首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Trunk neural crest cells and motor axons move in a segmental fashion through the rostral (anterior) half of each somitic sclerotome, avoiding the caudal (posterior) half. This metameric migration pattern is thought to be caused by molecular differences between the rostral and caudal portions of the somite. Here, we describe the distribution of T-cadherin (truncated-cadherin) during trunk neural crest cell migration. T-cadherin, a novel member of the cadherin family of cell adhesion molecules was selectively expressed in the caudal half of each sclerotome at all times examined. T-cadherin immunostaining appeared graded along the rostrocaudal axis, with increasing levels of reactivity in the caudal halves of progressively more mature (rostral) somites. The earliest T-cadherin expression was detected in a small population of cells in the caudal portion of the somite three segments rostral to last-formed somite. This initial T-cadherin expression was observed concomitant with the invasion of the first neural crest cells into the rostral portion of the same somite in stage 16 embryos. When neural crest cells were ablated surgically prior to their emigration from the neural tube, the pattern of T-cadherin immunoreactivity was unchanged compared to unoperated embryos, suggesting that the metameric T-cadherin distribution occurs independent of neural crest cell signals. This expression pattern is consistent with the possibility that T-cadherin plays a role in influencing the pattern of neural crest cell migration and in maintaining somite polarity.  相似文献   

2.
3.
The development of patterned axon outgrowth and dorsal root ganglion (DRG) formation was examined after partially or totally removing chick somitic mesoderm. Since the dermamyotome is not essential and a full complement of limb muscles developed, alterations in neural patterns could be ascribed to deletion of sclerotome. When somitic tissue was completely removed, axons extended and DRG formed, but in an unsegmented pattern. Therefore the somite does not elicit outgrowth of axons or migration of DRG precursors, it is not a manditory substratum and it is not required for DRG condensation. These results suggest that posterior sclerotome is relatively inhibitory to invasion, an inhibition that is released when sclerotome is absent. When somites were partially deleted, axonal segmentation was not lost proportionally with the amount of sclerotome removed, suggesting that properties that may vary with sclerotome volume (such as diffusible cues) do not play a primary role. Instead, spinal nerves lost segmentation only when ventral sclerotome was deleted, regardless of whether dorsal sclerotome was or was not removed. This strongly suggests that axonal segmentation is imposed by direct interactions between growth cones and extracellular matrices or surfaces sclerotome cells. While DRG tended to be normally segmented when ventral sclerotome was deleted and to lose segmentation when dorsomedial sclerotome was absent, a coordinate loss of DRG segmentation with sclerotome volume could not be ruled out. However it is clear that axonal and DRG segmentation are independent. Observations on a subset of embryos in which the notochord was displaced relative to the spinal cord suggest that the ventromedial sclerotome surrounding the notochord inhibits axon advance. Posterior and ventromedial sclerotome are hypothesized to act as barriers to axon outgrowth due to some feature of their common cartilaginous development. Specific innervation patterns were also examined. When the notochord was displaced toward the control limb, axons on this side made and corrected projection errors, suggesting that the notochord can influence the precision of axonal pathway selection. In contrast, motor axons that entered the limb on all operated sides innervated muscle with their normal precision despite the absence of the somite and axonal segmentation. Therefore, the somite and the process of spinal nerve segmentation are largely irrelevant to the specificity of motoneuron projection.  相似文献   

4.
The segmental pattern of peripheral ganglia in higher vertebrates is generated by interactions between neural crest and somite cells. Each mesodermal somite is subdivided into at least two distinct domains represented by its rostral and caudal halves. Most migratory pathways taken by neural crest cells in trunk regions of the axis, as well as the outgrowth of motoneuron fibers are restricted to the rostral domain of each somite. Experimental modification of the somites, achieved by constructing a mesoderm composed of multiple rostral half-somites, results in the formation of continuous and unsegmented nerves, dorsal root ganglia (DRG) and sympathetic ganglia (SG). In contrast, both neurites and crest cells are absent from a mesoderm composed of multiple-caudal half somites. However, the mechanisms responsible for gangliogenesis within the rostral half of the somite, appear to be different for DRG and SG. Vertebral development from the somites is also segmental. In implants of either multiple rostral or caudal somite-halves, the grafted mesoderm dissociates normally into sclerotome and dermomyotome. However, the morphogenetic capabilities of each somitic half differ. The lateral vertebral arch is continuous in the presence of caudal half-somite grafts and is virtually absent in rostral half-somite implants. Therefore, the rostrocaudal subdivision of the sclerotome determines the segmental pattern of neural development and is also important for the proper metameric development of the vertebrae.  相似文献   

