster the evolution of extreme secondary sexual characters in males.  相似文献   

13.
Gametogenesis of intergroup hybrids of hemiclonal frogs   总被引:1,自引:0,他引:1  
European water frog hybrids Rana esculenta (R. ridibundaxR. lessonae) reproduce hemiclonally, by hybridogenesis: in the germ line they exclude the genome of one parental species and produce haploid gametes with an unrecombined genome of the other parental species. In the widespread L-E population system, both sexes of hybrids (E) coexist with R. lessonae (L). They exclude the lessonae genome and produce ridibunda gametes. In the R-E system, hybrid males coexist with R. ridibunda (R); they exclude either their ridibunda or their lessonae genome and produce sperm with a lessonae or with a ridibunda genome or a mixture of both kinds of sperm. We examined 13 male offspring, 12 of which were from crosses between L-E system and R-E system frogs. All were somatically hybrid. With one exception, they excluded the lessonae genome in the germ line and subsequently endoreduplicated the ridibunda genome. Spermatogonial metaphases contained a haploid or a diploid number of ridibunda chromosomes, identified through in situ hybridization to a satellite DNA marker, and by spermatocyte I metaphases containing a haploid number of ridibunda bivalents. The exception, an F1 hybrid between L-E system R. lessonae and R-E system R. ridibunda, was not hybridogenetic, showed no genome exclusion, and evidenced a disturbed gametogenesis resulting from the combination of two heterospecific genomes. None of the hybridogenetic hybrids showed any cell lines excluding the ridibunda genome, the pattern most frequent in hybrids of the R-E system, unique to that system, and essential for its persistence. A particular combination of R-E system lessonae and R-E system ridibunda genomes seems necessary to induce the R-E system type of hemiclonal gametogenesis.  相似文献   

14.
The 70-kilodalton heat shock protein family is composed of both environmentally inducible (Hsp) and constitutively expressed (Hsc) family members. While the role of the constitutively expressed stress proteins in thermotolerance is largely unknown, de novo expression stress proteins in response to elevated temperatures has been associated with increased thermotolerance in many cell lines, developing embryos and adult organisms. Distinct, hemiclonal hybrids between the livebearing fish species Poeciliopsis monacha and P. lucida varied in their abilities to survive temperature stress, with survival being greatest when rates of temperature increase to 40°C were slowest and when P. monacha genomes were combined with a sympatric P. lucida genome. Quantification of Hsp70 under heat shock conditions and Hsc70 under normal physiological conditions indicated that variation in survival among hemiclones was best explained by the combined effects of these two proteins. Similar complex interactions between maternal and paternal genomes and rate of temperature increase were found to underline patterns of survival, Hsp70 accumulation and Hsc70 abundance. These data suggest that the relationship between Hsps and thermotolerance is more intricate than previously thought and that Hsps contribute to thermal adaptation in these fishes through genetic interactions specific to particular environments.  相似文献   

15.
Lymantria monacha (L.) (Lepidoptera: Lymantriidae), the nun moth, is a Eurasian pest of conifers that has potential for accidental introduction into North America. To project the potential host range of this insect if introduced into North America, survival and development of L. monacha on 26 North American and eight introduced Eurasian tree species were examined. Seven conifer species (Abies concolor, Picea abies, P. glauca, P. pungens, Pinus sylvestris with male cones, P. menziesii variety glance, and Tsuga canadensis) and six broadleaf species (Betula populifolia, Malus x domestica, Prunus serotiaa, Quercus lobata, Q. rubra, and Q. velutina) were suitable for L. monacha survival and development. Eleven of the host species tested were rated as intermediate in suitability, four conifer species (Larix occidentalis, P. nigra, P. ponderosa, P. strobus, and Pseudotsuga menziesii variety menziesii) and six broadleaf species (Carpinus caroliniana, Carya ovata, Fagus grandifolia, Populus grandidentata, Q. alba, and Tilia cordata) and the remaining 10 species tested were rated as poor (Acer rubrum, A. platanoidies, A. saccharum, F. americana, Juniperus virginiana, Larix kaempferi, Liriodendron tulipfera, Morus alba, P. taeda, and P. deltoides). The phenological state of the trees had a major impact on establishment, survival, and development of L. monacha on many of the tree species tested. Several of the deciduous tree species that are suitable for L. monacha also are suitable for L. dispar (L.) and L. mathura Moore. Establishment of L. monacha in North America would be catastrophic because of the large number of economically important tree species on which it can survive and develop, and the ability of mated females to fly and colonize new areas.  相似文献   

16.
The Western Palearctic water frogs Pelophylax ridibundus and P. lessonae were identified as parental (sexual) species and P. esculentus as their interspecific, hybridogenetically reproducing hybrid with hemiclonal heredity. We used genomic in situ hybridization (GISH) to identify parental chromosomes of P.lessonae and P.ridibundus in diploid P. esculentus karyotypes (2n = 26). GISH probes were made by fluorochrome labeling of total genomic DNA extracted from the sexual progenitors. The labeled probe from one species was hybridized to chromosomes of P. esculentus in the presence of excess of unlabeled genomic DNA from the other species. Thus, the P. lessonae probe was blocked by P. ridibundus unlabeled DNA, and vice versa. We successfully discriminated each of the 13 respective parental chromosomes in metaphase complements of the hybrids according to species-specific hybridization signals. GISH enabled us to confirm additional differences between parental chromosomes in size (smaller chromosomes belong to P. lessonae) and in the presence of DAPI-positive centromeric heterochromatin (detected in chromosomes of P. ridibundus, but not in P. lessonae). The fact that no visible intergenomic exchanges were found in metaphase chromosomes of diploid P. esculentus provides important information on the genomic integrity of hemiclonal transmission and supports hybridogenesis as a reproductive mode at the chromosome level for the specimens examined.  相似文献   

