首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extravascular thermal volume of the lung (ETVL) is a double indicator dilution technique of use in measuring pulmonary edema. ETVL and lung mechanics measurements were followed to find a less invasive monitor of pulmonary edema than the double indicator dilution technique. Pulmonary edema was induced by overloading the dogs' circulation with dextran. Phases of overload were defined on the basis of a previous electron microscopic study (Noble et al., Can. Anesthetists Soc. J. 21:275, 1974) of lung biopsies relating anatomic changes to physiologic measurements of ETVL and central blood volume (CBV). Congestion occurred when CBV was elevated and ETVL was not, interstitial edema when ETVL was elevated but smaller than 60% above control and alveolar edema when ETVL greater than 85% above control. Once the dogs were in alveolar edema, they were mechanically ventilated with 4, 8, 12, and 16 cmH2O end-tidal pressure (CPPV). Mean functional residual capacity (FRC) for all 15 dogs did not change up to the time CPPV was applied. Pulmonary resistance did not rise until alveolar edema was present. Once in pulmonary edema, lung compliance always fell as lung water increased. In individual dogs, the compliance fall was directly proportional to the rising lung water. However, the variations in slope and beginning point among dogs made it difficult to predict the amount of lung water from dynamic compliance values. PaO2 fell markedly in alveolar edema as a result of a widened A-a gradient. CPPV did not decrease lung water but did increase FRC and PaO2.  相似文献   

2.
Factors affecting perfusion distribution in oleic acid pulmonary edema were examined in 28 anesthetized open-chest dogs. Sixteen had unilobar oleic acid edema produced by left lower lobe pulmonary artery infusion of 0.03 ml/kg of oleic acid, and 12 had the same amount of edema produced by left lower lobe endobronchial instillation of hypotonic plasma. Lobar perfusion (determined from flow probes) and lobar shunt (determined from mixed venous and lobar venous blood) were measured at base line, 1.5 h after edema, and 10 min after 10 cmH2O positive end-expiratory pressure (PEEP). Fourteen dogs (8 oleic acid, 6 plasma) received sodium nitroprusside (11.72 +/- 7.10 micrograms X kg-1 X min-1). Total and lobar shunts increased to the same extent in all animals. Lobar perfusion decreased by 49.8 +/- 4.8% without nitroprusside and 34.0 +/- 3.6% with nitroprusside in the oleic acid group, corresponding values being 40.3 +/- 0.8% and 26.4 +/- 1.7% in the hypotonic plasma group. PEEP returned perfusion and shunt to base line. In oleic acid edema, most of the decreased perfusion results from mechanical effects of the edema, a smaller fraction results from other vascular effects of the oleic acid, and approximately 30% is reversible by nitroprusside. PEEP normalizes the perfusion distribution.  相似文献   

3.
In low-pressure pulmonary edema increased cardiac output (QT) increases shunt (Qs/QT); we tested whether the mechanism is an increase in extravascular lung water in turn mediated by the accompanying increase in microvascular pressure. In six pentobarbital sodium-anesthetized dogs ventilated with O2 we administered oleic acid into the right atrium. From base line to 2 h post-oleic acid we measured concurrent significant increases in Qs/QT (6-29%, O2 technique) and extravascular thermal volume (ETV, 2.6-7.1 ml/g dry intravascular blood-free lung wt, thermal-green dye indicator technique) that were stable by 90 min. Then, bilateral femoral arteriovenous fistulas were opened and closed in 30-min periods to cause reversible increases in QT and associated Qs/QT. When fistulas were open the time-averaged QT increased from 5.1 to 6.9 min (P less than 0.05), the simultaneous Qs/QT rose from 30.7 to 38.4% (P less than 0.05), but ETV did not increase. We conclude that increasing lung edema does not account for our rise in Qs/QT when QT increased.  相似文献   