5.
Summary The distribution of sclerotome and neural crest cells of avian embryos was studied by light and electron microscopy. Sclerotome cells radiated from the somites towards the notochord, to occupy the perichordal space. Neural crest cells, at least initially, also entered cell-free spaces. At the cranial somitic levels they moved chiefly dorsal to the somites, favouring the rostral part of each somite. These cells did not approach the perichordal space. More caudally (i.e. trunk levels), neural crest cells initially moved ventrally between the somites and neural tube. Adjacent to the caudal half of each somite, these cells penetrated no further than the myosclerotomal border, but opposite the rostral somite half, they were found next to the sclerotome almost as far ventrally as the notochord. However, they did not appear to enter the perichordal space, in contrast to sclerotome cells.When tested in vitro, sclerotome cells migrated towards notochords co-cultured on fibronectin-rich extracellular material, and on collagen gels. In contrast, neural crest cells avoided co-cultured notochords. This avoidance was abolished by inclusion of testicular hyaluronidase and chondroitinase ABC in the culture medium, but not by hyaluronidase from Streptomyces hyalurolyticus. The results suggest that sclerotome and neural crest mesenchyme cells have a different distribution with respect to the notochord, and that differential responses to notochordal extracellular material, possibly chondroitin sulphate proteoglycan, may be responsible for this.  相似文献   

6.
The peripheral nervous system in vertebrates is composed of repeating metameric units of spinal nerves. During development, factors differentially expressed in a rostrocaudal pattern in the somites confine the movement of spinal motor axons and neural crest cells to the rostral half of the somitic sclerotome. The expression patterns of transmembrane ephrin-B ligands and interacting EphB receptors suggest that these proteins are likely candidates for coordinating the segmentation of spinal motor axons and neural crest cells. In vitro, ephrin-B1 has indeed been shown to repel axons extending from the rodent neural tube (Wang & Anderson, 1997). In avians, blocking interactions between EphB3 expressed by neural crest cells and ephrin-B1 localized to the caudal half of the somite in vivo resulted in loss of the rostrocaudal patterning of trunk neural crest migration (Krull et al., 1997). The role of ephrin-B1 in patterning spinal motor axon outgrowth in avian embryos was investigated. Ephrin-B1 protein was found to be expressed in the caudal half-sclerotome and in the dermomyotome at the appropriate time to interact with the EphB2 receptor expressed on spinal motor axons. Treatment of avian embryo explants with soluble ephrin-B1, however, did not perturb the segmental outgrowth of spinal motor axons through the rostral half-somite. In contrast, under the same treatment conditions with soluble ephrin-B1, neural crest cells migrated aberrantly through both rostral and caudal somite halves. These results indicate that the interaction between ephrin-B1 and EphB2 is not required for patterning spinal motor axon segmentation. Even though spinal motor axons traverse the same somitic pathway as neural crest cells, different molecular guidance mechanisms appear to influence their movement.  相似文献   

7.
The analysis of the outgrowth pattern of spinal axons in the chick embryo has shown that somites are polarized into anterior and posterior halves. This polarity dictates the segmental development of the peripheral nervous system: migrating neural crest cells and outgrowing spinal axons traverse exclusively the anterior halves of the somite-derived sclerotomes, ensuring a proper register between spinal axons, their ganglia and the segmented vertebral column. Much progress has been made recently in understanding the molecular basis for somite polarization, and its linkage with Notch/Delta, Wnt and Fgf signalling. Contact-repulsive molecules expressed by posterior half-sclerotome cells provide critical guidance cues for axons and neural crest cells along the anterior-posterior axis. Diffusible repellents from surrounding tissues, particularly the dermomyotome and notochord, orient outgrowing spinal axons in the dorso-ventral axis ('surround repulsion'). Repulsive forces therefore guide axons in three dimensions. Although several molecular systems have been identified that may guide neural crest cells and axons in the sclerotome, it remains unclear whether these operate together with considerable overall redundancy, or whether any one system predominates in vivo.  相似文献   

