首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of TraY protein on TraI-catalyzed strand scission at the R1 transfer origin (oriT) in vivo was investigated. As expected, the cleavage reaction was not detected in Escherichia coli cells expressing tral and the integration host factor (IHF) in the absence of other transfer proteins. The TraM dependence of strand scission was found to be inversely correlated with the presence of TraY. Thus, the TraY and TraM proteins could each enhance cleaving activity at oriT in the absence of the other. In contrast, no detectable intracellular cleaving activity was exhibited by TraI in an IHF mutant strain despite the additional presence of both TraM and TraY. An essential role for IHF in this reaction in vivo is, therefore, implied. Mobilization experiments employing recombinant R1 oriT constructions and a heterologous conjugative helper plasmid were used to investigate the independent contributions of TraY and TraM to the R1 relaxosome during bacterial conjugation. In accordance with earlier observations, traY was dispensable for mobilization in the presence of traM, but mobilization did not occur in the absence of both traM and traY. Interestingly, although the cleavage assays demonstrate that TraM and TraY independently promote strand scission in vivo, TraM remained essential for mobilization of the R1 origin even in the presence of TraY. These findings suggest that, whereas TraY and TraM function may overlap to a certain extent in the R1 relaxosome, TraM additionally performs a second function that is essential for successful conjugative transmission of plasmid DNA.  相似文献   

2.
TraM is a DNA binding protein required for conjugative transfer of the self-transmissible IncF group of plasmids, including F, R1, and R100. F TraM binds to three sites in F oriT: two high affinity binding sites, sbmA and sbmB, which are direct repeats of nearly identical sequence involved in the autoregulation of the traM gene; and a lower affinity site, sbmC, an inverted repeat important for transfer, which is situated nearest to the nic site where transfer originates. TraM bound cooperatively to its binding sites at oriT; the presence of sbmA and sbmB increased the affinity for sbmC 10-fold. Bending of oriT DNA by TraM was minimal, suggesting that TraM, a tetramer, was able to loop the DNA when bound to sbmA and sbmB simultaneously. Hydroxyl radical footprinting of DNA of sbmA and sbmC revealed that TraM contacted the DNA within a region previously delineated by DNase I footprinting. TraM protected the CT bases within the sequence CTAG, which occurred at 12-base intervals on the top and bottom strand of sbmA, most consistently with other protected bases. The footprint on sbmC revealed that the predicted inverted repeats were protected by TraM with a pattern that began at the center of the repeats and radiated outward at 11-12 base intervals toward the 5'-ends of either strand. At high protein concentrations, this pattern extended beyond the footprint defined by DNase I, suggesting that the DNA was wrapped around the protein forming a nucleosome-like structure, which could aid in preparing the DNA for transfer.  相似文献   

3.
Conjugative DNA transfer is a highly conserved process for the direct transfer of DNA from a donor to a recipient. The conjugative initiator proteins are key players in the DNA processing reactions that initiate DNA transfer - they introduce a site- and strand-specific break in the DNA backbone via a transesterification that leaves the initiator protein covalently bound on the 5'-end of the cleaved DNA strand. The action of the initiator protein at the origin of transfer (oriT) is governed by auxiliary proteins that alter the architecture of the DNA molecule, allowing binding of the initiator protein. In the F plasmid system, two auxiliary proteins have roles in establishing the relaxosome: the host-encoded IHF and the plasmid-encoded TraY. Together, these proteins direct the loading of TraI which contains the catalytic centre for the transesterification. The F-oriT sequence includes a binding site for another plasmid-encoded protein, TraM, which is required for DNA transfer. Here the impact of TraM protein on the formation and activity of the F plasmid relaxosome has been examined. Purified TraM stimulates the formation of relaxed DNA in a reaction that requires the minimal components of the relaxosome, TraI, TraY and IHF. Unlike TraY and IHF, TraM is not essential for the formation of the relaxosome in vitro and TraM cannot substitute for either TraY or IHF in this process. The TraM binding site sbmC, along with both IHF binding sites, is essential for stimulation of the relaxase reaction. In addition, stimulation of transesterification appears to require the C-terminal domain of TraI suggesting that TraM and TraI may interact through this domain on TraI. Taken together, these results provide additional evidence of a role for TraM as a component of the relaxosome, suggest a previously unknown interaction between TraI and TraM, and allow us to propose a molecular role for the C-terminal domain of TraI.  相似文献   

