首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dimethyl sulfide(DMS) is the most abundant form of volatile sulfur in Earth's oceans, and is mainly produced by the enzymatic clevage of dimethylsulfoniopropionate(DMSP). DMS and DMSP play important roles in driving the global sulfur cycle and may affect climate. DMSP is proposed to serve as an osmolyte, a grazing deterrent, a signaling molecule, an antioxidant, a cryoprotectant and/or as a sink for excess sulfur. It was long believed that only marine eukaryotes such as phytoplankton produce DMSP. However, we recently discovered that marine heterotrophic bacteria can also produce DMSP, making them a potentially important source of DMSP. At present, one prokaryotic and two eukaryotic DMSP synthesis enzymes have been identified.Marine heterotrophic bacteria are likely the major degraders of DMSP, using two known pathways: demethylation and cleavage.Many phytoplankton and some fungi can also cleave DMSP. So far seven different prokaryotic and one eukaryotic DMSP lyases have been identified. This review describes the global distribution pattern of DMSP and DMS, the known genes for biosynthesis and cleavage of DMSP, and the physiological and ecological functions of these important organosulfur molecules, which will improve understanding of the mechanisms of DMSP and DMS production and their roles in the environment.  相似文献   

2.
DMSP (dimethyl sulphonium propionate) contents produced by an Antarctic marine phytoplankton species, Phaeocystis antarctica (Prymnesiophyta), which were incubated under light conditions with radiations of different UV wavebands, were measured by gas chromatography after various exposure times. Full light (UV-B + UV-A + PAR) caused the strongest decrease in the production of DMSP in the alga. A marked depression of DMSP content was also observed with short UV-B and UV-A wavebands after 3 h. It was therefore hypothesised that DMSP production in Phaeocystis antarctica was inhibited by UV radiation. There was a negative correlation on change of DMSP contents under UV radiation. There was a negative correlation on change of DMSP contents under UV radiation with exposure times. The conversion rate of DMSP dissolved to DMS (dimethyl sulphide) was significantly increased with UV radiation. The possibility could not be excluded that a high concentration of free chemical radicals in seawater due to UV radiation resulted in an increase of DMSP cleavage in seawater. The oxidation of DMS in seawater due to UV-B radiation could result in a decrease of its flux to the atmosphere. The effect of UV radiation on DMSP production and oxidation of DMS may be an important factor in the variability of DMSP and the global flux of DMS from ocean to atmosphere. Received: 17 June 1996 / Accepted: 17 July 1997  相似文献   

3.
海洋微型生物储碳过程与机制概论   总被引:3,自引:1,他引:2  
在全球气候环境演变的背景下,认识海洋微型生物对碳循环的贡献,需要了解其过程和机制.最近提出的“微型生物碳泵”理论阐释了海洋储碳的一个新机制:微型生物活动把溶解有机碳从活性向惰性转化,从而构成了海洋储碳.这个过程当中,自养与异养细菌、病毒、原生动物等具有不同生理特性微型生物类群扮演着不同的生态角色,本文将围绕微型生物碳泵主线分别论述之.  相似文献   

4.
Dimethylsulfide (DMS) is a volatile organosulfur compound, ubiquitous in the oceans, that has been credited with various roles in biogeochemical cycling and in climate control. Various oceanic sinks of DMS are known - both chemical and biological - although they are poorly understood. In addition to the utilization of DMS as a carbon or a sulfur source, some Bacteria are known to oxidize it to dimethylsulfoxide (DMSO). Sagittula stellata is a heterotrophic member of the Alphaproteobacteria found in marine environments. It has been shown to oxidize DMS during heterotrophic growth on sugars, but the reasons for and the mechanisms of this oxidation have not been investigated. Here, we show that the oxidation of DMS to DMSO is coupled to ATP synthesis in S. stellata and that DMS acts as an energy source during chemoorganoheterotrophic growth of the organism on fructose and on succinate. DMS dehydrogenase (which is responsible for the oxidation of DMS to DMSO in other marine Bacteria) and DMSO reductase activities were absent from cells grown in the presence of DMS, indicating an alternative route of DMS oxidation in this organism.  相似文献   