8.
The segmental origin and migratory pattern of neural crest cells at the trunk level of avian embryos was studied, with special emphasis on the formation of the dorsal root ganglia (DRG) which organize in the anterior half of each somite. Neural crest cells were visualized using the quail-chick marker and HNK-1 immunofluorescence. The migratory process turned out to be closely correlated with somitic development: when the somites are epithelial in structure few labeled cells were found in a dorsolateral position on the neural tube, uniformly distributed along the craniocaudal axis. Following somitic dissociation into dermomyotome and sclerotome labeled cells follow defined migratory pathways restricted to each anterior somitic half. In contrast, opposite the posterior half of the somites, cells remain grouped in a dorsolateral position on the neural tube. The fate of crest cells originating at the level of the posterior somitic half was investigated by grafting into chick hosts short segments of quail neural primordium, which ended at mid-somitic or at intersomitic levels. It was found that neural crest cells arising opposite the posterior somitic half participate in the formation of the DRG and Schwann cells lining the dorsal and ventral root fibers of the same somitic level as well as of the subsequent one, whereas those cells originating from levels facing the anterior half of a somite participate in the formation of the corresponding DRG. Moreover, crest cells from both segmental halves segregate within each ganglion in a distinct topographical arrangement which reflects their segmental origin on the neural primordium. Labeled cells which relocate from posterior into anterior somitic regions migrate longitudinally along the neural tube. Longitudinal migration of neural crest cells was first observed when the somites are epithelial in structure and is completed after the disappearance of the last cells from the posterior somitic region at a stage corresponding to the organogenesis of the DRG.  相似文献   

9.
In avians and mice, trunk neural crest migration is restricted to the anterior half of each somite. Sclerotome has been shown to play an essential role in this restriction; the potential role of other somite components in specifying neural crest migration is currently unclear. By contrast, in zebrafish trunk neural crest, migration on the medial pathway is restricted to the middle of the medial surface of each somite. Sclerotome comprises only a minor part of zebrafish somites, and the pattern of neural crest migration is established before crest cells contact sclerotome cells, suggesting other somite components regulate the pattern of zebrafish neural crest migration. Here, we use mutants to investigate which components regulate the pattern of zebrafish trunk neural crest migration on the medial pathway. The pattern of trunk neural crest migration is aberrant in spadetail mutants that have very reduced somitic mesoderm, in no tail mutants injected with spadetail morpholino antisense oligonucleotides that entirely lack somitic mesoderm and in somite segmentation mutants that have normal somite components but disrupted segment borders. Fast muscle cells appear dispensable for patterning trunk neural crest migration. However, migration is abnormal in Hedgehog signaling mutants that lack slow muscle cells, providing evidence that slow muscle cells regulate the pattern of trunk neural crest migration. Consistent with this idea, surgical removal of adaxial cells, which are slow muscle precursors, results in abnormal patterning of neural crest migration; normal patterning can be restored by replacing the ablated adaxial cells with ones transplanted from wild-type embryos.  相似文献   

10.
Neural crest cell migratory pathways in the trunk of the chick embryo   总被引:14,自引:1,他引:14  
Neural crest cells migrate during embryogenesis to give rise to segmented structures of the vertebrate peripheral nervous system: namely, the dorsal root ganglia and the sympathetic chain. However, neural crest cell arise from the dorsal neural tube where they are apparently unsegmented. It is generally agreed that the somites impose segmentation on migrating crest cells, but there is a disagreement about two basic questions: exactly pathways do neural crest cells use to move through or around somites, and do neural crest cells actively migrate or are they passively dispersed by the movement of somite cells? The answers to both questions are critically important to any further understanding of the mechanisms underlying the precise distribution of the neural crest cells that develop into ganglia. We have done an exhaustive study of the locations of neural crest cells in chick embryos during early stages of their movement, using antibodies to neural crest cells (HNK-1), to neural filament-associated protein in growing nerve processes (E/C8), and to the extracellular matrix molecule laminin. Our results show that Some neural crest cells invade the extracellular space between adjacent somites, but the apparent majority move into the somites themselves along the border between the dermatome/myotome (DM) and the sclerotome. Neural crest cells remain closely associated with the anterior half of the DM of developing somites as they travel, suggesting that the basal lamina of the DM may be used as a migratory substratum. Supporting this idea is our observation that the development of the DM basal lamina coincides in time and location with the onset of crest migration through the somite. The leading front of neural crest cells advance through the somite while the length of the DM pathway remains constant, suggesting active locomotion, at least in this early phase of development. Neural crest cells leave the DM at a later stage of development to associate with the dorsal aorta, where sympathetic ganglia form, and to associate with newly emerging fibers of the ventral root nerve, where they presumably give rise to neuronal supportive cells. Thus we propose that the establishment of the segmental pattern of the peripheral ganglia and nerves depends on the timely development of appropriate substrata to guide and distribute migrating neural crest cells during the early stages of embryogenesis.  相似文献   

