首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In cycling cells cytosolic de novo synthesis of deoxynucleotides is the main source of precursors for mitochondrial (mt) DNA synthesis. The transfer of deoxynucleotides across the inner mt membrane requires protein carriers. PNC1, a SLC25 family member, exchanges pyrimidine nucleoside triphosphates in liposomes and its downregulation decreases mtUTP concentration in cultured cells. By an isotope-flow protocol we confirmed transport of uridine nucleotides by PNC1 in intact cultured cells and investigated PNC1 involvement in the mt trafficking of thymidine phosphates. Key features of our approach were the manipulation of PNC1 expression by RNA interference or inducible overexpression, the employment of cells proficient or deficient for cytosolic thymidine kinase (TK1) to distinguish the direction of flow of thymidine nucleotides across the mt membrane during short pulses with [(3)H]-thymidine, the determination of mtdTTP specific radioactivity to quantitate the rate of mtdTTP export to the cytoplasm. Downregulation of PNC1 in TK1(-) cells increased labeled dTTP in mitochondria due to a reduced rate of export. Overexpression of PNC1 in TK1(+) cells increased mtdTTP pool size and radioactivity, suggesting an involvement in the import of thymidine phosphates. Thus PNC1 is a component of the network regulating the mtdTTP pool in human cells.  相似文献   

2.
Mitochondrial (mt) DNA depletion syndromes can arise from genetic deficiencies for enzymes of dNTP metabolism, operating either inside or outside mitochondria. MNGIE is caused by the deficiency of cytosolic thymidine phosphorylase that degrades thymidine and deoxyuridine. The extracellular fluid of the patients contains 10-20 microM deoxynucleosides leading to changes in dTTP that may disturb mtDNA replication. In earlier work, we suggested that mt dTTP originates from two distinct pathways: (i) the reduction of ribonucleotides in the cytosol (in cycling cells) and (ii) intra-mt salvage of thymidine (in quiescent cells). In MNGIE and most other mtDNA depletion syndromes, quiescent cells are affected. Here, we demonstrate in quiescent fibroblasts (i) the existence of small mt dNTP pools, each usually 3-4% of the corresponding cytosolic pool; (ii) the rapid metabolic equilibrium between mt and cytosolic pools; and (iii) the intra-mt synthesis and rapid turnover of dTTP in the absence of DNA replication. Between 0.1 and 10 microM extracellular thymidine, intracellular thymidine rapidly approaches the extracellular concentration. We mimic the conditions of MNGIE by maintaining quiescent fibroblasts in 10-40 microM thymidine and/or deoxyuridine. Despite a large increase in intracellular thymidine concentration, cytosolic and mt dTTP increase at most 4-fold, maintaining their concentration for 41 days. Other dNTPs are marginally affected. Deoxyuridine does not increase the normal dNTP pools but gives rise to a small dUTP and a large dUMP pool, both turning over rapidly. We discuss these results in relation to MNGIE.  相似文献   

3.
In non-proliferating cells mitochondrial (mt) thymidine kinase (TK2) salvages thymidine derived from the extracellular milieu for the synthesis of mt dTTP. TK2 is a synthetic enzyme in a network of cytosolic and mt proteins with either synthetic or catabolic functions regulating the dTTP pool. In proliferating cultured cells the canonical cytosolic ribonucleotide reductase (R1-R2) is the prominent synthetic enzyme that by de novo synthesis provides most of dTTP for mt DNA replication. In non-proliferating cells p53R2 substitutes for R2. Catabolic enzymes safeguard the size of the dTTP pool: thymidine phosphorylase by degradation of thymidine and deoxyribonucleotidases by degradation of dTMP. Genetic deficiencies in three of the participants in the network, TK2, p53R2, or thymidine phosphorylase, result in severe mt DNA pathologies. Here we demonstrate the interdependence of the different enzymes of the network. We quantify changes in the size and turnover of the dTTP pool after inhibition of TK2 by RNA interference, of p53R2 with hydroxyurea, and of thymidine phosphorylase with 5-bromouracil. In proliferating cells the de novo pathway dominates, supporting large cytosolic and mt dTTP pools, whereas TK2 is dispensable, even in cells lacking the cytosolic thymidine kinase. In non-proliferating cells the small dTTP pools depend on the activities of both R1-p53R2 and TK2. The activity of TK2 is curbed by thymidine phosphorylase, which degrades thymidine in the cytoplasm, thus limiting the availability of thymidine for phosphorylation by TK2 in mitochondria. The dTTP pool shows an exquisite sensitivity to variations of thymidine concentrations at the nanomolar level.  相似文献   

