首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of cell-bound microcystins on the survival time and feeding rates of six Daphnia clones belonging to five common species was studied. To do this, the effects of the microcystin-producing Microcystis strain PCC7806 and its mutant, which has been genetically engineered to knock out microcystin synthesis, were compared. Additionally, the relationship between microcystin ingestion rate by the Daphnia clones and Daphnia survival time was analyzed. Microcystins ingested with Microcystis cells were poisonous to all Daphnia clones tested. The median survival time of the animals was closely correlated to their microcystin ingestion rate. It was therefore suggested that differences in survival among Daphnia clones were due to variations in microcystin intake rather than due to differences in susceptibility to the toxins. The correlation between median survival time and microcystin ingestion rate could be described by a reciprocal power function. Feeding experiments showed that, independent of the occurrence of microcystins, cells of wild-type PCC7806 and its mutant are able to inhibit the feeding activity of Daphnia. Both variants of PCC7806 were thus ingested at low rates. In summary, our findings strongly suggest that (i) sensitivity to the toxic effect of cell-bound microcystins is typical for Daphnia spp., (ii) Daphnia spp. and clones may have a comparable sensitivity to microcystins ingested with food particles, (iii) Daphnia spp. may be unable to distinguish between microcystin-producing and -lacking cells, and (iv) the strength of the toxic effect can be predicted from the microcystin ingestion rate of the animals.  相似文献   

2.
The effects of microcystins on Daphnia galeata, a typical filter-feeding grazer in eutrophic lakes, were investigated. To do this, the microcystin-producing wild-type strain Microcystis aeruginosa PCC7806 was compared with a mcy PCC7806 mutant, which could not synthesize any variant of microcystin due to mutation of a microcystin synthetase gene. The wild-type strain was found to be poisonous to D. galeata, whereas the mcy mutant did not have any lethal effect on the animals. Both variants of PCC7806 were able to reduce the Daphnia ingestion rate. Our results suggest that microcystins are the most likely cause of the daphnid poisoning observed when wild-type strain PCC7806 is fed to the animals, but these toxins are not responsible for inhibition of the ingestion process.  相似文献   

3.
Microcystin, a hepatotoxin that represents a serious health risk for humans and livestock, is produced by the bloom-forming cyanobacterium Microcystis aeruginosa in freshwater bodies worldwide. Here we describe the discovery of a lectin, microvirin (MVN), in M. aeruginosa PCC7806 that shares 33% identity with the potent anti-HIV protein cyanovirin-N from Nostoc ellipsosporum. Carbohydrate microarrays were employed to demonstrate the high specificity of the protein for high-mannose structures containing alpha(1-->2) linked mannose residues. Lectin binding analyses and phenotypic characterizations of MVN-deficient mutants suggest that MVN is involved in cell-cell recognition and cell-cell attachment of Microcystis. A binding partner of MVN was identified in the lipopolysaccharide fraction of M. aeruginosa PCC7806. MVN is differentially expressed in mutants lacking the hepatotoxin microcystin. Additionally, MVN-deficient mutants contain much lower amounts of microcystin than the wild-type cells. We discuss a possible functional correlation between microcystin and the lectin and possible implications on Microcystis morphotype formation. This study provides the first experimental evidence that microcystins may have an impact on Microcystis colony formation that is highly important for the competitive advantage of Microcystis over other phytoplankton species.  相似文献   

4.
The decomposition process of toxic blue-green alga (cyanobacteria), Microcystis aeruginosa, under dark and aerobic condition was investigated in relation to the change of the amounts of heptapeptide toxins (microcystins YR and LR) by two experiments: one with Microcystis cells and the other with two purified microcystins. In the experiment with Microcystis cells, an increase of heterotrophic bacteria observed from the beginning of the experiment, was followed by decomposition of the algal cells and the subsequent release of microcystins into the filtrate fraction. The amounts of the toxins initially present in the cells were quantitatively detected in the filtrate fraction on the 35th day. The decomposition of microcystin YR began on the 42nd day. The decomposition rate of the two toxins was different. The decomposition rate of purified microcystins YR and LR, compared in distilled water and culture medium, respectively, indicated clearly that microcystin YR was more labile to decomposition than microcystin LR in the culture medium. At the end of the experiment (45th day) microcystin YR decreased to 58.6%, while 86.2% of microcystin LR remained.  相似文献   