11.
It has been suggested that substrate adhesion molecules of the tenascin family may be responsible for the segmented outgrowth of motor axons and neural crest cells during formation of the peripheral nervous system. We have used two monoclonal antibodies (M1B4 and 578) and an antiserum [KAF9(1)] to study the expression of J1/tenascin-related molecules within the somites of the chick embryo. Neural crest cells were identified with monoclonal antibodies HNK-1 and 20B4. Young somites are surrounded by J1/tenascin immunoreactive material, while old sclerotomes are immunoreactive predominantly in their rostral halves, as described by other authors (Tan et al. 1987--Proc. natn. Acad. Sci. U.S.A. 84, 7977; Mackie et al. 1988--Development 102, 237). At intermediate stages of development, however, immunoreactivity is found mainly in the caudal half of each sclerotome. After ablation of the neural crest, the pattern of immunoreactivity is no longer localised to the rostral halves of the older, neural-crest-free sclerotomes. SDS-polyacrylamide gel electrophoresis of affinity-purified somite tissue, extracted using M1B4 antibody, shows a characteristic set of bands, including one of about 230 x 10(3), as described for cytotactin, J1-200/220 and the monomeric form of tenascin. Affinity-purified somite material obtained from neural-crest-ablated somites reveals some of the bands seen in older control embryos, but the high molecular weight components (120-230 x 10(3] are missing. Young epithelial somites also lack the higher molecular mass components. The neural crest may therefore participate in the expression of J1/tenascin-related molecules in the chick embryo. These results suggest that these molecules are not directly responsible for the segmented outgrowth of precursors of the peripheral nervous system.  相似文献   

12.
We have investigated the interactions between the cells of the rostral and caudal halves of the chick somite by carrying out grafting experiments. The rostral half-sclerotome was identified by its ability to support axon outgrowth and neural crest cell migration, and the caudal half by the binding of peanut agglutinin and the absence of motor axons and neural crest cells. Using the chick-quail chimaera technique we also studied the fate of each half-somite. It was found that when half-somites are placed adjacent to one another, their interactions obey a precise rule: sclerotome cells from like halves mix with each other, while those from unlike halves do not; when cells from unlike halves are adjacent to one another, a border is formed. Grafting quail half-somites into chicks showed that the fates of the rostral and caudal sclerotome halves are similar: both give rise to bone and cartilage of the vertebral column, as well as to intervertebral connective tissue. We suggest that the rostrocaudal subdivision serves to maintain the segmental arrangement when the mesenchymal sclerotome dissociates, so that the nervous system, vasculature and possibly vertebrae are patterned correctly.  相似文献   

