首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gibberellins: regulating genes and germination   总被引:14,自引:1,他引:13  
  相似文献   

2.
3.
4.
It is well known that abscisic acid (ABA) antagonizes gibberellin (GA)-promoted seed germination. Recent circumstantial evidence suggests that salicylic acid (SA) also inhibits seed germination in maize and Arabidopsis. Our study shows that SA blocks barley seed germination in a dosage dependent manner. As an initial effort to addressing the mechanism controlling the crosstalk of SA, GA and ABA signaling in barley, we studied the regulation of α-amylases by SA and a WRKY gene whose expression is modulated by these hormones. Assays of α-amylase activity reveal that GA-induced α-amylase production in aleurone cells is inhibited by bioactive SA, but not its analogs, 3-hydroxybenzoic acid and 4-hydroxybenzoic acid. This inhibitory effect is unlikely due to repressing α-amylase secretion or inhibiting α-amylase enzyme activities. Northern blot analyses indicate that SA suppresses GA-induced expression of a barley low pI α-amylase gene (Amy32b). Because our previous data indicate that ABA-inducible and GA-suppressible WRKY genes inhibit the expression of α-amylase genes in rice, we studied the steady state mRNA levels of a barley WRKY gene, HvWRKY38. The expression of HvWRKY38 in barley aleurone cells is down-regulated by GA, but up-regulated by SA and ABA. However, the regulation of HvWRKY38 by SA appears to be different from that of ABA in term of the kinetics and levels of induction. Over-expression of HvWRKY38 in aleurone cells by particle bombardment blocks GA induction of the Amy32b promoter reporter construct (Amy32b-GUS). Therefore, HvWRKY38 might serve as a converging node of SA and ABA signal pathways involved in suppressing GA-induced seed germination. Zhen Xie and Zhong-Lin Zhang contributed equally to this work.  相似文献   

5.
With the aim of determining the level at which ageing exerts its effect on the expression of -amylase, GA3 regulation of -amylase production was studied in isolated aleurone layers from aged wheat seeds. GA3-induced -amylase activity was lower in the tissue from aged seeds than in controls. However, the proportion of 35S-methionine incorporated into -amylase was higher in the aged than in control tissue. The pattern of -amylase isoforms was resolved by isoelectric focusing and showed that two isogroups were present with the activity of the high-pI isogroup being higher in the control than in the aged lot. These apparently contradictory results may be explained in terms of differences in isozyme expression. Studies on the expression of -amylase genes indicated a reduction in the level of high-pI mRNA in aged tissue. Dose-response curves showed lower GA3-responsiveness of aleurone layers from aged seeds as compared to the controls. From these results, it is proposed that the diminished capacity of -amylase production in aleurone from aged seeds is apparently due to a decrease in the expression of the high-pI -amylase genes, and this reduction is associated with a decrease in the response to GA3.Key words: Seed ageing, wheat aleurone, gibberellic acid, -amylase isozymes, gene expression.   相似文献   

6.
7.
8.
9.
10.
11.
The gibberellins (GAs) are endogenous regulators of plant growth. Experiments are described here that test the hypothesis that GA regulates hypocotyl growth by altering the extent of hypocotyl cell elongation. These experiments use GA-deficient and altered GA-response mutants of Arabidopsis thaliana (L.) Heyhn. It is shown that GA regulates elongation, in both light- and dark-grown hypocotyls, by influencing the rate and final extent of cellular elongation. However, light- and dark-grown hypocotyls exhibit markedly different GA dose-response relationships. The length of dark-grown hypocotyls is relatively unaffected by exogenous GA, whilst light-grown hypocotyl length is significantly increased by exogenous GA. Further analysis suggests that GA control of hypocotyl length is close to saturation in dark-grown hypocotyls, but not in light grown hypocotyls. The results show that a large range of possible hypocotyl lengths is achieved via dose-dependent GA-regulated alterations in the degree of elongation of individual hypocotyl cells.Key words: Arabidopsis, cell elongation, gibberellin (GA), GA mutants, hypocotyl.   相似文献   

12.
13.
14.
15.
The expression of -amylase genes in rice (Oryza sativa) and its regulation by phytohormones gibberellic acid (GA) and abscisic acid (ABA) were examined. Upon germination -amylase is synthesizedde novo in aleurone cells and (GA) is not required. Exogenous addition of GA does not enhance the -amylase activity, while ABA inhibits the -amylase activity, mRNA accumulation, and the germination of rice seeds. GA can reverse ABA inhibition of -amylase expression, but not ABA inhibition of seed germination. Such regulation represents a new interaction of ABA and GA.  相似文献   

16.
17.
A functional assay for gibberellin (GA) receptors is described based on the induction of -amylase gene expression in isolated aleurone protoplasts of Avena fatua L. by GA4 immobilised to Sepharose beads. A 17-thiol derivative of GA4, shown to be biologically active with aleurone protoplasts, has been coupled to epoxy-activated Sepharose 6B. This GA4-17-Sepharose induces high levels of -amylase when incubated with isolated aleurone protoplasts, while cells of the intact aleurone layer do not respond appreciably to the immobilised GA4. In order to eliminate the possibility that GA4 may be released from the Sepharose when incubated with protoplasts, aleurone layers and isolated aleurone protoplasts have been co-incubated, and their responses to GA4, GA4-17-Sepharose and control Sepharose estimated by determining the relative amounts of -amylase mRNA induced in each tissue. Evidence from these experiments is consistent with the view that GA417-Sepharose induces -amylase gene expression in aleurone protoplasts by interacting with the protoplast surface. This indicates that GA receptors may be located at, or near, the external face of the aleurone plasma membrane.Abbreviation GA(n) gibberellin A(n) We thank Professor Jake MacMillan and Drs. Peter M. Chandler (CSIRO, Division of Plant Industry, Canberra, Australia), Peter Hedden and Johnathan Weir (Unilever, Port Sunlight, UK) for helpful discussions and suggestions. Computer graphics were performed by the University of Bristol Molecular Recognition Centre.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号