4.
This study is intended to determine whether qualitative assessment of tight junction integrity from freeze-fracture data is reliable. We used lung parenchyma from a control mongrel dog's cardiac lung lobe, from a mongrel dog subjected to vascular high-pressure pulmonary edema (HPPE), and from a dog subjected to oleic acid-induced low-pressure pulmonary edema (LPPE) (6). Quantitative assessment was done on 115 freeze-fracture micrographs of epithelial tight junctions and on another 158 freeze-fracture micrographs of endothelial junctions from the 3 dogs. Quantitative assessment showed differences between the dogs in junction depth, fibril numbers, density, and complexity. for qualitative assessment, these same 273 micrographs were assessed in a single-blind fashion by having six investigators sort first the epithelial and then the endothelial junctions into normal or damaged categories. Qualitative assessment did not agree with quantitative data, suggesting that it is unreliable.  相似文献   

5.
We evaluated the effect of pulmonary edema on the frequency (f) and tidal volume (VT) dependences of respiratory system mechanical properties in the normal ranges of breathing. We measured resistance and elastance of the lungs (RL and EL) and chest wall of four anesthetized-paralyzed dogs during sinusoidal volume oscillations at the trachea (50-300 ml, 0.2-2 Hz), delivered at a constant mean airway pressure. Measurements were made before and after severe pulmonary edema was produced by injection of 0.06 ml/kg oleic acid into the right atrium. Chest wall properties were not changed by the injection. Before oleic acid, EL increased slightly with increasing f in each dog but was independent of VT. RL decreased slightly and was independent of VT from 0.2 to 0.4 Hz, but above 0.4 Hz it tended to increase with increasing flow, presumably due to the airway contribution. After oleic acid injection, EL and RL increased greatly. Large negative dependences of EL on VT and of RL on f were also evident, so that EL and RL after oleic acid changed two- and fivefold, respectively, within the ranges of f and VT studied. We conclude that severe pulmonary edema changes lung properties so as to make behavior VT dependent (i.e., nonlinear) and very frequency dependent in the normal range of breathing.  相似文献   

6.
We studied the effect of edema on the regional distribution of pulmonary blood flow in 12 anesthetized dogs. Two were controls, six had low-pressure pulmonary edema, and four had high-pressure pulmonary edema. All were ventilated with 100% O2. The physiological shunt fraction (Qs/QT), as an indicator of the degree of venous admixture, was determined by measuring the arterial and venous blood gases and the hemoglobin at different times during the experiment. Cardiac output (QT) was modestly increased by opening the femoral arteriovenous shunts. The initial regional blood flow (Qi) and final regional blood flow (Qf) were marked before and after the shunts were opened, using two differently labeled macroaggregates. The dogs were then killed, and the lungs were removed and sampled completely so that Qi and Qf and the amount of regional extravascular lung water (Wdl) in each regional sample could be measured (sample size: wet wt = 5.9 +/- 2.9 g, n = 833; Wdl ranged from 5.15 +/- 1.18 to 14.42 +/- 2.34 g). The data show that QS/QT increased as QT increased in the three conditions studied. However, there was no correlation between Wdl and Qi, Qf, or the relative change in regional blood flow. The data also show that gravity affects regional blood flow more than it affects regional edema. We conclude that the increased Qs/QT seen with increased pulmonary blood flow cannot be explained by a preferential increase of blood flow to the more edematous regions.  相似文献   

7.
Hypoxic stimulation of the peripheral chemoreceptors has been reported to inhibit hypoxic pulmonary vasoconstriction. To evaluate the pathophysiological importance of this observation, we investigated the effects of surgical peripheral chemoreceptor denervation on pulmonary vascular tone and gas exchange in 17 pentobarbital-anesthetized dogs with oleic acid pulmonary edema. Pulmonary arterial pressure-cardiac index (Ppa/Q) plots, blood gases, and intrapulmonary shunt measured by the SF6 method were obtained at base line, after peripheral chemodenervation (n = 9) or after sham operation (n = 8), and again after 0.09 ml.kg-1 intravenous oleic acid. Over the range of Q studied (2-5 l.min-1.m-2), Ppa/Q plots were best fitted as first-order polynomials in most dogs in all experimental conditions. Chemoreceptor denervation increased Ppa at the lowest Q, while sham operation did not affect the Ppa/Q plots. Oleic acid increased Ppa over the entire range of Q and increased intrapulmonary shunt. This latter was measured at identical Q during the construction of the Ppa/Q plots. Chemoreceptor-denervated dogs, compared with sham-operated dogs, had the same pulmonary hypertension but lower intrapulmonary shunt (36 +/- 4 vs. 48 +/- 5%, means +/- SE, P less than 0.04) and venous admixture (43 +/- 4 vs. 54 +/- 3%, P less than 0.02). We conclude that in intact dogs chemoreceptor denervation attenuates the rise in intrapulmonary shunt after oleic acid lung injury. Whether this improvement in gas exchange is related to an enhanced hypoxic pulmonary vasoconstriction is uncertain.  相似文献   