4.
Mitochondrial (mt) neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive disease associated with depletion, deletions, and point mutations of mtDNA. Patients lack a functional thymidine phosphorylase and their plasma contains high concentrations of thymidine and deoxyuridine; elevation of the corresponding triphosphates probably impairs normal mtDNA replication and repair. To study metabolic events leading to MNGIE we used as model systems skin and lung fibroblasts cultured in the presence of thymidine and/or deoxyuridine at concentrations close to those in the plasma of the patients, a more than 100-fold excess relative to controls. The two deoxynucleosides increased the mt and cytosolic dTTP pools of skin fibroblasts almost 2-fold in cycling cells and 8-fold in quiescent cells. During up to a two-month incubation of quiescent fibroblasts with thymidine (but not with deoxyuridine), mtDNA decreased to approximately 50% without showing deletions or point mutations. When we removed thymidine, but maintained the quiescent state, mtDNA recovered rapidly. With thymidine in the medium, the dTTP pool of quiescent cells turned over rapidly at a rate depending on the concentration of thymidine, due to increased degradation and resynthesis of dTMP in a substrate (=futile) cycle between thymidine kinase and 5'-deoxyribonucleotidase. The cycle limited the expansion of the dTTP pool at the expense of ATP hydrolysis. We propose that the substrate cycle represents a regulatory mechanism to protect cells from harmful increases of dTTP. Thus MNGIE patients may increase their consumption of ATP to counteract an unlimited expansion of the dTTP pool caused by circulating thymidine.  相似文献   

5.
Mitochondrial deoxynucleoside triphosphates are formed and regulated by a network of anabolic and catabolic enzymes present both in mitochondria and the cytosol. Genetic deficiencies for enzymes of the network cause mitochondrial DNA depletion and disease. We investigate by isotope flow experiments the interrelation between mitochondrial and cytosolic deoxynucleotide pools as well as the contributions of the individual enzymes of the network to their maintenance. To study specifically the synthesis of dGTP used for the synthesis of mitochondrial and nuclear DNA, we labeled hamster CHO cells or human fibroblasts with [(3)H]deoxyguanosine during growth and quiescence and after inhibition with aphidicolin or hydroxyurea. At time intervals we determined the labeling of deoxyguanosine nucleotides and DNA and the turnover of dGTP from its specific radioactivity in the separated mitochondrial and cytosolic pools. In both cycling and quiescent cells, the import of deoxynucleotides formed by cytosolic ribonucleotide reductase accounted for most of the synthesis of mitochondrial dGTP, with minor contributions by cytosolic deoxycytidine kinase and mitochondrial deoxyguanosine kinase. A dynamic isotopic equilibrium arose rapidly from the shuttling of deoxynucleotides between mitochondria and cytosol, incorporation of dGTP into DNA, and degradation of dGMP. Inhibition of DNA synthesis by aphidicolin marginally affected the equilibrium. Inhibition of DNA synthesis by blockage of ribonucleotide reduction with hydroxyurea instead disturbed the equilibrium and led to accumulation of labeled dGTP in the cytosol. The turnover of dGTP decreased, suggesting a close connection between ribonucleotide reduction and pool degradation.  相似文献   

6.
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive disease with mitochondrial DNA (mtDNA) alterations and is caused by mutations in the nuclear gene encoding thymidine phosphorylase (TP). The cardinal clinical manifestations are ptosis, ophthalmoparesis, gastrointestinal dysmotility, cachexia, peripheral neuropathy, and leukoencephalopathy. Skeletal muscle shows mitochondrial abnormalities, including ragged-red fibers and cytochrome c oxidase deficiency, together with mtDNA depletion, multiple deletions or both. In MNGIE patients, TP mutations cause a loss-of-function of the cytosolic enzyme, TP. As a direct consequence of the TP defect, thymidine metabolism is altered. High blood levels of this nucleoside are likely to lead to mtDNA defects even in cells that do not express TP, such as skeletal muscle. We hypothesize that high concentrations of thymidine affect dNTP (deoxyribonucleoside triphosphate) metabolism in mitochondria more than in cytosol or nuclei, because mitochondrial dNTPs depend mainly on the thymidine salvage pathway, whereas nuclear dNTPs depend mostly on de novo pathway. The imbalance in the mitochondrial dNTP homeostasis affects mtDNA replication, leading to mitochondrial dysfunction.  相似文献   