5.
铜锈微囊藻两种表型的生长生理特性及毒素组成比较分析   总被引:10,自引:3,他引:7  
从滇池蓝藻水华中分离得到的铜锈微囊藻群体在实验室无机营养中解聚成单细胞,结果表明,群体微囊藻的生长速度明显低于单细胞微囊藻;前者具明显可见的胞外酸性多糖胶鞘,而单细胞则几乎没有;按常规方法分析比较两种细胞形态的毒性大小和毒素组成,发现群体微囊藻主要含有三种微囊藻毒素的异构体,而单细胞以MCLR为主;且单细胞微囊藻的毒性约为群体的10倍.二者的LDH和PGM同工酶酶谱也有差异.本研究为解释毒素的合成和调控机理提供了新的证据.    相似文献   

6.
This paper describes the occurrence of toxic cyanobacteria along the Guadiana River over its course between Mérida and Badajoz (Extremadura, Spain). Water sampling for phytoplankton quantification and toxin analysis was carried out regularly between 1999 and 2001 in six different locations, including two shallow, slow-flowing river sites, two streamed river sites and two drinking water reservoirs. The cyanobacterial community differed significantly between these locations, especially during the summer. The predominant genera were Microcystis, Oscillatoria, Aphanizomenon and Anabaena. Using an ELISA assay the total microcystin contents of natural water samples from the most eutrophic locations ranged from 0.10 - 21.86 microg mcyst-LR equivalent x L(-1) in Valdelacalzada and 0.10-11.3 microg mcyst-LR equivalent x L(-1) in Vitonogales, and a seasonal variation of toxin content was observed. The amount of microcystins produced by each strain was determined by ELISA assay and the detection and identification of microcystin variants of three toxic strains of Microcystis aeruginosa was performed by high performance liquid chromatography (HPLC). The analysis of microcystins of the cultured strains revealed that toxin production was variable among different strains of M. aeruginosa isolated either from different blooms or from the same bloom.  相似文献   

7.
The elemental composition of primary producers reflects the availability of light, carbon and nutrients in their environment. According to the carbon-nutrient balance hypothesis, this has implications for the production of secondary metabolites. To test this hypothesis, we investigated a family of toxins, known as microcystins, produced by harmful cyanobacteria. The strain Microcystis aeruginosa HUB 5-2-4, which produces several microcystin variants of different N:C stoichiometry, was cultured in chemostats supplied with various combinations of nitrate and CO2. Excess supply of both nitrogen and carbon yielded high cellular N:C ratios accompanied by high cellular contents of total microcystin and the nitrogen-rich variant microcystin-RR. Comparable patterns were found in Microcystis -dominated lakes, where the relative microcystin-RR content increased with the seston N:C ratio. In total, our results are largely consistent with the carbon-nutrient balance hypothesis, and warn that a combination of rising CO2 and nitrogen enrichment will affect the microcystin composition of harmful cyanobacteria.  相似文献   

8.
Microcystis is a well-known cyanobacterial genus frequently producing hepatotoxins named microcystins. Toxin production is encoded by microcystin genes (mcy). This study aims (i) to relate the mcy occurrence in individual colonies to the presence of microcystin, (ii) to assess whether morphological characteristics (morphospecies) are related to the occurrence of mcy genes, and (iii) to test whether there are geographical variations in morphospecies specificity and abundance of mcy genes. Individual colonies of nine different European countries were analysed by (1) morphological characteristics, (2) PCR to amplify a gene region within mcyA and mcyB indicative for microcystin biosynthesis, (3) matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) to detect microcystins. Almost one hundred percent of the colonies predicted to produce microcystins by PCR analysis were found to contain microcystins. A high similarity in microcystin variants in the different colonies selected from lakes across Europe was demonstrated. The different morphospecies varied in the frequency with which they contained mcy genes. Most colonies (>75%) of M. aeruginosa and M. botrys contained the mcy genes, whereas < or = 20% of the colonies identified as M. ichthyoblabe and M. viridis gave a PCR product of the mcy genes. No colonies of M. wesenbergii gave a PCR product of either mcy gene. In addition, a positive relationship was found between the size of the colony and the frequency of those containing the mcy genes. It is concluded that the analysis of morphospecies is indicative for microcystin production, although the quantitative analysis of microcystin concentrations in water remains indispensable for hazard control.  相似文献   