4.
T Abo  E Ohtsubo 《Journal of bacteriology》1995,177(15):4350-4355
We have previously identified three sites, named sbi, ihfA, and sbyA, specifically recognized or bound by the TraI, IHF, and TraY proteins, respectively; these sites are involved in nicking at the origin of transfer, oriT, of plasmid R100. In the region next to these sites, there exists the sbm region, which consists of four sites, sbmA, sbmB, sbmC, and sbmD; this region is specifically bound by the TraM protein, which is required for DNA transfer. Between sbmB and sbmC in this region, there exists another IHF-binding site, ihfB. The region containing all of these sites is located in the proximity of the tra region and is referred to as the oriT region. To determine whether these sites are important for DNA transfer in vivo, we constructed plasmids with various mutations in the oriT region and tested their mobilization in the presence of R100-1, a transfer-proficient mutant of R100. Plasmids with either deletions in the sbi-ihfA-sbyA region or substitution mutations introduced into each specific site in this region were mobilized at a greatly reduced frequency, showing that all of these sites are essential for DNA transfer. By binding to ihfA, IHF, which is known to bend DNA, may be involved in the formation of a complex (which may be called oriT-some) consisting of TraI, IHF, and TraY that efficiently introduces a nick at oriT. Plasmids with either deletions in the sbm-ihfB region or substitution mutations introduced into each specific site in this region were mobilized at a reduced frequency, showing that this region is also important for DNA transfer. By binding to ihfB, IHF may also be involved in the formation of another complex (which may be called the TraM-IHF complex) consisting of TraM and IHF that ensures DNA transfer with a high level of efficiency. Several-base-pair insertions into the positions between sbyA and sbmA affected the frequency of transfer in a manner dependent upon the number of base pairs, indicating that the phasing between sbyA and sbmA is important. This in turn suggests that both oriT-some and the TraM-IHF complex should be in an appropriate position spatially to facilitate DNA transfer.  相似文献   

5.
T Abo  S Inamoto    E Ohtsubo 《Journal of bacteriology》1991,173(20):6347-6354
The product of the traM gene of plasmid R100 was purified as the TraM-collagen-beta-galactosidase fusion protein (TraM*) by using a beta-galactosidase-specific affinity column, and the TraM portion of TraM* (TraM') was separated by collagenolysis. Both the TraM* and TraM' proteins were found to bind specifically to a broad region preceding the traM gene. This region (designated sbm) was located within the nonconserved region in oriT among conjugative plasmids related to R100. The region seems to contain four core binding sites (designated sbmA, sbmB, sbmC, and sbmD), each consisting of a similar number of nucleotides and including a homologous 15-bp sequence. This result, together with the observation that the TraM* protein was located in the membrane fraction, indicates the possibility that the TraM protein has a function in anchoring the oriT region of R100 at the sbm sites to the membrane pore, through which the single-stranded DNA is transferred to the recipient. sbmC and sbmD, each of which contained a characteristic inverted repeat sequence, overlapped with the promoter region for the traM gene. This suggests that the expression of the traM gene may be regulated by its own product.  相似文献   

6.
Bacterial conjugation is the process by which a single strand of a conjugative plasmid is transferred from donor to recipient. For F plasmid, TraI, a relaxase or nickase, binds a single plasmid DNA strand at its specific origin of transfer (oriT) binding site, sbi, and cleaves at a site called nic. In vitro studies suggest TraI is recruited to sbi by its accessory proteins, TraY and integration host factor (IHF). TraY and IHF bind conserved oriT sites sbyA and ihfA, respectively, and bend DNA. The resulting conformational changes may propagate to nic, generating the single-stranded region that TraI can bind. Previous deletion studies performed by others showed transfer efficiency of a plasmid containing F oriT decreased progressively as increasingly longer segments, ultimately containing both sbyA and ihfA, were deleted. Here we describe our efforts to more precisely define the role of sbyA and ihfA by examining the effects of multiple base substitutions at sbyA and ihfA on binding and plasmid mobilization. While we observed significant decreases in in vitro DNA-binding affinities, we saw little effect on plasmid mobilization even when sbyA and ihfA variants were combined. In contrast, when half or full helical turns were inserted between the relaxosome protein-binding sites, mobilization was dramatically reduced, in some cases below the detectable limit of the assay. These results are consistent with TraY and IHF recognizing sbyA and ihfA with limited sequence specificity and with relaxosome proteins requiring proper spacing and orientation with respect to each other.  相似文献   