8.
The present study evaluated the reflex response of the expiratory muscles to pulmonary congestion and edema. The electromyograms of two thoracic and four abdominal expiratory muscles were recorded in 12 anesthetized dogs. Pulmonary edema was induced by rapid saline infusion in six dogs and injection of oleic acid into the pulmonary circulation in the remaining six dogs. Both forms of pulmonary edema reduced pulmonary compliance, interfered with gas exchange, and induced a rapid and shallow breathing pattern. The electrical activity of all abdominal muscles was suppressed during both forms of pulmonary edema. In contrast, the electromyogram activity of the thoracic expiratory muscles was not significantly affected by pulmonary edema. Acute pulmonary arterial hypertension produced in two dogs by inflating a balloon in the left atrium had no effect on ventilation or expiratory muscle electrical activity. In two vagotomized dogs, pulmonary edema did not inhibit the expiratory muscles. We conclude that pulmonary edema suppresses abdominal but not thoracic expiratory muscle activity by vagal reflex pathway(s). Extravasation of fluid into the lung appears to be more important than an increase in pulmonary vascular pressure in eliciting this response.  相似文献   

9.
Brain compression with subdural air causes pulmonary hypertension and noncardiogenic pulmonary edema (A. B. Malik, J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 42: 335-343, 1977). To see whether air emboli to the lungs rather than brain compression caused these findings, anesthetized dogs received intravenous air infusions, subdural air infusions, or brain compression from balloons inflated in the subdural space. Subdural air and intravenous air resulted in similar vascular responses. Pulmonary artery pressure (Ppa) increased 160% (P less than 0.01) and pulmonary venous pressure transiently rose 13 +/- 5 Torr (P less than 0.05) without an increase in left atrial pressure or cardiac output (Q). The end-tidal PCO2 fell 55% (P less than 0.01) and the postmortem weight of the lungs increased 55% (P less than 0.05). Brain compression with a subdural balloon instead of air only caused a 20% rise in Ppa and Q without pulmonary edema. Thus, pulmonary air emboli rather than brain compression accounts for the edema and pulmonary hypertension caused by subdural air. Catheters in pulmonary veins and the left atrium showed that air emboli cause transient pulmonary venous hypertension as well as a reproducible form of noncardiogenic pulmonary endema.  相似文献   

10.
Assessment of temporal changes in pulmonary edema with NMR imaging   总被引:1,自引:0,他引:1  
Nuclear magnetic resonance imaging (NMRI) parameters [longitudinal relaxation time (T1), transverse relaxation time (T2), and signal intensity] acquired at a magnetic field of 2.35 T were validated with a study of nine different phantom gel solutions. This technique was then applied to study 13 anesthetized supine cats, among which 10 had lung edema induced by oleic acid (0.075 ml/kg); the result was compared with postmortem analyses of lung water. Three animals (series A) were imaged until the edema was first visualized in NMRI, usually 15-20 min after oleic acid infusion. Another seven animals (series B) were imaged over 4-5 h. As lung water increased, so did the signal intensity. When edema first appeared, T1, T2, and the volume of the edematous region within the slice in the upper lobes showed no gravity-dependent differences; this was confirmed by postmortem measurements (series A) of lung water. With time, gravity-dependent regions displayed greater volumes of edematous regions and greater T1 values (P less than 0.01), suggesting a continued accumulation of lung water. In comparison, nondependent regions displayed constant volumes of edematous region and lesser T1 values (P less than 0.01), suggesting an increased protein concentration but no change in lung water. This study suggests the potential applicability of NMRI parameters in the assessment of pulmonary edema.  相似文献   

