首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The method of membrane filters was used to study the population dynamics of bacteria belonging to the genera Arthrobacter, Flavobacterium, and Klebsiella in barley (Hordeum vulgare) rhizosphere under conditions of cadmium stress (5-15 mg Cd/g soil). Mathematical modeling allowed us to demonstrate that the phytoprotective effect is implemented via the following succession of events: the bacteria synthesize phytohormones (IAA and ethylene)-->root excretory activity increases-->the number of the bacteria in the rhizoplane grows-->the flux of bacteria migrating from the rhizoplane to the rhizosphere increases-->the number of bacteria binding cadmium ions in the rhizosphere grows-->the amount of free ions entering the plant decreases. Among the bacteria studied, K. mobilis 880 displayed the highest migration and immobilization activity and the best survival rate under conditions of cadmium stress. Consequently, K. mobilis 880 is recommended for use in biopreparations for stimulating plant growth under conditions of heavy metal pollution.  相似文献   

2.
Pishchik  V.N.  Vorobyev  N.I.  Chernyaeva  I.I.  Timofeeva  S.V.  Kozhemyakov  A.P  Alexeev  Y.V.  Lukin  S.M. 《Plant and Soil》2002,243(2):173-186
Bacterial inoculants of the commercially available plant growth promoting rhizobacteria (PGPR) Arthrobacter mysorens 7, Flavobacterium sp. L30, and Klebsiella mobilis CIAM 880 were selected to obtain ecologically safe barley crop production on cadmium (Cd) polluted soils. All the PGPR immobilized 24–68% soluble cadmium from soil suspension. A. mysorens 7 and K. mobilis CIAM 880 were highly resistant to Cd and grew in up to 1 and 3 mmol CdCl2 on DAS medium respectively. All PGPR were able to fix nitrogen (276–1014 nmol mg–1 bacterial DW) and to produce indole acetic acid (IAA) (126–330 nmol mg–1 bacterial DW) or ethylene (4.6–13.5 nmol bacterial DW). All the PGPR actively colonized barley root system and rhizosphere and significantly stimulated root elongation of barley seedlings (up to 25%), growing on soil containing 5 or 15 mg Cd kg–1 of soil. Created in the simulation mathematical model confirms our hypothesis that PGPR beneficial effect on barley growing under Cd-stress is a complex process. One of mechanisms underlying this effect might be increase of bacterial migration from rhizoplane to rhizosphere, where PGPR bind soluble free Cd ions in biologically unavailable complex forms. Among the studied PGPR K. mobilis CIAM 880 was the most effective inoculant. Inoculation with K. mobilis CIAM 880 of barley plants growing on Cd contaminated soil (5 mg Cd kg–1 of soil) under field conditions increased by 120% grain yield and 2-fold decreased Cd content in barley grain. The results suggest that the using K. mobilis CIAM 880 is an effective way to increase the plant yield on poor and polluted areas.  相似文献   

3.
Interactions were studied between oat (Avena sativa) and two bacterial species, Bacillus subtilis and Pantoea agglomerans, in soils contaminated with heavy metals (HM), cadmium (50 mg/kg), and lead (200 mg/kg). Exposure to HM resulted in decreased (by 30–50%) length, mass, and ratio of shoot to root dimensions. Inoculation with bacteria lead to restoration and further enhancement of plant productivity, raising it above the level achieved via inoculation of oat in uncontaminated soils. It also reduced HM accumulation by plants. Pure cultures of P. agglomerans accumulate HM more intensively than those of B. subtilis (adsorbing activity was studied for both cells and extracellular metabolites). After the introduction of bacteria, lead, and cadmium content in soil decreased four- to fivefold and two- to threefold, respectively. Protection from HM is attributable to reorganizations in the populations of root-associated bacteria: cell number increases in the rhizoplane while decreasing in the rhizosphere.  相似文献   