5.
Dimethyl sulfide (DMS) is a climatically active gas released into the atmosphere from oceans. It is produced mainly by bacterial enzymatic cleavage of dimethylsulfoniopropionate (DMSP), and six DMSP lyases have been identified to date. To determine the biogeographical distribution of bacteria relevant to DMS production, we investigated the diversity of dddP—the most abundant DMS-producing gene—in the northwestern Pacific Ocean using newly developed primers and the pyrosequencing method. Consistent with previous studies, the major dddP-containing bacteria in coastal areas were those belonging to the Roseobacter clade. However, genotypes closely related to the SAR116 group were found to represent a large portion of dddP-containing bacteria in the surface waters of the oligotrophic ocean. The addition of DMSP to a culture of the SAR116 strain Candidatus Puniceispirillum marinum IMCC1322 resulted in the production of DMS and upregulated expression of the dddP gene. Considering the large area of oligotrophic water and the wide distribution of the SAR116 group in oceans worldwide, we propose that these bacteria may play an important role in oceanic DMS production and biogeochemical sulfur cycles, especially via bacteria-mediated DMSP degradation.  相似文献   

6.
The algal osmolyte, dimethylsulphoniopropionate (DMSP), is abundant in the surface oceans and is the major precursor of dimethyl sulphide (DMS), a gas involved in global climate regulation. Here, we report results from an in situ Lagrangian study that suggests a link between the microbially driven fluxes of dissolved DMSP (DMSPd) and specific members of the bacterioplankton community in a North Sea coccolithophore bloom. The bacterial population in the bloom was dominated by a single species related to the genus Roseobacter , which accounted for 24% of the bacterioplankton numbers and up to 50% of the biomass. The abundance of the Roseobacter cells showed significant paired correlation with DMSPd consumption and bacterioplankton production, whereas abundances of other bacteria did not. Consumed DMSPd (28 nM day−1) contributed 95% of the sulphur and up to 15% of the carbon demand of the total bacterial populations, suggesting the importance of DMSP as a substrate for the Roseobacter -dominated bacterioplankton. In dominating DMSPd flux, the Roseobacter species may exert a major control on DMS production. DMSPd turnover rate was 10 times that of DMS (2.7 nM day−1), indicating that DMSPd was probably the major source of DMS, but that most of the DMSPd was metabolized without DMS production. Our study suggests that single species of bacterioplankton may at times be important in metabolizing DMSP and regulating the generation of DMS in the sea.  相似文献   

7.
Production and consumption processes in soils contribute to the global cycles of many trace gases (CH4, CO, OCS, H2, N2O, and NO) that are relevant for atmospheric chemistry and climate. Soil microbial processes contribute substantially to the budgets of atmospheric trace gases. The flux of trace gases between soil and atmosphere is usually the result of simultaneously operating production and consumption processes in soil: The relevant processes are not yet proven with absolute certainty, but the following are likely for trace gas consumption: H2 oxidation by abiontic soil enzymes; CO cooxidation by the ammonium monooxygenase of nitrifying bacteria; CH4 oxidation by unknown methanotrophic bacteria that utilize CH4 for growth; OCS hydrolysis by bacteria containing carbonic anhydrase; N2O reduction to N2 by denitrifying bacteria; NO consumption by either reduction to N2O in denitrifiers or oxidation to nitrate in heterotrophic bacteria. Wetland soils, in contrast to upland soils are generally anoxic and thus support the production of trace gases (H2, CO, CH4, N2O, and NO) by anaerobic bacteria such as fermenters, methanogens, acetogens, sulfate reducers, and denitrifiers. Methane is the dominant gaseous product of anaerobic degradation of organic matter and is released into the atmosphere, whereas the other trace gases are only intermediates, which are mostly cycled within the anoxic habitat. A significant percentage of the produced methane is oxidized by methanotrophic bacteria at anoxic-oxic interfaces such as the soil surface and the root surface of aquatic plants that serve as conduits for O2 transport into and CH4 transport out of the wetland soils. The dominant production processes in upland soils are different from those in wetland soils and include H2 production by biological N2 fixation, CO production by chemical decomposition of soil organic matter, and NO and N2O production by nitrification and denitrification. The processes responsible for CH4 production in upland soils are completely unclear, as are the OCS production processes in general. A problem for future research is the attribution of trace gas metabolic processes not only to functional groups of microorganisms but also to particular taxa. Thus, it is completely unclear how important microbial diversity is for the control of trace gas flux at the ecosystem level. However, different microbial communities may be part of the reason for differences in trace gas metabolism, e.g., effects of nitrogen fertilizers on CH4 uptake by soil; decrease of CH4 production with decreasing temperature; or different rates and modes of NO and N2O production in different soils and under different conditions.  相似文献   