11.
It has recently been suggested that pulmonary hypertension secondary to oleic acid lung injury mainly results from an increase in the critical closing pressure of the pulmonary vessels [Boiteau et al., Am. J. Physiol. 251 (Heart Circ. Physiol. 20): H1163-H1170, 1986]. To further test this hypothesis, we studied 1) the pulmonary arterial pressure- (Ppa) flow (Q) relationship with left atrial pressure (Pla) kept constant (n = 7) and 2) the Ppa-Pla relationship with Q kept constant (n = 9) in intact anesthetized and ventilated dogs before and after lung injury induced by oleic acid (0.09 ml/kg iv). Q was manipulated by use of a femoral arteriovenous bypass and a balloon catheter inserted in the inferior vena cava. Pla was manipulated with a balloon catheter placed by thoracotomy in the left atrium. Ppa-Q plots were rectilinear before as well as after oleic acid. Before oleic acid, the extrapolated pressure intercept of the Ppa-Q plots approximated Pla. Oleic acid administration resulted in a parallel shift of the Ppa-Q plots to higher pressure; i.e., the pressure intercept increased, whereas the slope was not modified. Increasing Pla at constant Q before oleic acid led to a proportional augmentation of Ppa. After oleic acid, however, changes in Pla over the same range affected Ppa only at the highest levels of Pla. These results suggest that oleic acid lung injury increases the critical closing pressure that exceeds Pla, becomes the effective outflow pressure of the pulmonary circulation, and is responsible for the pulmonary hypertension.  相似文献   

12.
We compared the effects of continuous positive-pressure ventilation (CPPV), using 10 cmH2O positive end-expiratory pressure (PEEP), with intermittent positive-pressure ventilation (IPPV), on pulmonary extravascular water volume (PEWV) and lung function in dogs with pulmonary edema caused by elevated left atrial pressure and decreased colloid osmotic pressure. The PEWV was measured by gravimetric and double-isotope indicator dilution methods. Animals with high (22-33 mmHg), moderately elevated (12-20 mmHg), and normal (3-11 mmHg) left atrial pressures (Pla) were studied. The PEWV by both methods was significantly increased in the high and moderate Pla groups, the former greater than the latter (P less than 0.05). There was no difference in the PEWV between animals receiving CPPV and those receiving IPPV in both the high and moderately elevated Pla groups. However, in animals with high Pla, the Pao2 was significantly better maintained and the inflation pressure required to deliver a tidal volume of 12 ml/kg was significantly less with the use of CPPV than with IPPV. We conclude that in pulmonary edema associated with high Pla, PEEP does not reduce PEWV but does improve pulmonary function.  相似文献   

13.
Because leukotrienes and prostaglandins are inflammatory mediators derived from arachidonic acid, their potential role in oleic acid-induced lung injury was evaluated in control and in essential fatty acid-deficient (EFAD) rats depleted of arachidonic acid substrate. In control rats, oleic acid (0.06 ml/kg iv) increased the pulmonary permeability index (measured by scintigraphy) from -10 +/- 13 x 10(-6) s-1 to 217 +/- 20 x 10(-6) s-1 and 118 +/- 13 x 10(-6) s-1 at 5 and 50 min (P less than 0.05), respectively. It also caused arterial hypoxemia at 30 min (P less than 0.05). Compared with saline controls, oleic acid increased bronchoalveolar lavage fluid levels of immunoreactive (i) LTC4/D4, iLTB4, (P less than 0.01), and 6-ketoprostaglandin F1 alpha (6-keto-PGF1 alpha) (P less than 0.05). In EFAD rats, oleic acid failed to significantly increase the lung permeability index at 5 and 50 min. In contrast to control rats, oleic acid failed to cause hypoxemia in the EFAD rats. Bronchoalveolar lavage levels of iLTB4 and i6-keto-PGF1 alpha after oleic acid in EFAD rats were lower compared with oleic acid controls, whereas iLTC4/D4 in the oleic acid EFAD group was not decreased. Treatment with intraperitoneal ethyl arachidonate (400 mg over 2 wk) reversed the resistance of EFAD rats such that the pulmonary edema (P less than 0.05) was evident after oleic acid. This latter group also manifested a significant (P less than 0.05) rise in the bronchoalveolar lavage levels of iLTB4 and i6-keto-PGF1 alpha. These results suggest that arachidonic acid metabolites contribute to oleic acid-induced pulmonary permeability.  相似文献   