4.
土壤重金属镉(Cd)污染严重危害农产品安全生产,植物根际细菌在钝化土壤Cd和帮助作物抵御Cd胁迫方面发挥重要作用。本文首先概括在修复Cd污染土壤中得到广泛应用的植物根际细菌种类,并从根际细菌直接吸附Cd、调整土壤理化特性、调控土壤微生物群落和其他作用4方面阐述了植物根际细菌对Cd的钝化作用,其次从菌植互作角度阐述植物根系分泌物与根际细菌群落相互影响对土壤Cd的钝化作用。最后展望重金属胁迫下植物根际钝化Cd核心菌群的构建,以在新兴学科与技术的快速发展中探明植物根系-微生物互作体系的分子机制,深入开展植物根际细菌钝化修复重金属污染土壤的理论研究和实践。  相似文献   

5.
Polyanskaya  L. M.  Vedina  O. T.  Lysak  L. V.  Zvyagintsev  D. G. 《Microbiology》2002,71(1):109-115
New strains of Beijerinckia mobilis and Clostridium sp. isolated from the pea rhizosphere were studied with respect to their promoting effect on the growth and development of some agricultural crops. Seed soaking in bacterial suspensions followed by the soil application of the suspensions or their application by means of foliar spraying was found to be the most efficient method of bacterization. The application of B. mobilis andClostridium sp. cultures in combination with mineral fertilizers increased the crop production by 1.5–2.5 times. The study of the population dynamics of B. mobilis by the method of genetic marking showed that this bacterium quickly colonized the rhizoplane of plants and, therefore, had characteristics of an r-strategist. At the same time, Clostridiumsp. was closer to K-strategists, since this bacterium slowly colonized the econiches studied. The introduction of the bacteria into soil did not affect the indigenous soil bacterial complex. The presence of Clostridium sp. slowed down the colonization of roots by the fungal mycelium. The possible mechanisms of the plant growth–promoting activity of B. mobilisand Clostridiumsp. are discussed.  相似文献   

6.
为探讨镉(Cd)胁迫条件下蒌蒿对促生细菌(PGPB)的响应机制,以芽孢杆菌T3(Bacillus sp.)菌株为对象,通过盆栽试验,研究不同Cd处理水平下芽孢杆菌T3菌株对蒌蒿生长、生理、Cd富集转运以及根际微生物的影响。结果表明:(1)在Cd胁迫条件下,芽孢杆菌T3菌株可显著促进蒌蒿地上部、地下部及总干物质的积累,但对株高和根冠比的影响不明显。(2)芽孢杆菌T3菌株能显著促进Cd胁迫条件下蒌蒿对Cd的富集与转运,相比单一Cd胁迫,蒌蒿地上部生物富集系数(BCF)增加了8.3%~29.3%,地下部BCF减少了6.6%~11.1%,同时转运系数(TF)增加了20.8%~38.3%。(3)在Cd胁迫和芽孢杆菌T3菌株的共同作用下,蒌蒿叶绿素a、叶绿素b和总叶绿素含量明显增加。(4)芽孢杆菌T3菌株使Cd胁迫条件下蒌蒿体内丙二醛(MDA)含量显著减少,超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性明显增加,可有效抵御由Cd胁迫所产生的氧化伤害。(5)芽孢杆菌T3菌株能显著增加Cd胁迫条件下蒌蒿根际土壤细菌、放线菌数量及微生物总量,可减少蒌蒿根际土壤真菌的数量,但与对照差异不显著。研究表明,在Cd胁迫条件下芽孢杆菌T3菌株对蒌蒿生长、生理和根际土壤微生物环境可产生积极影响,可增强蒌蒿植物对Cd胁迫环境的适应性,从而提高其对Cd的耐受能力。  相似文献   