8.
There is approximately 50 times more inorganic carbon in the global ocean than in the atmosphere. On time scales of decades to millions of years, the interaction between these two geophysical fluids determines atmospheric CO2 levels. During glacial periods, for example, the ocean serves as the major sink for atmospheric CO2, while during glacial–interglacial transitions, it is a source of CO2 to the atmosphere. The mechanisms responsible for determining the sign of the net exchange of CO2 between the ocean and the atmosphere remain unresolved. There is evidence that during glacial periods, phytoplankton primary productivity increased, leading to an enhanced sedimentation of particulate organic carbon into the ocean interior. The stimulation of primary production in glacial episodes can be correlated with increased inputs of nutrients limiting productivity, especially aeolian iron. Iron directly enhances primary production in high nutrient (nitrate and phosphate) regions of the ocean, of which the Southern Ocean is the most important. This trace element can also enhance nitrogen fixation, and thereby indirectly stimulate primary production throughout the low nutrient regions of the central ocean basins. While the export flux of organic carbon to the ocean interior was enhanced during glacial periods, this process does not fully account for the sequestration of atmospheric CO2. Heterotrophic oxidation of the newly formed organic carbon, forming weak acids, would have hydrolyzed CaCO3 in the sediments, increasing thereby oceanic alkalinity which, in turn, would have promoted the drawdown of atmospheric CO2. This latter mechanism is consistent with the stable carbon isotope pattern derived from air trapped in ice cores. The oceans have also played a major role as a sink for up to 30% of the anthropogenic CO2 produced during the industrial revolution. In large part this is due to CO2 solution in the surface ocean; however, some, poorly quantified fraction is a result of increased new production due to anthropogenic inputs of combined N, P and Fe. Based on ‘circulation as usual’, models predict that future anthropogenic CO2 inputs to the atmosphere will, in part, continue to be sequestered in the ocean. Human intervention (large-scale Fe fertilization; direct CO2 burial in the deep ocean) could increase carbon sequestration in the oceans, but could also result in unpredicted environmental perturbations. Changes in the oceanic thermohaline circulation as a result of global climate change would greatly alter the predictions of C sequestration that are possible on a ‘circulation as usual’ basis.  相似文献   

