首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
The specificity of cleavages in yeast and lupin initiator and elongator methionine tRNAs induced by magnesium, europium and lead has been analysed and compared with known patterns of yeast tRNA(Phe) hydrolysis. The strong D-loop cleavages occur in methionine elongator tRNAs at similar positions and with comparable efficiency to those found in tRNA(Phe), while the sites of weak anticodon loop cuts, identical in methionine elongator tRNAs, differ from those found in tRNA(Phe). Methionine initiator tRNAs differ from their elongator counterparts: (a) they are cleaved in the D-loop with much lower efficiency; (b) they are cleaved in the variable loop which is completely resistant to hydrolysis in elongator tRNAs; (c) cleavages in the anticodon loop are stronger in initiator tRNAs and they are located mostly at the 5' side of the loop whereas in elongator tRNAs they occur mostly at the opposite, 3' side of the loop. The distinct pattern of the anticodon loop cleavages is considered to be related to different conformations of the anticodon loop in the two types of methionine tRNAs.  相似文献   

2.
The specificity of magnesium ion-induced hydrolysis of yeast tRNAPhe in solution was studied as a function of the excess of Mg(II) ions and pH. The major cuts at phosphates 16 and 20 as well as minor cleavages at phosphates 17, 18, 21, 34 and 36 occur at all pH values in the range of 8.0-9.5, and at a molar excess of magnesium ions over the tRNA ranging from 125 to 5000. In yeast tRNA(Phe)-Y the efficiency of the anticodon and D-loop cleavages is considerably decreased while the differently modified Y-base of yellow lupin tRNA(Phe) lowers the specificity of the weak anticodon loop cleavages. The mechanism of the Mg(II)-induced cleavages is discussed on the basis of yeast tRNA(Phe) crystal structure data, and the two major D-loop cleavages are thought to be effected from two distinct magnesium binding sites. The possibility of probing the environments of magnesium binding sites in tRNAs by the induced cleavages is demonstrated, and the relevance of magnesium-induced tRNA cleavages to RNA catalysis is discussed.  相似文献   

3.
T Schurr  E Nadir    H Margalit 《Nucleic acids research》1993,21(17):4019-4023
Sequences upstream from translational initiation sites of different E.coli genes show various degrees of complementarity to the Shine-Dalgarno (SD) sequence at the 3' end of the 16S rRNA. We propose a quantitative measure for the SD region on the mRNA, that reflects its degree of complementarity to the rRNA. This measure is based on the stability of the rRNA-mRNA duplex as established by free energy computations. The free energy calculations are based on the same principles that are used for folding a single RNA molecule, and are executed by similar algorithms. Bulges and internal loops in the rRNA and mRNA are allowed. The mRNA string with maximum free energy gain upon binding to the rRNA is selected as the most favorable SD sequence of a gene. The free energy value that represents the SD region provides a quantitative measure that can be used for comparing SD sequences of different genes. The distribution of this measure in more than 1000 E.coli genes is presented and discussed.  相似文献   

4.
The interaction of E. coli IHF protein with its specific binding sites   总被引:70,自引:0,他引:70  
C C Yang  H A Nash 《Cell》1989,57(5):869-880
We have used two kinds of footprinting techniques, dimethylsulfate interference and hydroxyl radical protection, to explore the way that IHF recognizes its specific target sequences. Our results lead us to conclude that IHF recognizes DNA primarily through contacts with the minor groove, an unprecedented mode for a sequence-specific binding protein. We have also determined that, although IHF is a small protein that protects a large region of DNA, only a single IHF protomer is present at each binding site. IHF bends the DNA to which it binds. We have combined this fact plus our footprinting and stoichiometry data together with the crystal structure of a related protein, the nonspecific DNA binding protein HU, to propose a model for the way in which IHF binds to its DNA target.  相似文献   

5.
6.
Tight divalent metal binding sites in Escherichia coli F1-adenosinetriphosphatase (F1-ATPase) were studied. Native enzyme contained two Mg per F1, confirming previous results. All of the Mg may be replaced by Co or Mn using a dissociation-repolymerization procedure. The substituted enzymes are homogeneous and contain two Mn per F1 or two Co per F1. They are fully active as ATPases, they rebind to F1-depleted membranes, and they catalyze ATP-driven proton pumping. N,N'-Dicyclohexylcarbodiimide-(DCCD) inactivated F1 retains all the intrinsic tightly bound Mg. Evidence is presented that DCCD affects at least two beta subunits in E. coli F1, and therefore, the tightly bound metals appear not to be bound at the DCCD-reactive glutamate residue on the beta subunit. However, the nature of the tightly bound metal (Mg, Mn, or Co) as well as the presence of added (2 mM) MgSO4, MnSO4, or CoSO4 affected the rate of DCCD inactivation, showing that metal binding changes the beta-subunit conformation. Isolated F1 alpha subunit bound Mg, Mn, or Co stoichiometrically and independently of ATP binding. Isolated F1 beta subunit bound only small amounts of Mg, and no Co or Mn. Therefore, it is possible, although not conclusively shown, that the alpha subunit is the site of tight metal binding in the intact F1.  相似文献   