14.
Pulmonary edema can follow smoke inhalation and is believed to be due to the multiple chemical toxins in smoke, not the heat. We have developed a synthetic smoke composed of aerosolized charcoal particles to which one toxin at a time can be added to determine whether it produces pulmonary edema. Acrolein, a common component of smoke, when added to the synthetic smoke, produced a delayed-onset pulmonary edema in dogs in which the extravascular lung water (EVLW) as detected by a double-indicator technique began to rise after 42 +/- 2 (SE) min from 148 +/- 16 to 376 +/- 60 ml at 165 min after smoke exposure. The resulting pulmonary edema was widespread macroscopically but appeared focal microscopically with fibrin deposits in alveoli adjacent to small bronchi and bronchioles. Bronchial vessels were markedly dilated and congested. Monastral blue B when injected intravenously leaked into the walls of the bronchial vessels down to the region of the small bronchioles (less than or equal to 0.5 mm ID) of acrolein-smoke-exposed dogs but not into the pulmonary vessels. Furthermore, ligation of the bronchial arteries delayed the onset of pulmonary edema (87 +/- 3 min, P less than 0.05) and lessened the magnitude (232 +/- 30 ml, P less than 0.05) at 166 +/- 3 min after acrolein-smoke exposure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Mongrel dogs (29) were anesthetized, paralyzed, and ventilated at a constant minute volume. AaD02 breathing air and 100% O2, venous admixture breathing air (Qva/Qt) and 100% O2 (Qs/Qt), single-breath diffusing capacity for CO (DLCO), and total pulmonary resistance (RL) and pulmonary compliance (CL) were measured before and after pulmonary embolization with autologus in vivo venous thrombi. Nine dogs were heparinized before embolization. In the 20 nonheparinized dogs AaDo2 breathing air increased from 11 to 26 mmHg, Qva/Qt from 4 to 22%, and Qs/At from 5 to 8%. DLCO decreased 24%, RL increased 43%, and CL fell 30%. In the nine heparinized dogs AaDo2 breathing air increased from 8 to 13 mmHg and Qva/Qt from 3 to 8%; Qs/Qt did not change. DLCO decreased 31%; RL and CL did not change significantly. The increase in Qva/Qt of 5% in the heparinized dogs was significantly less (P smaller than 0.001) than the increase of 18% in the nonheparinized dogs. These findings suggest that arterial hypoxemia following thromboembolism is due to ventilation-perfusion inequality caused by changes in lung mechanics.  相似文献   

16.
We used positron emission tomography to evaluate the effects of nitroprusside or prostacyclin (NP/Prost) on regional pulmonary blood flow (rPBF) in 21 dogs after oleic acid- (OA) induced acute pulmonary edema and compared the results with data from 11 dogs given OA only and 5 given meclofenamate after OA. After OA only, a progressive decrease in rPBF occurred in edematous gravity-dependent lung regions, but only in 6 of 11 dogs. In these six dogs, rPBF fell 41 +/- 12% compared with base line or with the other five dogs (3 +/- 19%) (P less than 0.05). In the NP/Prost group, the vasodilators failed to reverse any change in rPBF after OA but did prevent additional derecruitment until the drug infusion was stopped, after which rPBF to the edematous regions decreased further. In contrast, meclofenamate after OA temporally accelerated but did not quantitatively enhance rPBF reduction in edematous lung regions. Thus, in this model, vessels in edematous lung regions remain vasoreactive only until derecruited. We speculate that the mechanism of derecruitment involves an interaction between edema accumulation and vasoconstriction, in which the actual pattern of rPBF after lung injury represents a balance between mechanisms responsible for vascular derecruitment and vasodilation from prostacyclin production.  相似文献   