9.
The production of the marine trace gas dimethyl sulfide (DMS) provides 90% of the marine biogenic sulfur in the atmosphere where it affects cloud formation and climate. The effects of increasing anthropogenic CO2 and the resulting warming and ocean acidification on trace gas production in the oceans are poorly understood. Here we report the first measurements of DMS‐production and data on growth, DMSP and DMS concentrations in pH‐stated cultures of the phytoplankton haptophyte Emiliania huxleyi. Four different environmental conditions were tested: ambient, elevated CO2 (+CO2), elevated temperature (+T) and elevated temperature and CO2 (+TCO2). In comparison to the ambient treatment, average DMS production was about 50% lower in the +CO2 treatment. Importantly, temperature had a strong effect on DMS production and the impacts outweighed the effects of a decrease in pH. As a result, the +T and +TCO2 treatments showed significantly higher DMS production of 36.2 ± 2.58 and 31.5 ± 4.66 μmol L?1 cell volume (CV) h?1 in comparison with the +CO2 treatment (14.9 ± 4.20 μmol L?1 CV h?1). As the cultures were aerated with an air/CO2 mixture, DMS was effectively removed from the incubation bottles so that concentration remained relatively low (3.6–6.1 mmol L?1 CV). Intracellular DMSP has been shown to increase in E. huxleyi as a result of elevated temperature and/or elevated CO2 and our results are in agreement with this finding: the ambient and +CO2 treatments showed 125 ± 20.4 and 162 ± 27.7 mmol L?1 CV, whereas +T and +TCO2 showed significantly increased intracellular DMSP concentrations of 195 ± 15.8 and 211 ± 28.2 mmol L?1 CV respectively. Growth was unaffected by the treatments, but cell diameter decreased significantly under elevated temperature. These results indicate that DMS production is sensitive to CO2 and temperature in E. huxleyi. Hence, global environmental change that manifests in ocean acidification and warming may not result in decreased DMS as suggested by earlier studies investigating the effect of elevated CO2 in isolation.  相似文献   

10.
Kelp forests worldwide are known as hotspots for macroscopic biodiversity and primary production, yet very little is known about the biodiversity and roles of microorganisms in these ecosystems. Secondary production by heterotrophic bacteria associated to kelp is important in the food web as a link between kelp primary production and kelp forest consumers. The aim of this study was to investigate the relationship between bacterial diversity and two important processes in this ecosystem; bacterial secondary production and primary succession on kelp surfaces. To address this, kelp, Laminaria hyperborea, from southwestern Norway was sampled at different geographical locations and during an annual cycle. Pyrosequencing (454-sequencing) of amplicons of the 16S rRNA gene of bacteria was used to study bacterial diversity. Incorporation of tritiated thymidine was used as a measure of bacterial production. Our data show that bacterial diversity (richness and evenness) increases with the age of the kelp surface, which corresponds to the primary succession of its bacterial communities. Higher evenness of bacterial operational taxonomical units (OTUs) is linked to higher bacterial production. Owing to the dominance of a few abundant OTUs, kelp surface biofilm communities may be characterized as low-diversity habitats. This is the first detailed study of kelp-associated bacterial communities using high-throughput sequencing and it extends current knowledge on microbial community assembly and dynamics on living surfaces.  相似文献   

11.
海洋二甲基硫观测技术及其海-气通量分析研究进展   总被引:1,自引:0,他引:1  
彭丽英  孙军 《生态学报》2020,40(2):428-439
二甲基硫(DMS)海-气交换是全球硫循环的主要参与者,对全球气候变化产生重要影响。有关海洋DMS排放及其海-气交换过程研究已引起人们的广泛关注,并成为现今国际上的研究热点之一。从海洋DMS观测技术及海-气通量估算两方面进行了系统总结,并指出了它们的最新进展和发展趋势,具体包括:虽然遥感技术在获取DMS时空分布及大面数据方面具有独特优势,但气相色谱法是目前应用最为广泛的观测技术,而质谱也越来越受到研究者们的青睐;直接观测技术在提升分析性能的同时朝着自动化、智能化现场实时观测的方向发展;观测对象从单一DMS扩展至其前体、二甲基亚砜等其他物质,同时所获数据呈多元化趋势,准确度也逐渐提升;以滞膜模型为代表的模型估算和以涡旋相关法为代表的直接测量法是目前DMS海-气通量分析的主要方法,而多元化数据则促进了两种或两种以上通量分析方法的联合及对比;深入探究海洋环境因素对海-气交换过程的影响,进一步完善速率常数计算和通量估算方法,是获得适用性更广、准确度更高的DMS传输率常数及提高通量估算准确度的重要途径;将直接观测技术和遥感卫星观测技术相结合,开展时间、空间维度上的全球海域DMS大数据调查研究,并深入评估DMS对海洋环境及气候变化的影响将是未来研究的重要内容;基于大数据基础构建海洋DMS排放趋势模型,实现未来DMS排放的准确预测是DMS观测及其海-气通量分析研究的重要目标。  相似文献   