7.
Specific yeast tRNA(Phe) hydrolysis brought about by europium ions has been studied in detail using the 32P-end-labeled tRNA and polyacrylamide gel electrophoresis. The dependence of the induced cleavages on pH, temperature and concentration of the europium ions has been determined. Europium hydrolyzes yeast tRNA(Phe) in the D-loop at phosphates 16 and 18, and the anticodon loop of phosphates 34 and 36. The two D-loop cuts are thought to take place from two distinct europium binding sites, while the two anticodon loop cleavages from a single site. Eight other members of the lanthanide series and ytrium give basically the same pattern of cleavages as europium. The specific cleavages taking place in the anticodon loop occur in an intramolecular mode from the lanthanide binding site that has not been found in yeast tRNA(Phe) crystal structure. It appears from the comparison of the europium-promoted cuts with those generated by magnesium and lead that the former two ions give more similar but not identical cleavage patterns. The usefulness of the specific cleavages induced by lanthanides for probing their own and magnesium binding sites in tRNA is discussed.  相似文献   

8.
Quantitative analysis of ribosome binding sites in E.coli.   总被引:9,自引:1,他引:9       下载免费PDF全文
185 clones with randomized ribosome binding sites, from position -11 to 0 preceding the coding region of beta-galactosidase, were selected and sequenced. The translational yield of each clone was determined; they varied by more than 3000-fold. Multiple linear regression analysis was used to determine the contribution to translation initiation activity of each base at each position. Features known to be important for translation initiation, such as the initiation codon, the Shine/Dalgarno sequence, the identity of the base at position -3 and the occurrence of alternative ATGs, are all found to be important quantitatively for activity. No other features are found to be of general significance, although the effects of secondary structure can be seen as outliers. A comparison to a large number of natural E.coli translation initiation sites shows the information profile to be qualitatively similar although differing quantitatively. This is probably due to the selection for good translation initiation sites in the natural set compared to the low average activity of the randomized set.  相似文献   

9.
Two libraries of cloned E. coli DNA were screened for plasmids which complemented thermosensitive phenylalanyl-tRNA synthetase mutants. Four plasmids were isolated which complemented pheS and pheT thermosensitive mutations but which do not carry pheS or pheT, the structural genes for phenylalanyl-tRNA synthetase. All these plasmids increased the intracellular tRNAPhe concentration. Three plasmids were shown to carry the structural gene for tRNAPhe which we call pheU. By restriction enzyme analysis, DNA blotting and DNA:tRNA hybridization, pheU was localised to a 280 bp fragment within a 5.6 kb PstI restriction fragment of E.coli DNA.  相似文献   

10.
Summary In the North American opossum, heat-stable specific binding sites for E. coli enterotoxin are observed (i) in epithelial cells lining the small intestine, colon, gall bladder, cystic duct, common bile duct and trachea, and (ii) in epithelial cells forming the duodenal (Brunner's) glands, liver, kidneys (metanephros, mesonephros) and testis, as demonstrated by autoradiography. Enterotoxin-specific binding sites in the intestinal tract are only found in intestinal epithelial cells with the highest concentration in the microvillus border. Enterotoxin-specific binding sites also occur in epithelial cells comprising the secretory tubules and ducts of the duodenal glands. In the kidneys (metanephros and mesonephros), enterotoxin-specific binding sites are confirmed primarily to the proximal tubules, whereas in the testis they are localized in seminiferous tubules. In the liver, enterotoxin-specific binding sites are confined primarily to hepatocytes. E. coli enterotoxin caused a 7-fold increase of cGMP in the liver and a 30-fold increase in the duodenal glands. The liver responded in about half of the animals studied, whereas the duodenal glands gave a consistent response in each case. Likewise, the duodenal glands consistently showed strong labelling for 125I-enterotoxin, whereas receptor labelling of hepatocytes was inconsistent in nearly half the incubations and corresponds to the observed cGMP measurements.Supported by a Weldon Springs Grant, University of Missouri and by funds from the Medical Research Service, Department of Veteran's Affairs  相似文献   