13.
The expression of tenascin by neural crest cells and glia.   总被引:3,自引:0,他引:3  
The extracellular matrix glycoprotein tenascin is concentrated in both the embryo and adult in regions where cell motility is taking place. For example, during avian neural crest morphogenesis tenascin is concentrated in the rostral half of the sclerotome, precisely where the neural crest cells themselves are found. Previous in vitro studies indicated that somite cells were the source of this tenascin, implying a role for tenascin in directing the ventral migration of neural crest cells and thus the establishment of the periodic arrangement of the PNS. In this study, we have used a cDNA probe to identify the source of tenascin found along the pathways of the neural crest using in situ hybridization. In tissue sections, individual cells found along the neural crest migratory pathways, both before entering the somites and within the somites, are strongly labelled by the tenascin cDNA. In vitro neural crest cells are more strongly labelled with the tenascin probe than somite cells. Finally, western blotting has been used to identify tenascin in culture medium conditioned by neural crest cells. This indicates that neural crest cells themselves are the source of much of the tenascin found lining their migratory pathways, and that interactions with somite cells may not be needed to induce the expression of tenascin. We have also studied the distribution of tenascin mRNA in the developing spinal cord and spinal ganglia. At embryonic days 7 and 10, tenascin cDNA hybridizes within cells that appear to be migrating from the ependymal layer to the white matter, as well as within cells in the dorsal roots.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
A series of microsurgical operations was performed in chick embryos to study the factors that control the polarity, position and differentiation of the sympathetic and dorsal root ganglion cells developing from the neural crest. The neural tube, with or without the notochord, was rotated by 180 degrees dorsoventrally to cause the neural crest cells to emerge ventrally. In some embryos, the notochord was ablated, and in others a second notochord was implanted. Sympathetic differentiation was assessed by catecholamine fluorescence after aldehyde fixation. Neural crest cells emerging from an inverted neural tube migrate in a ventral-to-dorsal direction through the sclerotome, where they become segmented by being restricted to the rostral half of each sclerotome. Both motor axons and neural crest cells avoid the notochord and the extracellular matrix that surrounds it, but motor axons appear also to be attracted to the notochord until they reach its immediate vicinity. The dorsal root ganglia always form adjacent to the neural tube and their dorsoventral orientation follows the direction of migration of the neural crest cells. Differentiation of catecholaminergic cells only occurs near the aorta/mesonephros and in addition requires the proximity of either the ventral neural tube (floor plate/ventral root region) or the notochord. Prior migration of presumptive catecholaminergic cells through the sclerotome, however, is neither required nor sufficient for their adrenergic differentiation.  相似文献   

15.
In vertebrate embryos, neural crest cells migrate only through the anterior half of each somite while avoiding the posterior half. We demonstrate that neural crest cells express the receptor neuropilin 2 (Npn2), while its repulsive ligand semaphorin 3F (Sema3f) is restricted to the posterior-half somite. In Npn2 and Sema3f mutant mice, neural crest cells lose their segmental migration pattern and instead migrate as a uniform sheet, although somite polarity itself remains unchanged. Furthermore, Npn2 is cell autonomously required for neural crest cells to avoid Sema3f in vitro. These data show that Npn2/Sema3f signaling guides neural crest migration through the somite. Interestingly, neural crest cells still condense into segmentally arranged dorsal root ganglia in Npn2 nulls, suggesting that segmental neural crest migration and segmentation of the peripheral nervous system are separable processes.  相似文献   

16.
Neural crest cells migrate extensively and interact with numerous tissues and extracellular matrix components during their movement. Cell marking techniques have shown that neural crest cells in the trunk of the avian embryo migrate through the anterior, but not posterior, half of each sclerotome and avoid the region around the notochord. A possible mechanism to account for this migratory pattern is that neural crest cells may be inhibited from entering the posterior sclerotome and the perinotochordal space. Thus, interactions with other tissue may prescribe the pattern of neural crest cell migration in the trunk. In contrast, interactions between neural crest cells and the extracellular matrix may mediate the primary interactions controlling neural crest cells migration in the head region. © 1993 John Wiley & Sons, Inc.  相似文献   

17.
The segmented pattern of peripheral spinal nerves in higher vertebrates is generated by interactions between nerve cells and somites. Neural crest cells, motor axons, and sensory axons grow exclusively through anterior-half sclerotome. In chick embryos, posterior cells bind the lectins peanut agglutinin (PNA) and Jacalin. When liposomes containing somite extracts are applied to cultures of chick sensory neurons, growth cones collapse abruptly, recovering within 4 hr of liposome removal. Collapse activity is eliminated by immobilized PNA, and SDS-PAGE demonstrates two major components (48K and 55K), which are absent from anterior-half sclerotome. Rabbit polyclonal antibodies against these components recognize only posterior cells and may also be used to eliminate collapse activity. We suggest that spinal nerve segmentation is produced by inhibitory interactions between these components and growth cones.  相似文献   