12.
Dimethyl sulfide metabolism in salt marsh sediments   总被引:4,自引:0,他引:4  
Abstract Anoxic sediment slurries prepared from Spartina salt marsh soils contained dimethyl sulfide (DMS) at concentrations ranging from 1 to 10 μM. DMS was produced in slurries over the initial 1–24 h incubation. After the initial period of production, DMS decreased to undetectable levels and methane thiol (MSH) was produced. Inhibition of methanogenesis caused a 20% decrease in the rate of DMS consumption, while inhibition of sulfate reduction caused a 80% decrease in DMS consumption. When sulfate reduction and methanogenesis were simultaneously inhibited, DMS did not decrease. DMS contributed about 28% to the methane production rate, while DMS probably contributed only 1% or less to the sulfate reduction rate. Incubation of the sediment slurries under an atmosphere of air resulted in similar DMS consumption compared to anaerobic incubations, but MSH and CH4 were not evolved.
Sediments from the marsh released significant quantities of DMS when treated with cold alkali, indicating that potentially significant sources of DMS existed in the sediments. Values of base-hydrolyzable DMS as high as 190 μmol per liter of sediment were observed near the sediment surface, and values always decreased with depth in the sediment. Simple flux experiments with small intact sediment cores, showed that DMS was emitted from the marsh surface when cores were injected with glutaraldehyde or molybdate and 2-bromoethanesulfonate (BES), but nit when cores were left uninhibited. These results showed that DMS was readily metabolized by microbes in marsh sediments and that this metabolism may be responsible for reducing the emission of DMS from the marsh surface.  相似文献   

13.
14.
Utilization of microbial oil for biodiesel production has gained growing interest due to the increase in prices and the shortage of the oils and fats traditionally used in biodiesel production. However, it is still in the laboratory study stage due to the high cost of production. Employing organic wastes as raw materials to grow heterotrophic oleaginous microorganisms for further lipid production to produce biodiesel has been predicted to be a promising method for reducing costs. However, there are many obstacles including the low biodegradability of organic wastes, low lipid accumulation capacity of heterotrophic oleaginous microorganisms while using organic wastes, a great dependence on a high-energy consumption approach for biomass harvesting, utilization of toxic organic solvents for lipid extraction, and large amount of methanol required in trans-esterification and in-situ trans-esterifications. Ultra-sonication as a green technology has been extensively utilized to enhance bio-product production from organic wastes. In this article, ultra-sonication applications in biodiesel production steps with heterotrophic oleaginous microorganisms have been reviewed, and its impact, potential, and limitations on the process have been discussed.  相似文献   

15.
The influences of physico-chemical and biological processes on dimethylsulfide (DMS) dynamics in the most oligotrophic subtropical zones of the global ocean were investigated. As metrics for the dynamics of DMS and the so-called ‘summer DMS paradox’ of elevated summer concentrations when surface chlorophyll a (Chl) and particulate organic carbon (POC) levels are lowest, we used the DMS-to-Chl and DMS-to-POC ratios in the context of three independent and complementary approaches. Firstly, field observations of environmental variables (such as the solar radiation dose, phosphorus limitation of phytoplankton and bacterial growth) were used alongside discrete DMS, Chl and POC estimates extracted from global climatologies (i.e., a ‘station based’ approach). We then used monthly climatological data for DMS, Chl, and POC averaged over the biogeographic province wherein a given oligotrophic subtropical zone resides (i.e., a ‘province based’ approach). Finally we employed sensitivity experiments with a new DMS module coupled to the ocean general circulation and biogeochemistry model PISCES to examine the influence of various processes in governing DMS dynamics in oligotrophic regions (i.e., a ‘model based’ approach). We find that the ‘station based’ and ‘province based’ approaches yield markedly different results. Interestingly, the ‘province based’ approach suggests the presence of a ‘summer DMS paradox’ in most all of the oligotrophic regions we studied. In contrast, the ‘station based’ approach suggests that the ‘summer DMS paradox’ is only present in the Sargasso Sea and eastern Mediterranean. Overall, we found the regional differences in the absolute and relative concentrations of DMS between 5 of the most oligotrophic regions of the world’s oceans were better accounted for by their nutrient dynamics (specifically phosphorus limitation) than by physical factors often invoked, e.g., the solar radiation dose. Our ‘model based’ experiments suggest that it is the limitation of phytoplankton/bacterial production and bacterial consumption of DMS by pervasive phosphorus limitation that is responsible for the ‘summer DMS paradox’.  相似文献   