11.
Specific modification of promoter regions of DNA has been studied. Plasmid pK56B1 DNA has been used as a model to test RNA-polymerase binding with DNA under various conditions. RNA-polymerase is shown to form specific complexes with DNA which are stable in solutions with a moderate ionic strength (0.1-0.2 M NaCl), under pH 5-8 in the presence of 0.5 M O-methylhydroxylamine of O-delta-aminooxybutylhydroxylamine. Escherichia coli JM103 cells have been transfected with DNAs treated with 0.5 M O-methylhydroxylamine at 37 degrees C, pH 5.2. The inactivation effects of the mutagen on single-stranded DNA of bacteriophage M13 m p1, double-stranded form of this bacteriophage (replicative form-RF) and on the complex of RNA-polymerase with RF DNA have been compared. The obtained data confirmed the specificity of reagent action with DNA sites binding with the enzyme. Selectivity of promoters modification has been confirmed also by the analysis of M13 m p1 DNA mutations induced in lacZ' gene by delta-aminooxybutylhydroxylamine effect on the DNA complex with DNA-polymerase.  相似文献   

12.
Individual protein binding sites on DNA can be measured in bits of information. This information is related to the free energy of binding by the second law of thermodynamics, but binding kinetics appear to be inaccessible from sequence information since the relative contributions of the on- and off-rates to the binding constant, and hence the free energy, are unknown. However, the on-rate could be independent of the sequence since a protein is likely to bind once it is near a site. To test this, we used surface plasmon resonance and electromobility shift assays to determine the kinetics for binding of the Fis protein to a range of naturally occurring binding sites. We observed that the logarithm of the off-rate is indeed proportional to the individual information of the binding sites, as predicted. However, the on-rate is also related to the information, but to a lesser degree. We suggest that the on-rate is mostly determined by DNA bending, which in turn is determined by the sequence information. Finally, we observed a break in the binding curve around zero bits of information. The break is expected from information theory because it represents the coding demarcation between specific and nonspecific binding.  相似文献   

13.
This study investigated the use of neural networks in the identification of Escherichia coli ribosome binding sites. The recognition of these sites based on primary sequence data is difficult due to the multiple determinants that define them. Additionally, secondary structure plays a significant role in the determination of the site and this information is difficult to include in the models. Efforts to solve this problem have so far yielded poor results. A new compilation of E. coli ribosome binding sites was generated for this study. Feedforward backpropagation networks were applied to their identification. Perceptrons were also applied, since they have been the previous best method since 1982. Evaluation of performance for all the neural networks and perceptrons was determined by ROC analysis. The neural network provided significant improvement in the recognition of these sites when compared with the previous best method, finding less than half the number of false positives when both models were adjusted to find an equal number of actual sites. The best neural network used an input window of 101 nucleotides and a single hidden layer of 9 units. Both the neural network and the perceptron trained on the new compilation performed better than the original perceptron published by Stormo et al. in 1982.  相似文献   

14.
HCl treatment of yeast tRNAPhe under conditions generally used for excision of `Y' base results in structure and conformation changes as monitored by line widths in the PMR spectra at 220 MHz and by optical rotation. Like exposure of E. coli tRNAfMet1 causes similar changes in the PMR spectra and optical rotation although no residues are eliminated. Electrophoresis in polyacrylamide gels provides evidence for aggregation in HCl-treated tRNAfMet1. One must thus consider a general effect of HCl exposure as well as possible residue removal in assessing induced structural and conformation changes in tRNA.  相似文献   

15.
The specificity of lead(II)-induced hydrolysis of yeast tRNA(Phe) was studied as a function of concentration of Pb2+ ions. The major cut was localized in the D-loop and minor cleavages were detected in the anticodon and T-loops at high metal ion concentration. The effects of pH, temperature, and urea were also analyzed, revealing a basically unchanged specificity of hydrolysis. In the isolated 5'-half-molecule of yeast tRNAPhe not cut was found in the D-loop, indicating its stringent dependence on T-D-loop interaction. Comparison of hydrolysis patterns and efficiencies observed in yeast tRNA(Phe) with those found in other tRNAs suggests that the presence of a U59-C60 sequence in the T-loop is responsible for the highly efficient and specific hydrolysis in the spatially close region of the D-loop. The efficiencies of D-loop cleavage in intact yeast tRNA(Phe) and in tRNA(Phe) deprived of the Y base next to the anticodon were also compared at various Pb2+ ion concentrations. Kinetics of the D-loop hydrolysis analyzed at 0, 25, and 37 degrees C showed a 6 times higher susceptibility of tRNA(Phe) minus Y base (tRNA(Phe)-Y) to lead(II)-induced hydrolysis than in tRNA(Phe). The observed effect is discussed in terms of a long-distance conformational transition in the region of the interacting D- and T-loops triggered by the Y-base excision.  相似文献   