7.
The complete nucleotide sequences of the ColB4-K98 (ColB4) plasmid transfer genes oriT, traM, and traY as well as the traY gene of R100-1 are presented and compared with the corresponding regions from the conjugative plasmids F, R1, and R100. The sequence encoding the oriT nick sites and surrounding inverted repeats identified in F was conserved in ColB4. The adenine-thymine-rich sequence following these nick sites was conserved in R1 and ColB4 but differed in F and R100, indicating that this region may serve as the recognition site for the traY protein. A series of direct repeats unique to the ColB4 plasmid was found in the region of dyad symmetry following this AT-rich region. This area also encodes 21-base-pair direct repeats which are homologous to those in F and R100. The traM gene product may bind in this region. Overlapping and following these repeats is the promoter(s) for the traM protein. The traM protein from ColB4 is similar to the equivalent products from F, R1, and R100. The traY protein from ColB4 is highly homologous to the R1 traY gene product, while the predicted R100-1 traY product differs at several positions. These differences presumably define the different alleles of traM and traY previously identified for IncF plasmids by genetic criteria. The translational start codons of the ColB4 and R100-1 traY genes are GUG and UUG, respectively, two examples of rare initiator codon usage.  相似文献   

8.
Characterization of the oriT region of the IncFV plasmid pED208   总被引:4,自引:2,他引:2  
DNA sequence analysis of a 2.2kb EcoRI-HindIII fragment from pED208, the derepressed form of the IncFV plasmid Folac, revealed sequences highly homologous to the oriT region, traM, and traJ genes of other IncF plasmids. The TraM protein was purified and immunoblots of fractionated cells containing pED208 or Folac showed that TraM was predominantly in the cytoplasm. Using DNA retardation assays and the DNase I footprinting technique, the TraM protein was found to bind to three large motifs in the oriT region: (I) an inverted repeat, (II) two direct repeats, and (III) the traM promoter region. These three footprint regions contained a Hinfl-like sequence (GANTC) that appeared 16 times, spaced 11-12 bp (or multiples thereof) apart, suggesting that TraM protein binds in a complex manner over this entire region.  相似文献   

9.
F factor TraY, a ribbon-helix-helix DNA-binding protein, performs two roles in bacterial conjugation. TraY binds the F origin of transfer (oriT) to promote nicking of plasmid DNA prior to conjugative transfer. TraY also binds the P(Y) promoter to up-regulate tra gene expression. The two plasmid regions bound by TraY share limited sequence identity, yet TraY binds them with similar affinities. TraY recognition of the two sites was first probed using in vitro footprinting methods. Hydroxyl radical footprinting at both oriT and P(Y) sites indicated that bound TraY protected the DNA backbone bordering three adjacent DNA subsites. Analytical ultracentrifugation results for TraY:oligonucleotide complexes were consistent with two of these subsites being bound cooperatively, and the third being occupied at higher TraY concentrations. Methylation protection and interference footprinting identified several guanine bases contacted by or proximal to bound TraY, most located within these subsites. TraY affinity for variant oriT sequences with base substitutions at or near these guanine bases suggested that two of the three subsites correspond to high-affinity, cooperatively bound imperfect inverted GA(G/T)A repeats. Altering the spacing or orientation of these sites reduced binding. TraY mutant R73A failed to protect two symmetry-related oriT guanine bases in these repeats from methylation, identifying possible direct TraY-DNA contacts. The third subsite appears to be oriented as an imperfect direct repeat with its adjacent subsite, although base substitutions at this subsite did not reduce binding. Although unusual for ribbon-helix-helix proteins, this binding site arrangement occurs at both F TraY sites, consistent with it being functionally relevant.  相似文献   