16.
Net ecosystem carbon exchange in two experimental grassland ecosystems   总被引:2,自引:0,他引:2  
Increases in net primary production (NPP) may not necessarily result in increased C sequestration since an increase in uptake can be negated by concurrent increases in ecosystem C losses via respiratory processes. Continuous measurements of net ecosystem C exchange between the atmosphere and two experimental cheatgrass (Bromus tectorum L.) ecosystems in large dynamic flux chambers (EcoCELLs) showed net ecosystem C losses to the atmosphere in excess of 300 g C m?2 over two growing cycles. Even a doubling of net ecosystem production (NEP) after N fertilization in the second growing season did not compensate for soil C losses incurred during the fallow period. Fertilization not only increased C uptake in biomass but also enhanced C losses through soil respiration from 287 to 469 g C m?2, mainly through an increase in rhizosphere respiration. Fertilization decreased dissolved inorganic C losses through leaching of from 45 to 10 g C m?2. Unfertilized cheatgrass added 215 g C m?2 as root‐derived organic matter but the contribution of these inputs to long‐term C sequestration was limited as these deposits rapidly decomposed. Fertilization increased NEP but did not increase belowground C inputs most likely due to a concurrent increase in the production and decomposition of rhizodeposits. Decomposition of soil organic matter (SOM) was reduced by fertilizer additions. The results from our study show that, although annual grassland ecosystems can add considerable amounts of C to soils during the growing season, it is unlikely that they sequester large amounts of C because of high respiratory losses during dormancy periods. Although fertilization could increase NEP, fertilization might reduce soil C inputs as heterotrophic organisms favor root‐derived organic matter over native SOM.  相似文献   

17.
Dimethyl sulfide (DMS) is a significant source of marine sulfate aerosol and plays an important role in modifying cloud properties. Fully coupled climate simulations using dynamic marine ecosystem and DMS calculations are conducted to estimate DMS fluxes under various climate scenarios and to examine the sign and strength of phytoplankton-DMS-climate feedbacks for the first time. Simulation results show small differences in the DMS production and emissions between pre-industrial and present climate scenarios, except for some areas in the Southern Ocean. There are clear changes in surface ocean DMS concentrations moving into the future, and they are attributable to changes in phytoplankton production and competition driven by complex spatially varying mechanisms. Comparisons between parallel simulations with and without DMS fluxes into the atmosphere show significant differences in marine ecosystems and physical fields. Without DMS, the missing subsequent aerosol indirect effects on clouds and radiative forcing lead to fewer clouds, more solar radiation, and a much warmer climate. Phaeocystis, a uniquely efficient organosulfur producer with a growth advantage under cooler climate states, can benefit from producing the compound through cooling effects of DMS in the climate system. Our results show a tight coupling between the sulfur and carbon cycles. The ocean carbon uptake declines without DMS emissions to the atmosphere. The analysis indicates a weak positive phytoplankton-DMS-climate feedback at the global scale, with large spatial variations driven by individual autotrophic functional groups and complex mechanisms. The sign and strength of the feedback vary with climate states and phytoplankton groups. This highlights the importance of a dynamic marine ecosystem module and the sulfur cycle mechanism in climate projections.  相似文献   