9.
Laguna de Bay, the largest freshwater lake in the Philippines, experiences periodic blooms of the cyanobacteria Microcystis aeruginosa. Blooms of these cyanobacteria in 1996, 1998 and 1999 were sampled. HPLC and MALDI-TOF mass spectrometry were used to analyze for microcystins. A total of 16 structural variants of the toxin were isolated from the samples with microcystin LR (MC-LR) as the most abundant variant in the samples from 1996 and 1999 making up 77 to 85% of the total, respectively. MC-RR was the dominant variant in the 1998 bloom making up 38%. The samples from 1996 had the highest total toxin concentration (4049 microg g(-1)) followed by those from 1998 (1577 microg g(-1)) and 1999 (649 microg g(-1)). A strain of M. aeruginosa previously isolated from the lake was also cultured in the laboratory under different nitrogen concentrations (1, 3 and 6 mg L(-1)) and elevated phosphorus concentration (0.5 mg L(-1)) to determine the influence of these factors on toxin production. A total of 9 different structural variants of microcystin were isolated from the laboratory cultures with MC-LR consisting more than 75% of the total in all treatments. No significant differences in the total toxin concentration as well as the % distribution of the different variants among treatments were observed. However, the strain of M. aeruginosa cultured in the laboratory had from 3 to 20 times higher total microcystin than those harvested from the lake.  相似文献   

10.
ABSTRACT: BACKGROUND: Microcystis aeruginosa is a species of cyanobacteria commonly found in a number of countries and frequently related to animal poisoning episodes due to its capacity to produce the cyanotoxin known as microcystin. Despite vast literature on microcystin structures and their deleterious effects, little is known about its synthesis by cyanobacteria. Therefore, this study used proteomic tools to compare two M. aeruginosa strains, contrasting them for microcystin production. RESULTS: 2-DE gels were performed and 30 differential protein spots were chosen. Among them, 11 protein spots were unique in the toxin producing strain and 8 in the non-toxin producing strain, and 14 protein spots were shown on both 2-DE gels but expressed differently in intensity. Around 57% of the tandem mass spectrometry identified proteins were related to energy metabolism, with these proteins being up-regulated in the toxin producing strain. CONCLUSIONS: These data suggest that the presence of higher quantities of metabolic enzymes could be related to microcystin metabolism in comparison to the non-toxin producing strain. Moreover, it was suggested that the production of microcystin could also be related to other proteins than those directly involved in its production, such as the enzymes involved in the Calvin cycle and glycolysis.  相似文献   

11.
Besides the most prominent peptide toxin, microcystin, the cyanobacteria Microcystis spp. have been shown to produce a large variety of other bioactive oligopeptides. We investigated for the first time the oligopeptide diversity within a natural Microcystis population by analyzing single colonies directly with matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). The results demonstrate a high diversity of known cyanobacterial peptides such as microcystins, anabaenopeptins, microginins, aeruginosins, and cyanopeptolins, but also many unknown substances in the Microcystis colonies. Oligopeptide patterns were mostly related to specific Microcystis taxa. Microcystis aeruginosa (Kütz.) Kütz. colonies contained mainly microcystins, occasionally accompanied by aeruginosins. In contrast, microcystins were not detected in Microcystis ichthyoblabe Kütz.; instead, colonies of this species contained anabaenopeptins and/or microginins or unknown peptides. Within a third group, Microcystis wesenbergii (Kom.) Kom. in Kondr., chiefly a cyanopeptolin and an unknown peptide were found. Similar patterns, however, were also found in colonies which could not be identified to species level. The significance of oligopeptides as a chemotaxonomic tool within the genus Microcystis is discussed. It could be demonstrated that the typing of single colonies by MALDI-TOF MS may be a valuable tool for ecological studies of the genus Microcystis as well as in early warning of toxic cyanobacterial blooms.  相似文献   