7.
通过对刺槐林和农田魔芋健株根区、根表及根外土壤微生物区系及养分含量比较,探索刺槐林魔芋健康高产的土壤微生态机制。结果表明:(1)刺槐林魔芋根外和根表土壤细菌数量分别较农田增加11.8%和588.9%,根区土壤真菌数量较农田显著减少74.4%。(2)刺槐林魔芋根区、根表及根外土壤中的有益优势微生物数量及其比例远高于农田魔芋,有害微生物数量远低于农田魔芋;在刺槐林魔芋根区、根表及根外土壤中,3种优势细菌为放射型根瘤菌(Rhizobium radiobacter)、苏云金芽孢杆菌(Bacillus thuringiensis)及摩氏假单胞菌(Pseudomonas mosselii),其中,根表土壤中放射型根瘤菌及苏云金芽孢杆菌数量分别为农田的25.7倍及13.0倍;2种优势真菌为黒附球菌(Epicoccum nigrum)和疣孢青霉(Penicillium verruculosum),1种优势放线菌为绿淀粉酶链霉菌(Streptomyces viridodiastaticus),其中刺槐林魔芋根表和根外土壤中黒附球菌数量分别较农田高159.2%和120.3%;大量存在于刺槐林下魔芋根外土壤中的疣孢青霉、以及根区、根表、根外土壤中的绿淀粉酶链霉菌在农田魔芋相应部位均未检出。(3)刺槐林下魔芋根外、根区土壤有机质含量分别较农田显著增加167.6%、39.6%,但速效P、K含量较农田分别显著降低85.6%~91.3%、12.4%~13.0%。研究认为,刺槐林魔芋健康高产与其根区、根表及根外土壤中特有的有益优势微生物数量多、有害微生物数量少以及土壤有机质含量高密切相关。  相似文献   

8.
An understanding of the factors influencing colonization of the rhizosphere is essential for improved establishment of biocontrol agents. The aim of this study was to determine the origin and composition of bacterial communities in the developing barley (Hordeum vulgare) phytosphere, using denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA genes amplified from extracted DNA. Discrete community compositions were identified in the endorhizosphere, rhizoplane, and rhizosphere soil of plants grown in an agricultural soil for up to 36 days. Cluster analysis revealed that DGGE profiles of the rhizoplane more closely resembled those in the soil than the profiles found in the root tissue or on the seed, suggesting that rhizoplane bacteria primarily originated from the surrounding soil. No change in bacterial community composition was observed in relation to plant age. Pregermination of the seeds for up to 6 days improved the survival of seed-associated bacteria on roots grown in soil, but only in the upper, nongrowing part of the rhizoplane. The potential occurrence of skewed PCR amplification was examined, and only minor cases of PCR bias for mixtures of two different DNA samples were observed, even when one of the samples contained plant DNA. The results demonstrate the application of culture-independent, molecular techniques in assessment of rhizosphere bacterial populations and the importance of the indigenous soil population in colonization of the rhizosphere.  相似文献   

9.
The microbial complexes of soil, the rhizosphere, and the rhizoplane of the apogeotropic (coralloid) roots of cycad plants were comparatively studied. The aseptically prepared homogenates of the surface-sterilized coralloid roots did not contain bacterial microsymbiont, indicating that in the root tissues the symbiosis is a two-component one (plant–cyanobacteria). At the same time, associated bacteria belonging to different taxonomic groups were detected in increasing amounts in the cycad rhizoplane, rhizosphere, and the surrounding soil. The bacterial communities found in the cycad rhizoplane and the surrounding soil were dominated by bacteria from the genus Bacillus. The saprotrophic bacteria and fungi colonizing the cycad rhizosphere and rhizoplane were dominated by microorganisms capable of degrading the plant cell walls. The local degradation of the cell wall was actually observed on the micrographs of the thin sections of cycad roots in the form of channels through which symbiotic cyanobacterial filaments can penetrate into the cortical parenchyma.  相似文献   

10.
The influence of rhizosphere/rhizoplane culture conditions on the ability of various rhizobia to bind soybean seed lectin (SBL) was examined. Eleven strains of the soybean symbiont, Rhizobium japonicum, and six strains of various heterologous Rhizobium species were cultured in root exudate of soybean (Glycine max [L.] Merr.) and in association with roots of soybean seedlings which were growing either hydroponically or in montmorillonite clay soil amendment (Turface). All 11 of the R. japonicum strains developed biochemically specific receptors for the lectin when cultured under these conditions, whereas six of the 11 did not develop such receptors when cultured in synthetic salts medium. Two cowpea strains also developed receptors for SBL. The other four heterologous strains of rhizobia gave no evidence of biochemically specific SBL binding in either synthetic salts media or rhizosphere/rhizoplane cultures. These results demonstrate that the environment provided by plant roots is an important factor in the development of specific lectin receptors on the cell surface of R. japonicum.  相似文献   