10.
We developed an in vitro system to reproduce a site- and strand-specific nicking at the oriT region of plasmid R100. The nicking reaction was dependent on the purified TraY protein and on the lysate, which was prepared from cells overproducing the TraI protein. This supports the idea that the protein products of two genes, traY and traI, constitute an endonuclease that introduces a specific nick in vivo in the oriT region of the conjugative plasmids related to R100. The products were the "complex" DNA molecules with a protein covalently linked with the 5'-end of the nick. The nick was introduced in the strand, which is supposed to be transferred to recipient cells during conjugation, and was located at the site 59 base pairs upstream of the TraY protein binding site, sbyA.  相似文献   

11.
Stern JC  Schildbach JF 《Biochemistry》2001,40(38):11586-11595
The TraI protein has two essential roles in transfer of conjugative plasmid F Factor. As part of a complex of DNA-binding proteins, TraI introduces a site- and strand-specific nick at the plasmid origin of transfer (oriT), cutting the DNA strand that is transferred to the recipient cell. TraI also acts as a helicase, presumably unwinding the plasmid strands prior to transfer. As an essential feature of its nicking activity, TraI is capable of binding and cleaving single-stranded DNA oligonucleotides containing an oriT sequence. The specificity of TraI DNA recognition was examined by measuring the binding of oriT oligonucleotide variants to TraI36, a 36-kD amino-terminal domain of TraI that retains the sequence-specific nucleolytic activity. TraI36 recognition is highly sequence-specific for an 11-base region of oriT, with single base changes reducing affinity by as much as 8000-fold. The binding data correlate with plasmid mobilization efficiencies: plasmids containing sequences bound with lower affinities by TraI36 are transferred between cells at reduced frequencies. In addition to the requirement for high affinity binding to oriT, efficient in vitro nicking and in vivo plasmid mobilization requires a pyrimidine immediately 5' of the nick site. The high sequence specificity of TraI single-stranded DNA recognition suggests that despite its recognition of single-stranded DNA, TraI is capable of playing a major regulatory role in initiation and/or termination of plasmid transfer.  相似文献   

12.
The traY gene product of plasmid R100 was purified as a hybrid protein, TraY-collagen-beta-galactosidase. The hybrid protein as well as the TraY' protein, which was obtained by collagenolysis of the hybrid protein, specifically binds to an AT-rich 36-base pair sequence (here called sbyA) within the region including the origin of transfer, oriT. The oriT region consists of highly conserved and nonconserved regions among R100-related plasmids, and sbyA was located within the nonconserved region immediately adjacent to the conserved region. This supports the idea that the TraY protein has a role as a component of endonuclease in recognizing its own oriT sequence. Unexpectedly, however, the hybrid protein and the TraY' protein were also found to bind to two different AT-rich sequences (each 24 base pairs in length) in the promoter region preceding the traY gene (here called sbyB and sbyC). This suggests that the TraY protein may have another role in regulating the expression of its own gene. The "TAA(A/T)T" sequence motif observed in these binding sites might constitute a core sequence recognized by the TraY protein. Mg2+ is not required for the specific binding of the TraY protein.  相似文献   

13.
TraI protein of plasmid R1 possesses two activities, a DNA transesterase and a highly processive 5'-3' DNA helicase, which are essential for bacterial conjugation. Regulation of the functional domains of the enzyme is poorly understood. TraI cleaves supercoiled oriT DNA with site and strand specificity in vitro but fails to initiate unwinding from this site (nic). The helicase requires an extended region of adjacent single-stranded DNA to enter the duplex, yet interaction of purified TraI with oriT DNA alone or as an integral part of the IncF relaxosome does not melt sufficient duplex to load the helicase. This study aims to gain insights into the controlled initiation of both TraI-catalyzed activities. Linear double-stranded DNA substrates with a central region of sequence heterogeneity were used to trap defined lengths of R1 oriT sequence in unwound conformation. Concomitant reconstitution of TraI DNA transesterase and helicase activities was observed. Efficient helicase activity was measured on substrates containing 60 bases of open duplex but not on substrates containing < or =30 bases in open conformation. The additional presence of auxiliary DNA-binding proteins TraY and Escherichia coli integration host factor did not stimulate TraI activities on these substrates. This model system offers a novel approach to investigate factors controlling helicase loading and the directionality of DNA unwinding from nic.  相似文献   