7.
Deoxynucleoside triphosphates (dNTPs) used for mitochondrial DNA replication are mainly formed by phosphorylation of deoxynucleosides imported into mitochondria from the cytosol. We earlier obtained evidence for a mitochondrial 5'-nucleotidase (dNT2) with a pronounced specificity for dUMP and dTMP and suggested that the enzyme protects mitochondrial DNA replication from excess dTTP. In humans, accumulation of dTTP causes a mitochondrial genetic disease. We now establish that dNT2 in vivo indeed is located in mitochondria. The native enzyme shows the same substrate specificity and affinity for inhibitors as the recombinant dNT2. We constructed ponasterone-inducible cell lines overproducing dNT2 with and without the green fluorescent protein (GFP) linked to its C terminus. The fusion protein occurred in mitochondria mostly in an inactive truncated form, with only a short C-terminal fragment of dNT2 linked to GFP. No truncation occurred when dNT2 and GFP were not linked. The cell mitochondria then contained a large excess of active dNT2 with or without the mitochondrial presequence. After removal of ponasterone overproduced dNT2 disappeared only slowly from the cells, whereas dNT2-mRNA was lost rapidly. Overproduction of dNT2 did not lead to an increased excretion of pyrimidine deoxyribonucleosides, in contrast to overproduction of the corresponding cytosolic deoxynucleotidase, suggesting that the mitochondrial enzyme does not affect overall cellular deoxynucleotide turnover.  相似文献   

8.
In exponentially growing 3T6 cells, the synthesis of deoxythymidine triphosphate (dTTP) is balanced by its utilization for DNA replication, with a turnover of the dTTP pool of around 5 min. We now investigate the effects of two inhibitors of DNA synthesis (aphidicolin and hydroxyurea) on the synthesis and degradation of pyrimidine deoxynucleoside triphosphates (dNTPs). Complete inhibition of DNA replication with aphidicolin did not decrease the turnover of pyrimidine dNTP pools labeled from the corresponding [3H]deoxynucleosides, only partially inhibited the in situ activity of thymidylate synthetase and resulted in excretion into the medium of thymidine derived from breakdown of dTTP synthesized de novo. These data demonstrate continued synthesis of dTTP in the absence of DNA replication. In contrast, hydroxyurea decreased the turnover of pyrimidine dNTP pools 5-50-fold. Hydroxyurea is an inhibitor of ribonucleotide reductase and stops DNA synthesis by depleting cells of purine dNTPs but not pyrimidine dNTPs. Our results suggest that degradation of dNTPs is turned off by an unknown mechanism when de novo synthesis is blocked.  相似文献   

9.
Cells generate 2'-deoxyribonucleoside triphosphates (dNTPs) for both replication and repair of damaged DNA predominantly through de novo reduction of intracellular ribonucleotides by ribonucleotide reductase (RNR). Cells can also salvage deoxynucleosides by deoxycytidine kinase/thymidine kinase 1 in the cytosol or by deoxyguanosine kinase/thymidine kinase 2 in mitochondria. In this study we investigated whether the salvage dNTP supply pathway facilitates DNA damage repair, promoting cell survival, when pharmacological inhibition of RNR by 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP, NSC no.?663249) impairs the de novo pathway. Human cervical cancer cells were subjected to radiation with or without 3-AP under medium deoxynucleoside concentrations of 0, 0.05, 0.5 and 5.0?μM. Efficacy of DNA damage repair was assessed by γ-H2AX flow cytometry and focus counts, by single cell electrophoresis (Comet assay), and by caspase 3 cleavage assay as a marker of treatment-induced apoptosis. Cell survival was assessed by colony formation. We found that deoxyribonucleotide salvage facilitates DNA repair during RNR inhibition by 3-AP and that salvage reduces the radiochemosensitivity of human cervical cancer cells.  相似文献   