16.
17.
O Melefors  A von Gabain 《Cell》1988,52(6):893-901
The stability of ompA mRNA is growth-rate dependent. We show that the 5' noncoding region of this mRNA provides a target for site-specific endonucleases. The rate of degradation of ompA mRNA parallels the rate of these endonucleolytic cleavages, implying that endonucleolytic rather than exonucleolytic attack is the initial step in ompA mRNA degradation. Thus the 5' noncoding region appears to be a determinant of mRNA stability, and endonucleolytic cleavages in the 5' noncoding region may well regulate expression of the ompA gene.  相似文献   

18.
19.
The anticodon sequence is a major recognition element for most aminoacyl-tRNA synthetases. We investigated the in vivo effects of changing the anticodon on the aminoacylation specificity in the example of E. coli tRNAPhe. Constructing different anticodon mutants of E. coli tRNAPhe by site-directed mutagenesis, we isolated 22 anticodon mutant tRNAPhe; the anticodons corresponded to 16 amino acids and an opal stop codon. To examine whether the mutant tRNAs had changed their amino acid acceptor specificity in vivo, we tested the viability of E. coli strains containing these tRNAPhe genes in a medium which permitted tRNA induction. Fourteen mutant tRNA genes did not affect host viability. However, eight mutant tRNA genes were toxic to the host and prevented growth, presumably because the anticodon mutants led to translational errors. Many mutant tRNAs which did not affect host viability were not aminoacylated in vivo. Three mutant tRNAs containing anticodon sequences corresponding to lysine (UUU), methionine (CAU) and threonine (UGU) were charged with the amino acid corresponding to their anticodon, but not with phenylalanine. These three tRNAs and tRNAPhe are located in the same cluster in a sequence similarity dendrogram of total E. coli tRNAs. The results support the idea that such tRNAs arising from in vivo evolution are derived by anticodon change from the same ancestor tRNA.  相似文献   

20.
In the absence of divalent cations, at neutral pH, low ionic strength, and low to moderate temperature, tRNAs are known to be in a denatured form, designated form III in the tRNA phase diagram by Cole et al. [Cole, P. E., Yang, S. R., & Crothers, D. M. (1972) Biochemistry 11, 4358-4368]. Form III tRNAPhe from Escherichia coli has been studied at pH 7, 5 mM Na+, and 10 degrees C. As judged from ethidium bromide intercalation, it exhibits extensive secondary structure. 4-Thiouridine in position 8 of the tRNAPhe sequence was used as a built-in photoaffinity probe. Spectroscopic and spectrofluorometric analysis in the near-UV range of form III tRNAPhe irradiated with broad-band near-UV light to completion of the reaction before or after reduction with NaBH4 revealed that the Pdo(4-5)Cyt (8-C) and Pdo(4-5)Urd (8-U) adducts form in equimolar yield. In different experiments, the overall yield of s4U conversion to these adducts varies between 20 and 40%. The remaining s4U is photolyzed to weakly absorbing product(s) in the near-UV range. The disappearance of s4U follows biexponential kinetics while the 8-C adduct formation follows monoexponential kinetics, indicating the presence of at least two tRNA classes of conformers, not in equilibrium on the time scale of the reaction. Migration on a denaturing polyacrylamide gel of irradiated form III tRNAPhe revealed three main bands, D1, D2, and D3, and no slowly migrating tRNA dimers. D1 migrates at the control position and presumably contains the photolysis product(s) P. The fast-migrating D2 and D3 bands contain 8-Pyr cross-links which were identified by sequence analysis as 8-(66-68) in D2 and 8-(40-43) and 8-(59-62) in D3. On the basis of these data, it is proposed that the minor poorly photoreactive class II conformers are the cloverleaf and close variants, whereas the major class I cross-linkable conformers are essentially long-extended secondary structures. Clearly, our data demonstrate the polymorphism of form III tRNAPhe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号