17.
Paspalum dilatatum is a valuable forage grass in the subtropics. This species consists of several sexual (tetraploid) and apomict (penta- and hexaploid) biotypes. It has been proposed that the presence of a genome of unknown origin, the X genome, is responsible for apomixis in penta- and hexaploid biotypes. Here we evaluated the utility of random amplified polymorphic DNA (RAPD) markers for discriminating sexual and apomictic P. dilatatum biotypes. DNA samples from nine accessions, including P. intermedium, P. juergensii, and P. dilatatum (ssp. flavescens, and the common and Uruguayan biotypes) were analyzed with 86 RAPD primers. Three hundred sixty-two fragments were scored and genetic similarity estimates revealed that the penta- and hexaploid biotypes were highly similar (S(D) > or = 0.913). Forty RAPDs were unique to the penta- and hexaploid biotypes. Overall RAPD markers were useful for assessing genetic variation among closely related P. dilatatum genotypes as well as generating putative X genome markers.  相似文献   

18.
Bacillus stick insects have proved adequate for studying a wide array of reproductive modes: sexual, parthenogenetic, hybridogenetic, androgenetic. Hybridogenetic strains (B. rossius-grandii) were thought to discard the paternal "grandii" haploset during first meiotic division and keep the "rossius" hemiclone, whereas the clonal B. whitei (=rossius/grandii) would maintain its hybrid structure by fusing back two nonsister nuclei-each derived from previously segregated heterospecific complements-by the end of the 2(nd) meiotic division. New investigations on laid eggs and ovariole squashes, either DAPI stained or FISH labeled, revealed that in hybridogens the "grandii" set is excluded from the germ line prior to meiosis and that a DNA extra-synthesis should occur to produce hemiclonal eggs after two cytologically normal meiotic divisions. On the other hand, in B. whitei eggs no genome segregation appears to occur and an intrameiotic DNA extra-synthesis must take place to produce 2n tetrachromatidic oocytes I; these divide twice and give unreduced clonal eggs. The new findings bring hybridogenetic oogenesis of Bacillus to be coincident with that of the known hemiclonal organisms and point to an independent onset of B. whitei from hemiclonal strains. In addition, B. whitei gains a closer resemblance to B. lynceorum owing to the sharing of a cytologically identical egg maturation mechanism, of the same maternal ancestor and of peculiar chromosomal features. It is here suggested that B. lynceorum originated from the incorporation of an "atticus" genome into a B. whitei egg, according to a pathway of repeated hybridization often occurred with other polyploid hybrids.  相似文献   

19.
J. Green 《Journal of Zoology》1967,151(2):181-197
In Lake Albert Daphnia lumholtzi is found in two forms. One has a pointed anterior prolongation, or helmet, on the head. The other has a shorter rounded head, and was originally described as a separate species, D. monacha . The latter form dominates the zooplankton in the middle of the lake where planktivorous fish are rare or absent. The helmeted form becomes commoner near the margins of the lake and reaches its greatest abundance in Ndaiga Lagoon, where planktivorous fish are common. The possession of a helmet is associated with a reduction in the size of the carapace compared to the round headed form. The carapace with its contained eggs is the most conspicuous part of a cladoceran, so that the helmeted forms are at an advantage in the presence of planktivorous fish which locate their prey by sight. The mid-lake monacha forms are larger than specimens of the same form in Ndaiga Lagoon, where it is shown that Alestes baremose feeds selectively on the larger specimens of the monacha form.
The helmeted form produces more, but smaller eggs than the monacha form. The total brood volume (= mean egg volume x mean number eggs per female) is greatest in the midlake monacha forms. The selective advantages of variations in egg size and the possession of a helmet are discussed. It is concluded that the data from Lake Albert support the hypothesis of Brooks (1965) concerning the adaptive significance of helmet development in Daphnia .  相似文献   

20.
Land plants possess a multicellular diploid stage (sporophyte) that begins development while attached to a multicellular haploid progenitor (gametophyte). Although the closest algal relatives of land plants lack a multicellular sporophyte, they do produce a zygote that grows while attached to the maternal gametophyte. The diploid offspring shares one haploid set of genes with the haploid mother that supplies it with resources and a paternal haploid complement that is not shared with the mother. Sexual conflict can arise within the diploid offspring because the offspring's maternal genome will be transmitted in its entirety to all other sexual and asexual offspring that the mother may produce, but the offspring's paternally derived genes may be absent from these other offspring. Thus, the selective forces favouring the evolution of genomic imprinting may have been present from the origin of modern land plants. In bryophytes, where gametophytes are long-lived and capable of multiple bouts of asexual and sexual reproduction, we predict strong sexual conflict over allocation to sporophytes. Female gametophytes of pteridophytes produce a single sporophyte and often lack means of asexual reproduction. Therefore, sexual conflict is predicted to be attenuated. Finally, we explore similarities among models of mate choice, offspring choice and segregation distortion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号