10.
Both the nuclear and mitochondrial DNA (mtDNA) depend on separate balanced pools of dNTPs for correct function of DNA replication and repair of DNA damage. Import of dNTPs from the cytosolic compartment to the mitochondria has been suggested to have the potential of rectifying a mitochondrial dNTP imbalance. Reduced TK2 activity has been demonstrated to result in mitochondrial dNTP imbalance and consequently mutations of mtDNA in non-dividing cells. In this study, the consequences of a reduced thymidine kinase 2 (TK2) activity were measured in proliferating HeLa cells, on both whole-cell as well as mitochondrial dNTP levels. With the exception of increased mitochondrial dCTP level no significant difference was found in cells with reduced TK2 activity. Our results suggest that import of cytosolic dNTPs in mitochondria of proliferating cells can compensate a TK2 induced imbalance of the mitochondrial dNTP pool.  相似文献   

11.
Both the nuclear and mitochondrial DNA (mtDNA) depend on separate balanced pools of dNTPs for correct function of DNA replication and repair of DNA damage. Import of dNTPs from the cytosolic compartment to the mitochondria has been suggested to have the potential of rectifying a mitochondrial dNTP imbalance. Reduced TK2 activity has been demonstrated to result in mitochondrial dNTP imbalance and consequently mutations of mtDNA in non-dividing cells. In this study, the consequences of a reduced thymidine kinase 2 (TK2) activity were measured in proliferating HeLa cells, on both whole-cell as well as mitochondrial dNTP levels. With the exception of increased mitochondrial dCTP level no significant difference was found in cells with reduced TK2 activity. Our results suggest that import of cytosolic dNTPs in mitochondria of proliferating cells can compensate a TK2 induced imbalance of the mitochondrial dNTP pool.  相似文献   

12.
Cytosolic 5'(3')-deoxyribonucleotidase (cdN) and mitochondrial 5'(3')-deoxyribonucleotidase (mdN) catalyze the dephosphorylation of deoxyribonucleoside monophosphates and regulate dTTP formation in cytosol and mitochondria, protecting DNA replication from imbalanced precursor pools. They can also interfere with the phosphorylation-dependent activation of nucleoside analogues used in anticancer and antiviral treatment. To understand the relatively narrow substrate specificity of these two enzymes and their ability to use nucleotide analogues as substrates, we determined the crystal structures of human cdN in complex with deoxyuridine, murine cdN in complex with dUMP and dGMP, and human mdN in complex with the nucleotide analogues AZTMP and BVdUMP. Our results show that the active site residues Leu45 and Tyr65 in cdN form a more favorable binding surface for purine nucleotides than the corresponding Trp75 and Trp76 in mdN, explaining why cdN has higher activity for purine nucleotides than does mdN. The molecular interactions of mdN with AZTMP and BVdUMP indicate why these nucleotide analogues are poorer substrates as compared with the physiological substrate, and they provide a structural rationale for the design of drugs that are less prone to inactivation by the deoxyribonucleotidases. We suggest that introduction of substituents in the 3'-position may result in nucleoside analogues with increased resistance to dephosphorylation.  相似文献   

13.
Using the technique of ultraviolet-mediated cross-linking of substrate deoxynucleoside triphosphates (dNTPs) to their acceptor site [Abraham, K. I., & Modak, M. J. (1984) Biochemistry 23, 1176-1182], we have labeled the Klenow fragment of Escherichia coli DNA polymerase I (Pol I) with [alpha-32P]dTTP. Covalent cross-linking of [alpha-32P]dTTP to the Klenow fragment is shown to be at the substrate binding site by the following criteria: (a) the cross-linking reaction requires dTTP in its metal chelate form; (b) dTTP is readily competed out by other dNTPs as well as by substrate binding site directed reagents; (c) labeling with dTTP occurs at a single site as judged by peptide mapping. Under optimal conditions, a modification of approximately 20% of the enzyme was achieved. Following tryptic digestion of the [alpha-32P]dTTP-labeled Klenow fragment, reverse-phase high-performance liquid chromatography demonstrated that 80% of the radioactivity was contained within a single peptide. The amino acid composition and sequence of this peptide identified it as the peptide spanning amino acid residues 876-890 in the primary sequence of E. coli Pol I. Chymotrypsin and Staphylococcus aureus V8 protease digestion of the labeled tryptic peptide in each case yielded a single smaller fragment that was radioactive. Amino acid analysis and sequencing of these smaller peptides further narrowed the dTTP cross-linking site to within the region spanning residues 876-883. We concluded that histidine-881 is the primary attachment site for dTTP in E. coli DNA Pol I, since during amino acid sequencing analysis of all three radioactive peptides loss of the histidine residue at the expected cycle is observed.  相似文献   