14.
15.
16.
Purified Escherichia coli F-factor TraY protein binds oriT.   总被引:14,自引:6,他引:8       下载免费PDF全文
The traY gene of the Escherichia coli F plasmid has been shown by genetic studies (R. Everett and N. Willetts, J. Mol. Biol. 136:129-150, 1980) to be involved in the site-specific nicking reaction at oriT required for the initiation of DNA transfer during bacterial conjugation. In order to assign a biochemical function to TraY protein, the traY gene was cloned in a plasmid vector which utilizes the strong T7 phi 10 promoter to overproduce the protein. The plasmid-encoded TraY protein was specifically labeled with [35S]methionine, and purification of the polypeptide was accomplished by monitoring the radioactive label. Purified TraY protein had a relative molecular mass of approximately 17,000, as determined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The amino terminus of the purified protein was sequenced to confirm that the protein was encoded by the traY gene. The protein sequence revealed that the start codon for the TraY protein was a UUG codon 36 base pairs upstream of the AUG start site originally deduced from the DNA sequence (T. Fowler, L. Taylor, and R. Thompson, Gene 26:79-89, 1983). This start sequence confirmed the premise of Inamoto et al. that the F-plasmid TraY polypeptide-coding sequence would begin with UUG, creating a reading frame which renders a large degree of amino acid sequence identity with the TraY polypeptide from R100 (S. Inamoto, Y. Yoshioka, and E. Ohtsubo, J. Bacteriol. 170:2749-2757, 1988). The purified TraY protein from F bound specifically to the origin of transfer region of the F plasmid. However, no nicking activity was detected at oriT by using TraY protein or TraY protein in conjunction with helicase I.  相似文献   

17.
18.
The TraM protein of plasmid R1 is a DNA-binding protein   总被引:9,自引:2,他引:7  
The TraM protein of the resistance plasmid R1 was purified to homogeneity and used for DNA-binding studies. Both gel retardation- and footprint experiments showed that TraM specifically binds to DNA of plasmid R1 comprising the region between the origin of transfer and the traM gene. Several TraM molecules bind and, according to the footprint experiments, two distinct sites of specific binding exist. The two sites are separated from each other by 12 nucleotides and each contains an inverted repeat. DNase I protection assays showed that the initial TraM binding occurs at these palindromic sequences. At higher protein concentrations the lengths of the DNA segments protected by TraM were increased towards the traM gene. In one region this extension leads to binding of TraM protein at its own promoters.  相似文献   

19.
F plasmid TraM, an autoregulatory homotetramer, is essential for F plasmid bacterial conjugative transfer, one of the major mechanisms for horizontal gene dissemination. TraM cooperatively binds to three sites (sbmA, -B, and -C) near the origin of transfer in the F plasmid. To examine whether or not tetramerization of TraM is required for autoregulation and F conjugation, we used a two-plasmid system to screen for autoregulation-defective traM mutants generated by random PCR mutagenesis. A total of 72 missense mutations in TraM affecting autoregulation were selected, all of which also resulted in a loss of TraM function during F conjugation. Mutational analysis of TraM defined three regions important for F conjugation, including residues 3-10 (region I), 31-53 (region II), and 80-121 (region III); in addition, residues 3-47 were also important for the immunoreactivity of TraM. Biochemical analysis of mutant proteins indicated that region I defined a DNA binding domain that was not involved in tetramerization, whereas regions II and III were important for both tetramerization and efficient DNA binding. Mutations in region III affected the cooperativity of binding of TraM to sbmA, -B, and -C. Our results suggest that tetramerization is important for specific DNA binding, which, in turn, is essential for traM autoregulation and F conjugation. These findings support the hypothesis that TraM functions as a "signaling" factor that triggers DNA transport during F conjugation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号