18.
Microbial consumption is one of the main processes, along with photolysis and ventilation, that remove the biogenic trace gas dimethylsulfide (DMS) from the surface ocean. Although a few isolates of marine bacteria have been studied for their ability to utilize DMS, little is known about the characteristics or phylogenetic affiliation of DMS consumers in seawater. We enriched coastal and open-ocean waters with different carbon sources to stimulate different bacterial communities (glucose-consuming bacteria, methyl group-consuming bacteria and DMS consumers) in order to test how this affected DMS consumption and to examine which organisms might be involved. Dimethylsulfide consumption was greatly stimulated in the DMS addition treatments whereas there was no stimulation in the other treatments. Analysis of microbial DNA by two different techniques (sequenced bands from DGGE gels and clone libraries) showed that bacteria grown specifically with the presence of DMS were closely related to the genus Methylophaga. We also followed the fate of consumed DMS in some of the enrichments. Dimethylsulfide was converted mostly to DMSO in glucose or methanol enrichments, whereas it was converted mostly to sulfate in DMS enrichments, the latter suggesting use of DMS as a carbon and energy source. Our results indicate that unlike the biochemical precursor of DMS, dimethylsulfoniopropionate (DMSP), which is consumed by a broad spectrum of marine microorganisms, DMS seems to be utilized as a carbon and electron source by specialists. This is consistent with the usual observation that DMSP turns over at much higher rates than DMS.  相似文献   

19.
Both solar irradiance and primary production have been proposed as independent controls on seawater dimethyl sulphide (DMS) and dimethylsulphoniopropionate (DMSP) concentrations. However, irradiance also drives photosynthesis, and thus influences a complex set of inter-related processes that modulate marine DMS. We investigate the potential inter-relationships between the rate of primary production (carbon assimilation), water-attenuated irradiance and DMS/DMSP dynamics by applying correlation analysis to a high resolution, concurrently sampled in situ data set from a range of latitudes covering multiple biogeochemical provinces from 3 of the 4 Longhurst biogeochemical domains. The combination of primary production (PP) and underwater irradiance (Iz) within a multivariate regression model is able to explain 55% of the variance in DMS concentrations from all depths within the euphotic zone and 66% of the variance in surface DMS concentrations. Contrary to some previous studies we find a variable representing biological processes is necessary to better account for the variance in DMS. We find that the inclusion of Iz accounts for variance in DMS that is independent from the variance explained by PP. This suggests an important role for solar irradiance (beyond the influence of irradiance upon primary production) in mediating the relationship between the productivity of the ecosystem, DMS/DMSP production and ambient seawater DMS concentrations.  相似文献   

20.
Tidal variation of biological parameters was studied at three anchor stations in selected inlet channels of the northern German Wadden Sea in May and July 1994. Concentrations of bacteria, chlorophyll a and suspended matter as well as primary and bacterial production were assessed over a period of 25 h in the surface and in the bottom water. Diurnal variation in primary production was found both under in situ light conditions and under constant illumination. Tidal turbulence caused the introduction of detritus, bacteria and pigments from the sediment into the water column. The impact of sediment resuspension was most evident in the bottom water, leading to tidally oscillating bacterial production rates which were high during high stream velocity and low during the slack times. Estimations of the areal daily phytoplankton production and corresponding bacterial carbon demands were unbalanced. Primary production accounted for only 25–45% of the total bacterial carbon requirement. This discrepancy is due to the shallow euphotic depth in the Wadden Sea, allowing net primary production only in the upper 2–3 m of the water column, while the relatively high levels of bacterial activity do not show a vertical decline. Assuming that the specific biological activities in the water columns over the tidal flats are similar to those found in the inlet channels, it was found that production processes dominate in shallow areas whereas decomposition processes dominate in the deep channels. Moreover, the predominance of heterotrophic processes in the inlet channels means that additional organic carbon sources must contribute to the heterotrophic metabolism in the deep parts of the Wadden Sea, and that the horizontal flux of material is important in this turbid mesotidal ecosystem. Received: 18 April 1998 / Accepted: 12 November 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号