14.
In Leishmania tarentolae, all mitochondrial tRNAs are encoded in the nuclear genome and imported from the cytosol. It is known that tRNA(Glu)(UUC) and tRNA(Gln)(UUG) are localized in both cytosol and mitochondria. We investigated structural differences between affinity-isolated cytosolic (cy) and mitochondrial (mt) tRNAs for glutamate and glutamine by mass spectrometry. A unique modification difference in both tRNAs was identified at the anticodon wobble position: cy tRNAs have 5-methoxycarbonylmethyl-2- thiouridine (mcm(5)s(2)U), whereas mt tRNAs have 5- methoxycarbonylmethyl-2'-O-methyluridine (mcm(5)Um). In addition, a trace portion (4%) of cy tRNAs was found to have 5-methoxycarbonylmethyluridine (mcm(5)U) at its wobble position, which could represent a common modification intermediate for both modified uridines in cy and mt tRNAs. We also isolated a trace amount of mitochondria-specific tRNA(Lys)(UUU) from the cytosol and found mcm(5)U at its wobble position, while its mitochondrial counterpart has mcm(5)Um. Mt tRNA(Lys) and in vitro transcribed tRNA(Glu) were imported much more efficiently into isolated mitochondria than the native cy tRNA(Glu) in an in vitro importation experiment, indicating that cytosol-specific 2-thiolation could play an inhibitory role in tRNA import into mitochondria.  相似文献   

15.
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive disorder associated with multiple mutations in mitochondrial DNA, both deletions and point mutations, and mutations in the nuclear gene for thymidine phosphorylase. Spinazzola et al. (Spinazzola, A., Marti, R., Nishino, I., Andreu, A., Naini, A., Tadesse, S., Pela, I., Zammarchi, E., Donati, M., Oliver, J., and Hirano, M. (2001) J. Biol. Chem. 277, 4128-4133) showed that MNGIE patients have elevated circulating thymidine levels and they hypothesized that this generates imbalanced mitochondrial deoxyribonucleoside triphosphate (dNTP) pools, which in turn are responsible for mitochondrial (mt) DNA mutagenesis. We tested this hypothesis by culturing HeLa cells in medium supplemented with 50 microM thymidine. After 8-month growth, mtDNA in the thymidine-treated culture, but not the control, showed multiple deletions, as detected both by Southern blotting and by long extension polymerase chain reaction. After 4-h growth in thymidine-supplemented medium, we found the mitochondrial dTTP and dGTP pools to expand significantly, the dCTP pool to drop significantly, and the dATP pool to drop slightly. In whole-cell extracts, dTTP and dGTP pools also expanded, but somewhat less than in mitochondria. The dCTP pool shrank by about 50%, and the dATP pool was essentially unchanged. These results are discussed in terms of the recent report by Nishigaki et al. (Nishigaki, Y., Marti, R., Copeland, W. C., and Hirano, M. (2003) J. Clin. Invest. 111, 1913-1921) that most mitochondrial point mutations in MNGIE patients involve T --> C transitions in sequences containing two As to the 5' side of a T residue. Our finding of dTTP and dGTP elevations and dATP depletion in mitochondrial dNTP pools are consistent with a mutagenic mechanism involving T-G mispairing followed by a next-nucleotide effect involving T insertion opposite A.  相似文献   

16.
Eukaryotic cells contain a delicate balance of minute amounts of the four deoxyribonucleoside triphosphates (dNTPs), sufficient only for a few minutes of DNA replication. Both a deficiency and a surplus of a single dNTP may result in increased mutation rates, faulty DNA repair or mitochondrial DNA depletion. dNTPs are usually quantified by an enzymatic assay in which incorporation of radioactive dATP (or radioactive dTTP in the assay for dATP) into specific synthetic oligonucleotides by a DNA polymerase is proportional to the concentration of the unknown dNTP. We find that the commonly used Klenow DNA polymerase may substitute the corresponding ribonucleotide for the unknown dNTP leading in some instances to a large overestimation of dNTPs. We now describe assay conditions for each dNTP that avoid ribonucleotide incorporation. For the dTTP and dATP assays it suffices to minimize the concentrations of the Klenow enzyme and of labeled dATP (or dTTP); for dCTP and dGTP we had to replace the Klenow enzyme with either the Taq DNA polymerase or Thermo Sequenase. We suggest that in some earlier reports ribonucleotide incorporation may have caused too high values for dGTP and dCTP.  相似文献   