12.
The evolution of the microcystin toxin gene cluster in phylogenetically distant cyanobacteria has been attributed to recombination, inactivation, and deletion events, although gene transfer may also be involved. Since the microcystin-producing Microcystis aeruginosa PCC 7806 is naturally transformable, we have initiated the characterization of its type IV pilus system, involved in DNA uptake in many bacteria, to provide a physiological focus for the influence of gene transfer in microcystin evolution. The type IV pilus genes pilA, pilB, pilC, and pilT were shown to be expressed in M. aeruginosa PCC 7806. The purified PilT protein yielded a maximal ATPase activity of 37.5 +/- 1.8 nmol P(i) min(-1) mg protein(-1), with a requirement for Mg(2+). Heterologous expression indicated that it could complement the pilT mutant of Pseudomonas aeruginosa, but not that of the cyanobacterium Synechocystis sp. strain PCC 6803, which was unexpected. Differences in two critical residues between the M. aeruginosa PCC 7806 PilT (7806 PilT) and the Synechocystis sp. strain PCC 6803 PilT proteins affected their theoretical structural models, which may explain the nonfunctionality of 7806 PilT in its cyanobacterial counterpart. Screening of the pilT gene in toxic and nontoxic strains of Microcystis was also performed.  相似文献   

13.
Effects of light on the microcystin content of Microcystis strain PCC 7806   总被引:4,自引:0,他引:4  
Many cyanobacteria produce microcystins, hepatotoxic cyclic heptapeptides that can affect animals and humans. The effects of photosynthetically active radiation (PAR) on microcystin production by Microcystis strain PCC 7806 were studied in continuous cultures. Microcystis strain PCC 7806 was grown under PAR intensities between 10 and 403 micro mol of photons m(-2) s(-1) on a light-dark rhythm of 12 h -12 h. The microcystin concentration per cell, per unit biovolume and protein, was estimated under steady-state and transient-state conditions and on a diurnal timescale. The cellular microcystin content varied between 34.5 and 81.4 fg cell(-1) and was significantly positively correlated with growth rate under PAR-limited growth but not under PAR-saturated growth. Microcystin production and PAR showed a significant positive correlation under PAR-limited growth and a significant negative correlation under PAR-saturated growth. The microcystin concentration, as a ratio with respect to biovolume and protein, correlated neither with growth rate nor with PAR. Adaptation of microcystin production to a higher irradiance during transient states lasted for 5 days. During the period of illumination at a PAR of 10 and 40 micro mol of photons m(-2) s(-1), the intracellular microcystin content increased to values 10 to 20% higher than those at the end of the dark period. Extracellular (dissolved) microcystin concentrations were 20 times higher at 40 micro mol of photons m(-2) s(-1) than at 10 micro mol of photons m(-2) s(-1) and did not change significantly during the light-dark cycles at both irradiances. In summary, our results showed a positive effect of PAR on microcystin production and content of Microcystis strain PCC 7806 up to the point where the maximum growth rate is reached, while at higher irradiances the microcystin production is inhibited.  相似文献   

14.
Cyanobacterial mass occurrences in freshwater lakes are generally formed by Anabaena, Microcystis, and Planktothrix, which may produce cyclic heptapeptide hepatotoxins, microcystins. Thus far, identification of the most potent microcystin producer in a lake has not been possible due to a lack of quantitative methods. The aim of this study was to identify the microcystin-producing genera and to determine the copy numbers of microcystin synthetase gene E (mcyE) in Lake Tuusulanj?rvi and Lake Hiidenvesi in Finland by quantitative real-time PCR. The microcystin concentrations and cyanobacterial cell densities of these lakes were also determined. The microcystin concentrations correlated positively with the sum of Microcystis and Anabaena mcyE copy numbers from both Lake Tuusulanj?rvi and Lake Hiidenvesi, indicating that mcyE gene copy numbers can be used as surrogates for hepatotoxic Microcystis and ANABAENA: The main microcystin producer in Lake Tuusulanj?rvi was Microcystis spp., since average Microcystis mcyE copy numbers were >30 times more abundant than those of ANABAENA: Lake Hiidenvesi seemed to contain both nontoxic and toxic Anabaena as well as toxic Microcystis strains. Identifying the most potent microcystin producer in a lake could be valuable for designing lake restoration strategies, among other uses.  相似文献   