11.
  • Evidence is lacking regarding compatibility of pine bacteria as bio‐inoculants for crops. The diversity and abundance of rhizosphere bacteria of Pinus roxburghii has never been investigated with simultaneous application of culture‐dependent and culture‐independent techniques. The present study was aimed to isolate, characterise, check the bio‐inoculant potential of pine bacteria and assess rhizosphere bacterial diversity using culture‐independent advanced approaches.
  • Forty bacteria isolated from the rhizoplane of P. roxburghii growing in a cold climate at high altitude in Murree, were morphologically characterised; nine were identified by 16S rRNA sequence analyses and used in experiments. Diversity and abundance of the 16S rRNA gene and nif H gene in the rhizosphere was assessed by cloning, RFLP analysis, 454‐amplicon pyrosequencing and qPCR.
  • The bacterial isolates significantly improved dry weight of shoot, root, root area, IAA and GA3 content, number of grains plant?1, weight of grains plant?1 in wheat varieties Chakwal‐50 and Fareed‐06 under axenic and field conditions. The number of 16S rRNA sequences (2979) identified by pyrosequencing shared similarity with 13 phyla of bacteria and archaea.
  • The results confirm the existence of diverse bacteria of agricultural and industrial importance in the rhizosphere and compatibility of rhizoplane bacteria as bio‐inoculants for wheat varieties.
  相似文献   

12.

Background

All plants in nature harbor a diverse community of rhizosphere bacteria which can affect the plant growth. Our samples are isolated from the rhizosphere of wild barley Hordeum spontaneum at the Evolution Canyon (‘EC’), Israel. The bacteria which have been living in close relationship with the plant root under the stressful conditions over millennia are likely to have developed strategies to alleviate plant stress.

Methodology/Principal Findings

We studied distribution of culturable bacteria in the rhizosphere of H. spontaneum and characterized the bacterial 1-aminocyclopropane-1-carboxylate deaminase (ACCd) production, biofilm production, phosphorus solubilization and halophilic behavior. We have shown that the H. spontaneum rhizosphere at the stressful South Facing Slope (SFS) harbors significantly higher population of ACCd producing biofilm forming phosphorus solubilizing osmotic stress tolerant bacteria.

Conclusions/Significance

The long-lived natural laboratory ‘EC’ facilitates the generation of theoretical testable and predictable models of biodiversity and genome evolution on the area of plant microbe interactions. It is likely that the bacteria isolated at the stressful SFS offer new opportunities for the biotechnological applications in our agro-ecological systems.  相似文献   

13.
The data on heavy metal (HM) accumulation and detoxification by plants and bacteria in plant–microbial systems (PMS) are reviewed. Bacteria are shown to be the labile component of the system, responsible for a considerable amelioration of HM stress impact on plants and for improved PMS adaptation to heavy metals. Simulation of plant–microbial interactions under conditions of soil contamination by HM revealed the protective role of bacterial migration from the rhizoplane to the rhizosphere.  相似文献   

14.
The phenomenon of flocculation in Azospirillum brasilense (MTCC-125) was studied under different combinations of carbon and nitrogen sources. Fructose and Potassium nitrate at a pH of 6.4 in the cultural medium favour a higher bio-floc production. The biofloc was studied for root adhesion and its survival efficiency in the rhizoplane and rhizosphere of certain crops such as sorghum and sunflower under dryland condition. It has been demonstrated that the flocculated cultures of Azospirillum were found to have maximum adhesion to the root surface and higher survival rate in the rhizoplane and rhizosphere under different moisture stressed conditions as compared to the log phase cells of Azospirillum.  相似文献   