17.
The role of cyclooxygenase products in acute lung injury was determined by pretreatment of dogs with ibuprofen before injury with intravenous ethchlovynol (ECV). In animals given ECV only, lung injury resulted in extravascular lung water of 18.9 ml/kg after 2 h, which was significantly higher than the 14.8 ml/kg in the group pretreated with ibuprofen. The comparison of gravimetric and indicator-dilution measurements of edema fluid indicates that edema fluid could not be reliably detected after treatment with ibuprofen because of diversion of flow from injured areas. Venous admixture increased from 6% at baseline to 32% 120 min after ECV in the vehicle-pretreated group compared with an increase from 4% at baseline to 7% in the ibuprofen-pretreated group. The regression analysis of the relationship between venous admixture and extravascular lung water indicated that, at any level of edema, venous admixture was significantly less in the group treated with ibuprofen than in the untreated group. Measurement of plasma and bronchoalveolar lavage fluid indicated that ibuprofen inhibited cyclooxygenase activity without affecting lipoxygenase activity. These results suggest that in intact dogs ibuprofen has a protective effect on both pulmonary gas transfer and pulmonary edema formation in ECV-injured lungs, which is consistent with limiting blood flow to injured segments of the lung.  相似文献   

18.
The effects of pulmonary lymphatic obstruction and pulmonary venous congestion on the activities of slowly adapting receptors (SAR) and rapidly adapting receptors (RAR) of the airways were examined in anaesthetized, artificially ventilated dogs. In 11 out of 12 RAR (12 dogs) examined, pulmonary lymphatic obstruction for a period of 20 min produced a sustained significant increase in activity without a significant change in peak airway pressure and dynamic compliance. The activity remained significantly elevated even after the pulmonary lymphatic obstruction was released. This stimulus was without effect on the SAR (n = 5 dogs). Pulmonary venous congestion alone increased the RAR activity (n = 7 dogs) significantly without producing significant changes in airway mechanics. Lymphatic obstruction, when superimposed upon congestion, did not produce a further significant increase in activity. In four dogs the effect of pulmonary venous congestion (left atrial pressure increased from 7.6 +/- 1.7 to 16.3 +/- 2.7 mmHg) (1 mmHg = 133.3 Pa) on pulmonary lymphatic flow was examined. The procedure caused a significant increase in lymph flow. These results suggest that in the dog, the RAR activity is influenced by changes in the pulmonary extravascular space.  相似文献   

19.
We tested the effects of microemboli, continuous positive-pressure ventilation (CPPV), and aspirated airway water on measurements of extravascular lung water by use of the technique of thermal indicator dilution (ETVL). A control group of dogs and a group of dogs in which dextran was infused created all levels of pulmonary edema. In an emboli group 0.125 g/kg of starch microemboli (63-74 micron diam) were infused. In groups with emboli and CPPV, starch emboli were infused and CPPV was then applied at 15 cmH2O. In an airway saline group measured amounts of saline were poured into the airway. In all groups postmortem pulmonary extravascular tissue weight (PETW) was determined and compared with the last ETVL. Emboli created an increased scatter when the last ETVL is compared with PETW because 1) blood trapped distal to emboli was included in the ETVL measurement, and/or 2) diffusion limitations for the thermal indicator were exceeded. Emboli and CPPV decreased ETVL/PETW. Airway saline (80 +/- 5%) was measured by ETVL. In conclusion, the ETVL technique is reliable in well-perfused lungs but loses accuracy in measuring lung water after emboli of any size or with large amounts of airway fluid.  相似文献   

20.
Oleic acid lung injury in sheep   总被引:3,自引:0,他引:3  
Intravenous infusion of oleic acid into experimental animals causes acute lung injury resulting in pulmonary edema. We investigated the mechanism of oleic acid lung injury in sheep. In experiments with anesthetized and unanesthetized sheep with lung lymph fistulas, we measured pulmonary arterial and left atrial pressures, cardiac output, lung lymph flow, and lymph and plasma protein concentrations. We injured the lungs with intravenous infusions of oleic acid at doses ranging from 0.015 to 0.120 ml/kg. We found that oleic acid caused reproducible dose-related increases in pulmonary arterial pressure and pulmonary vascular resistance, arterial hypoxemia, and increased protein-rich lung lymph flow and extravascular lung water. The lung fluid balance changes were characteristic of increased permeability pulmonary edema. Infusion of the esterified fat triolein had no hemodynamic or lung fluid balance effects. Depletion of leukocytes with a nitrogen mustard or platelets with an antiplatelet serum had no effect on oleic acid lung injury. Treatment of sheep before injury with methylprednisolone 30 mg/kg or ibuprofen 12.5-15.0 mg/kg also had no effects. Unlike other well-characterized sheep lung injuries, injury caused by oleic acid does not require participation of leukocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号