15.
Blooms of the toxin-producing cyanobacterium, Microcystis spp., are an increasingly prevalent water quality problem and health hazard worldwide. China's third largest lake, Lake Taihu, has been experiencing progressively more severe Microcystis blooms over the past three decades. In 2009 and 2010, individual Microcystis colonies, consisting of four different morphospecies, were isolated and genotyped using a whole-cell multiplex PCR assay. The 16S-23S rDNA-ITS sequences were aligned based on Bayesian inference and indicated that one morphospecies was genetically unique (Microcystis wesenbergii) and three were indistinguishable (Microcystis aeruginosa, Microcystis flos-aquae, and Microcystis ichthyoblabe). Microcystin (mcyB) genes were detected intermittently in two of the morphospecies while the other two morphospecies lacked the mcyB gene in all samples. Water temperature was found to influence bloom formation and morphotype prevalence, and chlorophyll a and temperature were positively and significantly correlated with microcystin concentration. Cooler water temperatures promoted toxigenic strains of Microcystis. Wind appeared to influence the distribution of morphotypes across the lake, with M. aeruginosa and M. ichthyoblabe being more susceptible to wind stress than M. wesenbergii and M. flos-aquae. The results of this study indicated that the blooms were composed of a variety of Microcystis morphospecies, with more genotypes observed than can be attributed to individual morphotypes. We conclude that morphology is not a reliable indicator of toxigenicity in Lake Taihu, and caution should be exercised when the M. aeruginosa morphotype is present because it is capable of producing MC-LR, the most toxic microcystin isoform.  相似文献   

16.
The cyanobacterium Microcystis aeruginosa is known to proliferate in freshwater ecosystems and to produce microcystins. It is now well established that much of the variability of bloom toxicity is due to differences in the relative proportions of microcystin-producing and non-microcystin-producing cells in cyanobacterial populations. In an attempt to elucidate changes in their relative proportions during cyanobacterial blooms, we compared the fitness of the microcystin-producing M. aeruginosa PCC 7806 strain (WT) to that of its non-microcystin-producing mutant (MT). We investigated the effects of two light intensities and of limiting and non-limiting nitrate concentrations on the growth of these strains in monoculture and co-culture experiments. We also monitored various physiological parameters, and microcystin production by the WT strain. In monoculture experiments, no significant difference was found between the growth rates or physiological characteristics of the two strains during the exponential growth phase. In contrast, the MT strain was found to dominate the WT strain in co-culture experiments under favorable growth conditions. Moreover, we also found an increase in the growth rate of the MT strain and in the cellular MC content of the WT strain. Our findings suggest that differences in the fitness of these two strains under optimum growth conditions were attributable to the cost to microcystin-producing cells of producing microcystins, and to the putative existence of cooperation processes involving direct interactions between these strains.  相似文献   

17.
Peptide-synthetase-encoding DNA fragments were isolated by a PCR-based approach from the chromosome of Microcystis aeruginosa K-139, which produces cyclic heptapeptides, 7-desmethylmicrocystin-LR and 3,7-didesmethylmicrocystin-LR. Three open reading frames (mcyA, mcyB, mcyC) encoding microcystin synthetases were identified in the gene cluster. Sequence analysis indicated that McyA (315 kDa) consists of two modules with an N-methylation domain attached to the first and an epimerization domain attached to the second; McyB (242 kDa) has two modules, and McyC (147 kDa) contains one module with a putative C-terminal thioesterase domain. Conserved amino acid sequence motifs for ATP binding, ATP hydrolysis, adenylate formation, and 4'-phosphopantetheine attachment were identified by sequence comparison with authentic peptide synthetase. Insertion mutations in mcyA, generated by homologous recombination, abolished the production of both microcystins in M. aeruginosa K-139. Primer extension analysis demonstrated light-dependent mcy expression. Southern hybridization and partial DNA sequencing analyses of six microcystin-producing and two non-producing Microcystis strains suggested that the microcystin-producing strains contain the mcy gene and the non-producing strains can be divided into two groups, those possessing no mcy genes and those with mcy genes.  相似文献   