15.
The plant surface, which is representative of the phylloplane and rhizoplane, is a characteristic habitat for microorganisms. In this review, the ecological roles of phytoepiphytic bacteria will be described. The phylloplane and rhizoplane, which are adjacent to the atmosphere and soil sphere respectively, accumulate topically and/or selectively release secondary metabolites that are specific to the plant genera and species which reside within these regions. Some epiphytes have abilities to decarboxylate xenobiotic phenolic acids that have accumulated in the plant tissues and surfaces as a majority of such secondary metabolites. In physicochemically stressed soil, rhizosphere microflora often remedy such microenvironments within the rhizosphere in order to assist in the survival of the host, and some of the microfloral compositions behave as if they were symbionts. Specifically, some Sphingomonas spp., which are frequently isolated from the rhizosphere of acidic soil-tolerant plants in tropical zones, make possible the development of a rhizo-biocomplex. In this review, the possibility of rhizosphere regulation utilizing such a rhizo-biocomplex is discussed.  相似文献   

16.
Diversity among 130 strains of Bacillus polymyxa was studied; the bacteria were isolated by immunotrapping from nonrhizosphere soil (32 strains), rhizosphere soil (38 strains), and the rhizoplane (60 strains) of wheat plantlets growing in a growth chamber. The strains were characterized phenotypically by 63 auxanographic (API 50 CHB and API 20B strips) and morphological features, serologically by an enzyme-linked immunosorbent assay, and genetically by restriction fragment length polymorphism (RFLP) profiles of total DNA in combination with hybridization patterns obtained with an rRNA gene probe. Cluster analysis of phenotypic characters by the unweighted pair group method with averages indicated four groups at a similarity level of 93%. Clustering of B. polymyxa strains from the various fractions showed that the strains isolated from nonrhizosphere soil fell into two groups (I and II), while the third group (III) mainly comprised strains isolated from rhizosphere soil. The last group (IV) included strains isolated exclusively from the rhizoplane. Strains belonging to a particular group exhibited a similarity level of 96%. Serological properties revealed a higher variability among strains isolated from nonrhizosphere and rhizosphere soil than among rhizoplane strains. RFLP patterns also revealed a greater genetic diversity among strains isolated from nonrhizosphere and rhizosphere soil and therefore could not be clearly grouped. The RFLP patterns of sorbitol-positive strains isolated from the rhizoplane were identical. These results indicate that diversity within populations of B. polymyxa isolated from nonrhizosphere and rhizosphere soil is higher than that of B. polymyxa isolated from the rhizoplane. It therefore appears that wheat roots may select a specific subpopulation from the soil B. polymyxa population.  相似文献   

17.
During the 1983 field season, the rhizobacteria (including organisms from rhizosphere soil and the root rhizoplane) of cotton plants at one location in Mississippi were inventoried at different plant growth stages. Isolates (1,000) were identified to the genus level and characterized for repression of Pythium ultimum and Rhizoctonia solani. Cotton seedlings were initially colonized by bacteria of many different genera, and populations quickly reached 108 CFU/g of root tissue. As the season progressed, the bacterial populations declined as root mass increased and the roots became more woodlike in consistency. Fluorescent pseudomonads were the most numerous gram-negative rhizobacterial isolates of those that were randomly collected and identified, and they provided the largest number of isolates with fungal repressive activity. Several other gram-negative bacterial genera were recovered throughout the growing season, and some gram-positive bacteria were also isolated routinely, but at lower numbers. There was no correlation between the proportion of rhizobacterial isolates that possessed fungal repressive activity and the plant growth stage from which the isolates were obtained. Approximately twice as many bacterial isolates demonstrated fungal repression in the agar assay compared with the inplanta assay, and isolates were found more frequently with fungal repressive activity against P. ultimum than against R. solai.  相似文献   

18.

Background

Traditional agro-systems in arid areas are a bulwark for preserving soil stability and fertility, in the sight of “reverse desertification”. Nevertheless, the impact of desert farming practices on the diversity and abundance of the plant associated microbiome is poorly characterized, including its functional role in supporting plant development under drought stress.