17.
18.
The fidelity of DNA replication in eukaryotic cells requires a balanced dNTP supply in the S phase. During the cell cycle progression, the production of dTTP is highly regulated to coordinate with DNA replication. Intracellular thymidine is salvaged to dTTP by cytosolic thymidine kinase (TK1) and thymidylate kinase (TMPK), both of which expression increase in the G1/S transition and diminish in the mitotic phase via proteolytic destruction. Anaphase promoting complex/cyclosome (APC/C)-mediated ubiquitination targets TK1 and TMPK to undergo proteasomal degradation in mitosis, by which dTTP pool is minimized in the early G1 phase of the next cell cycle. In this review, we will focus on regulation of TK1 in the post-S phase and the importance of mitotic proteolysis in controlling dNTP balance, replication stress and genomic stability. Finally, we discuss how thymidine pool and oligomeric forms of TK1 can affect mitotic control of dTTP. This article is for the special issue of IMB 20th anniversary.  相似文献   

19.
During myogenesis, myoblasts fuse into multinucleated myotubes that acquire the contractile fibrils and accessory structures typical of striated skeletal muscle fibers. To support the high energy requirements of muscle contraction, myogenesis entails an increase in mitochondrial (mt) mass with stimulation of mtDNA synthesis and consumption of DNA precursors (dNTPs). Myotubes are quiescent cells and as such down-regulate dNTP production despite a high demand for dNTPs. Although myogenesis has been studied extensively, changes in dNTP metabolism have not been examined specifically. In differentiating cultures of C2C12 myoblasts and purified myotubes, we analyzed expression and activities of enzymes of dNTP biosynthesis, dNTP pools, and the expansion of mtDNA. Myotubes exibited pronounced post-mitotic modifications of dNTP synthesis with a particularly marked down-regulation of de novo thymidylate synthesis. Expression profiling revealed the same pattern of enzyme down-regulation in adult murine muscles. The mtDNA increased steadily after myoblast fusion, turning over rapidly, as revealed after treatment with ethidium bromide. We individually down-regulated p53R2 ribonucleotide reductase, thymidine kinase 2, and deoxyguanosine kinase by siRNA transfection to examine how a further reduction of these synthetic enzymes impacted myotube development. Silencing of p53R2 had little effect, but silencing of either mt kinase caused 50% mtDNA depletion and an unexpected decrease of all four dNTP pools independently of the kinase specificity. We suggest that during development of myotubes the shortage of even a single dNTP may affect all four pools through dysregulation of ribonucleotide reduction and/or dissipation of the non-limiting dNTPs during unproductive elongation of new DNA chains.  相似文献   

20.
ABSTRACT

Carefully balanced deoxynucleoside triphosphate (dNTP) pools are essential for both nuclear and mitochondrial genome replication and repair. Two synthetic pathways operate in cells to produce dNTPs, e.g., the de novo and the salvage pathways. The key regulatory enzymes for de novo synthesis are ribonucleotide reductase (RNR) and thymidylate synthase (TS), and this process is considered to be cytosolic. The salvage pathway operates both in the cytosol (TK1 and dCK) and the mitochondria (TK2 and dGK). Mitochondrial dNTP pools are separated from the cytosolic ones owing to the double membrane structure of the mitochondria, and are formed by the salvage enzymes TK2 and dGK together with NMPKs and NDPK in postmitotic tissues, while in proliferating cells the mitochondrial dNTPs are mainly imported from the cytosol produced by the cytosolic pathways. Imbalanced mitochondrial dNTP pools lead to mtDNA depletion and/or deletions resulting in serious mitochondrial diseases. The mtDNA depletion syndrome is caused by deficiencies not only in enzymes in dNTP synthesis (TK2, dGK, p53R2, and TP) and mtDNA replication (mtDNA polymerase and twinkle helicase), but also in enzymes in other metabolic pathways such as SUCLA2 and SUCLG1, ABAT and MPV17. Basic questions are why defects in these enzymes affect dNTP synthesis and how important is mitochondrial nucleotide synthesis in the whole cell/organism perspective? This review will focus on recent studies on purine and pyrimidine metabolism, which have revealed several important links that connect mitochondrial nucleotide metabolism with amino acids, glucose, and fatty acid metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号