18.
Insights into the origins, function(s), and fates of cyanobacterial toxins may be obtained by an understanding of their location within cyanobacterial cells. Here, we have localised microcystins in laboratory cultures of Microcystis PCC 7806 and PCC 7820 by immunogold labelling. Cryosectioning was used for immunoelectron microscopy since microcystins were extracted during the ethanol-based dehydration steps routinely used for sample preparation. Microcystins were specifically localised in the nucleoplasm and were associated with all major inclusions of the microcystin-producing strains Microcystis PCC 7806 (MC(+)) and Microcystis PCC 7820, and labelling was preferentially associated with the thylakoids and around polyphosphate bodies. A mutant strain of Microcystis PCC 7806 (MC(-)) which does not produce microcystins was used as a control. Distribution of total gold label within each cell region or associated with inclusions indicated that most of the cells' microcystin pool was associated with the thylakoids (69%, PCC 7806 (MC(+)); 78%, PCC 7820), followed by the nucleoplasmic region (19%, PCC 7806 (MC(+)); 12%, PCC 7820). Cryosectioning is a useful technique since it reduces the extraction of microcystins during sample preparation for electron microscopy.  相似文献   

19.
A midsummer decline in a Daphnia population has been documentedin Lake Winnebago, Wisconsin, USA, similar to that which typicallyoccurs in other freshwater lakes throughout the world. We investigatedthe role of two products of the cyanobacterium Microcystis aeruginosa(microcystin and polysaccharide capsular matrix) in contributingto this population decrease by utilizing laboratory and lakestudies. Feeding on either the microcystin-producing, minimallyencapsulated M. aeruginosa strain PCC 7820 or the highly encapsulated,non-microcystin-producing strain C3-40, resulted in decreasedsurvival when compared with animals fed chlorophytes. The survivorshipof Daphnia fed C3-40 cells washed to remove the capsule increasedby 30% over that seen in animals fed encapsulated C3-40. Feedingpurified microcystin or capsule alone decreased Daphnia survivalto a greater degree than did starvation. Physiological studiesconducted while Daphnia were exposed to these food sources showedthat ingestion of capsular material resulted in increased post-abdominalclaw movements and decreased mandibular movements. Concurrently,elevated respiration rates were measured in Daphnia, implyingthat capsule increased the energy expended by these animalsthrough increased attempts to reject the material and decreasedfood intake. Lake studies reflected the results of the laboratoryexperiments. The midsummer decline of the Daphnia populationoccurs as the Microcystis biovolume increases and both microcystinand capsular matrix levels rise. While both cyanobacterial productsmay contribute to the midsummer decline in Daphnia pulicaria,laboratory studies suggest that encapsulation may play the greaterrole.  相似文献   

20.
Several blooms of Microcystis aeruginosa have been observed in the Patos Lagoon estuary during the last fifteen years without a proper investigation of their ecological importance or possible toxicity. The present study has identified and quantified the presence of cyanobacteria in the Patos Lagoon estuary, particularly of M. aeruginosa. During this survey, identification and quantification of the main phytoplankton groups were done in relation to geographical distribution in the estuary. The presence of M. aeruginosa colonies in the estuarine region confirmed their superficial distribution throughout the estuarine waters during twelve months with a maximum of 1, 3.10(6) cells. L-1 in December, 1994 and a minimum of 1, 5.10(5) cells. L-1 in August, 1995 and also confirmed that M. aeruginosa originated from waters in the north of the estuary. The period of the highest cell and colonies densities was coincident with high chlorophyll-a levels in surface waters. Toxicity of M. aeruginosa bloom material was determined by bioassay and concentrations of hepatotoxins microcystins were identified by HPLC-DAD. M. aeruginosa blooms were considered highly toxic, presenting a 24 h-LD50 lower than 100 mg.Kg-1 b.w. and a toxin content higher than 1 microgram.mg-1 d.w. Several microcystin variants were found in the extracts with microcystin-LR predominating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号