Methodology/Principal Findings

We assessed the structure of the microbiome associated to the drought-sensitive pepper plant (Capsicum annuum L.) cultivated in a traditional Egyptian farm, focusing on microbe contribution to a crucial ecosystem service, i.e. plant growth under water deficit. The root system was dissected by sampling root/soil with a different degree of association to the plant: the endosphere, the rhizosphere and the root surrounding soil that were compared to the uncultivated soil. Bacterial community structure and diversity, determined by using Denaturing Gradient Gel Electrophoresis, differed according to the microhabitat, indicating a selective pressure determined by the plant activity. Similarly, culturable bacteria genera showed different distribution in the three root system fractions. Bacillus spp. (68% of the isolates) were mainly recovered from the endosphere, while rhizosphere and the root surrounding soil fractions were dominated by Klebsiella spp. (61% and 44% respectively). Most of the isolates (95%) presented in vitro multiple plant growth promoting (PGP) activities and stress resistance capabilities, but their distribution was different among the root system fractions analyzed, with enhanced abilities for Bacillus and the rhizobacteria strains. We show that the C. annuum rhizosphere under desert farming enriched populations of PGP bacteria capable of enhancing plant photosynthetic activity and biomass synthesis (up to 40%) under drought stress.

Conclusions/Significance

Crop cultivation provides critical ecosystem services in arid lands with the plant root system acting as a “resource island” able to attract and select microbial communities endowed with multiple PGP traits that sustain plant development under water limiting conditions.  相似文献   

19.
A total of 74 morphologically distinct bacterial colonies were selected during isolation of bacteria from different parts of tomato plant (rhizoplane, phylloplane and rhizosphere) as well as nearby bulk soil. The isolates were screened for plant growth promoting (PGP) traits such as production of indole acetic acid, siderophore, chitinase and hydrogen cyanide as well as phosphate solubilization. Seven isolates viz., NR4, NR6, RP3, PP1, RS4, RP6 and NR1 that exhibited multiple PGP traits were identified, based on morphological, biochemical and 16S rRNA gene sequence analysis, as species that belonged to four genera Aeromonas, Pseudomonas,Bacillus and Enterobacter. All the seven isolates were positive for 1-aminocyclopropane-1-carboxylate deaminase. Isolate NR6 was antagonistic to Fusarium solani and Fusarium moniliforme, and both PP1 and RP6 isolates were antagonistic to F. moniliforme. Except RP6, all isolates adhered significantly to glass surface suggestive of biofilm formation. Seed bacterization of tomato, groundnut, sorghum and chickpea with the seven bacterial isolates resulted in varied growth response in laboratory assay on half strength Murashige and Skoog medium. Most of the tomato isolates positively influenced tomato growth. The growth response was either neutral or negative with groundnut, sorghum and chickpea. Overall, the results suggested that bacteria with PGP traits do not positively influence the growth of all plants, and certain PGP bacteria may exhibit host-specificity. Among the isolates that positively influenced growth of tomato (NR1, RP3, PP1, RS4 and RP6) only RS4 was isolated from tomato rhizosphere. Therefore, the best PGP bacteria can also be isolated from zones other than rhizosphere or rhizoplane of a plant.

Electronic supplementary material

The online version of this article (doi:10.1007/s12088-014-0470-z) contains supplementary material, which is available to authorized users.  相似文献   

20.
Medicago truncatula represents a model plant species for understanding legume–bacteria interactions. M. truncatula roots form a specific root–nodule symbiosis with the nitrogen-fixing bacterium Sinorhizobium meliloti. Symbiotic nitrogen fixation generates high iron (Fe) demands for bacterial nitrogenase holoenzyme and plant leghemoglobin proteins. Leguminous plants acquire Fe via “Strategy I,” which includes mechanisms such as rhizosphere acidification and enhanced ferric reductase activity. In the present work, we analyzed the effect of S. meliloti volatile organic compounds (VOCs) on the Fe-uptake mechanisms of M. truncatula seedlings under Fe-deficient and Fe-rich conditions. Axenic cultures showed that both plant and bacterium modified VOC synthesis in the presence of the respective symbiotic partner. Importantly, in both Fe-rich and -deficient experiments, bacterial VOCs increased the generation of plant biomass, rhizosphere acidification, ferric reductase activity, and chlorophyll content in plants. On the basis of our results, we propose that M. truncatula perceives its symbiont through VOC emissions, and in response, increases Fe-uptake mechanisms to facilitate symbiosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号