18.
During embryogenesis in the chick, the lumbosacral (LS) somatopleure gives rise to the connective tissue and the epidermis of the limb. We wished to determine if the LS somatopleure was a primary source of guidance cues for motoneuron pathway choices along the anteroposterior axis of the limb. At stage (st) 15, prior to its population by muscle cell precursors and the neural crest, the LS somatopleure was shifted anteriorly. This surgery resulted in the development of limbs that were shifted one to four segments into the thoracic region. Muscles within the anterior thigh of the shifted limb were normally patterned and of composite origin: connective tissues were of LS origin, while muscle cells were of LS and thoracic origin. Retrograde HRP labeling at st 35-37 indicated that motoneuron pools to these anterior thigh muscles were located within LS rather than thoracic cord segments. Pools to individual muscles were smaller than normal but occupied segmental and transverse positions in the LS cord that generally matched those of normal embryos. These findings suggest that individual muscles within somatopleure-shifted limbs are innervated specifically and are in accord with their connective tissue (and epidermal) level of origin. Reconstructions of nerve patterns at st 28-31 suggested that LS motoneurons corrected for the shift by altering their pathways at midthigh regions. We conclude that the somatopleure, and most likely its connective tissue component, contains the information for setting up a specific axon guidance system in the developing limb.  相似文献   

19.
The somitic level of origin of embryonic chick hindlimb muscles   总被引:1,自引:0,他引:1  
Studies of avian chimeras made by transplanting groups of quail somites into chick embryos have consistently shown that the muscle cells of the hindlimb are derived from the adjacent somites, however, the pattern of cell distribution from individual somites to individual hindlimb muscles has not been characterized. I have mapped quail cell distribution in the chick hindlimb after single somite transplantation to determine if cells from an individual somite populate discrete limb muscle regions and if there is a spatial correspondence between a muscle's somitic level of origin and the known spinal cord position of its motoneuron pool. At stages 15-18 single chick somites or equivalent lengths of unsegmented somitic mesoderm adjacent to the prospective hindlimb region were replaced with the corresponding tissue from quail embryos. At stages 28-34, quail cell distribution was mapped within individual thigh muscles and shank muscle regions. A quail-specific antiserum and Feulgen staining were used to identify quail cells. Transplants from somite levels 26-33 each gave rise to consistent quail cell labeling in a unique subset of limb muscles. The anteroposterior positions of these subsets corresponded to that of the transplanted somitic tissue. For example, more anterior or anteromedial thigh muscles contained quail cells when more anterior somitic tissue had been transplanted. For the majority of thigh muscles studied and for shank muscle groups, there was also a clear correlation between somitic level of origin and motoneuron pool position. These data are compatible with the hypothesis that motoneurons and the muscle cells of their targets share axial position labels. The question of whether motoneurons from a specific spinal cord segment recognize and consequently innervate muscle cells derived from the same axial level during early axon outgrowth is addressed in the accompanying paper (C. Lance-Jones, 1988, Dev. Biol. 126, 408-419). Quail cell distribution was also mapped in chick embryos in which quail somites or unsegmented mesoderm had been placed 2-3 somites away from their position of origin. In all cases donor somitic tissues contributed to muscles in accord with their host position. These results indicate that muscle cell precursors within the somites are not specified to migrate to a predetermined target region.  相似文献   

20.
In order to examine the role of target cells in the development of spinal motoneurons, the neural tube from thoracic segments was transplanted to the lumbar region on embryonic day (E) 2, and allowed to innervate hindlimb muscles in the chick embryo. When examined at later stages of development, the proportion of white and gray matter in the thoracic transplant was altered to resemble normal lumbar cord. Many thoracic motoneurons were able to survive up to posthatching stages following transplantation. The branching and arborization of dendrites of thoracic motoneurons innervating hindlimb muscles, as well as motoneuron (soma) size, were also increased to an extent approximating that seen in normal lumbar motoneurons. In support of previous studies using a similar transplant model, we have also found that the peripheral (intramuscular) branching pattern of thoracic motoneuron axons innervating hindlimb muscles was similar to that of normal lumbar motoneurons. Axon size and the degree of myelination of transplanted thoracic motoneuron axons were also increased so that these parameters more closely resembled axons of normal lumbar than normal thoracic spinal motoneurons. Virtually all of the changes in motoneuron properties noted above were observed irrespective of whether or not the transplanted spinal cord had developed in anatomical continuity with the host rostral cord. Accordingly, it is unlikely that the changes in the development of transplanted thoracic motoneurons reported here are induced either entirely, or in part, by signals derived from the host central nervous system. Rather, these changes appear to be mediated by interactions between the transplanted motoneurons and the hindlimb. We favor the notion that retrograde trophic signals derived from the hindlimb act to modulate the development of innervating motoneurons. Whether this signal involves a diffusible trophic agent released from target cells, or acts by some other mechanism is presently unknown. © 1992 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号