首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The red and far-red light-absorbing phytochromes interact with the circadian clock, a central oscillator that sustains a 24-h period, to measure accurately seasonal changes in day-length and regulate the expression of several key flowering genes. The interactions and subsequent signalling steps upstream of the flowering genes such as CONSTANS (CO) and FLOWERING LOCUS T (FT) remain largely unknown. We report here that a photomorphogenic mutant, red and far-red insensitive 2-1 ( rfi2-1), flowered early particularly under long days. The rfi2-1 mutation also enhanced the expression of CO and FT under day/night cycles or constant light. Both co-2 and gigantea-2 (gi-2) were epistatic to rfi2-1 in their flowering responses. The gi-2 mutation was also epistatic to the rfi2-1 mutation in the expression of CO and hypocotyl elongation. However, the rfi2-1 mutation did not affect the expression of GI, a gene that mediates between the circadian clock and the expression of CO. Like many other flowering genes, the expression of RFI2 oscillated under day/night cycles and was rhythmic under constant light. The amplitude of the rhythmic expression of RFI2 was significantly reduced in phyB-9 or lhy-20 plants, and was also affected by the gi-2 mutation. As previously reported, the gi-2 mutation affects the period length and amplitude of CCA1 and LHY expression, and GI may act through a feedback loop to maintain a proper circadian function. We propose a regulatory step in which RFI2 represses the expression of CO, whereas GI may maintain the proper expression of RFI2 through its positive action on the circadian clock. The regulatory step serves to tune the circadian outputs that control the expression of CO and photoperiodic flowering.  相似文献   

2.
SOB3 , which encodes a plant-specific AT-hook motif containing protein, was identified from an activation-tagging screen for suppressors of the long-hypocotyl phenotype of a weak phyB allele, phyB-4 . sob3-D ( suppressor of phyB-4#3 dominant ) overexpressing seedlings have shorter hypocotyls, and as adults develop larger flowers and leaves, and are delayed in senescence compared with wild-type plants. At the nucleotide level, SOB3 is closely related to ESCAROLA ( ESC ), which was identified in an independent activation-tagging screen. ESC overexpression also suppresses the phyB-4 long-hypocotyl phenotype, and confers an adult morphology similar to sob3-D , suggesting similar functions. Analysis of transgenic plants harboring SOB3:SOB3-GUS or ESC:ESC-GUS translational fusions, driven by their endogenous promoter regions, showed GUS activity in the hypocotyl and vasculature tissue in light- and dark-grown seedlings. A loss-of-function SOB3 allele ( sob3-4 ) was generated through an ethyl methanesulfonate intragenic suppressor screen of sob3-D phyB-4 plants, and this allele was combined with a predicted null allele, disrupting ESC ( esc-8 ), to examine potential genetic interactions. The sob3-4 esc-8 double mutant had a long hypocotyl in multiple fluence rates of continuous white, far-red, red and blue light. sob3-4 esc-8 phyB-9 and sob3-4 esc-8 cry-103 triple mutants also had longer hypocotyls than photoreceptor single mutants. In contrast, the sob3-4 esc-8 phyA-211 triple mutant was the same length as phyA-211 single mutants. Taken together, these data indicate that SOB3 and ESC act redundantly to modulate hypocotyl growth inhibition in response to light.  相似文献   

3.
Single, double, and triple null combinations of Arabidopsis mutants lacking the photoreceptors phytochrome (phy) A (phyA-201), phyB (phyB-5), and cryptochrome (cry) 1 (hy4-2.23n) were examined for de-etiolation responses in high-fluence red, far-red, blue, and broad-spectrum white light. Cotyledon unhooking, unfolding, and expansion, hypocotyl growth, and the accumulation of chlorophylls and anthocyanin in 5-d-old seedlings were measured under each light condition and in the dark. phyA was the major photoreceptor/effector for most far-red-light responses, although phyB and cry1 modulated anthocyanin accumulation in a phyA-dependent manner. phyB was the major photoreceptor in red light, although cry1 acted as a phyA/phyB-dependent modulator of chlorophyll accumulation under these conditions. All three photoreceptors contributed to most blue light deetiolation responses, either redundantly or additively; however, phyB acted as a modulator of cotyledon expansion dependent on the presence of cry1. As reported previously, flowering time in long days was promoted by phyA and inhibited by phyB, with each suppressing the other's effect. In addition to the effector/modulator relationships described above, measurements of hypocotyls from blue-light-grown seedlings demonstrated phytochrome activity in blue light and cry1 activity in a phyAphyB mutant background.  相似文献   

4.
Jorge J. Casal 《Planta》1995,196(1):23-29
Etiolated seedlings of the wild-type (WT) and of the phyB-1 mutant of Arabidopsis thaliana (L.) Heynh. were exposed to red-light (R) and far-red light (FR) treatments to characterize the action of phytochrome B on hypocotyl extension growth. A single R or FR pulse had no detectable effects on hypocotyl growth. After 24-h pre-treatment with continuous FR (FRc) a single R, compared to FR pulse inhibited (more than 70%) subsequent hypocotyl growth in the WT but not in the phyB-1 mutant. This effect of FRc was fluence-rate dependent and more efficient than continuous R (Rc) or hourly FR pulses of equal total fluence. Hypocotyl growth inhibition by Rc was larger in WT than phyB-1 seedlings when chlorophyll screening was reduced either by using broadband Rc (maximum emission 610 nm) or by using narrow-band Rc (658 nm) over short periods (24 h) or with seedlings bleached with Norflurazon. Hourly R or R + FR pulses had similar effects in WT and phyB-1 mutant etiolated seedlings. It is concluded that phytochrome B is not the only photoreceptor of Rc and that the action of phytochrome B is enhanced by a FRc high-irradiance reaction. Complementary experiments with the phyA-201 mutant indicate that this promotion of a phytochrome B-mediated response occurs via co-action with phytochrome A.Abbreviations D darkness - FR far-red light - FRc continuous FR - Pfr FR-absorbing form of phytochrome - HIR high-irradiance reaction - Pfr/P proportion of phytochrome as Pfr - phyA phytochrome A - phyB phytochrome B - R red light - Rc continuous R - WT wild-type I thank Professors R.E. Kendrick and M. Koornneef (Wageningen Agricultural University, The Netherlands) and Professor J. Chory (Salk Institute, Calif., USA) for their kind provision of the original WT and phyB-1 and phyA-201 seed, respectively. This work was financially supported by grants PID and PID-BID from CONICET, AG 040 from Universidad de Buenos Aires and A 12830/1-000019 from Fundación Antorchas.  相似文献   

5.
To study negative interactions between phytochromes, phytochrome B (phyB) overexpressor lines, the mutants phyA-201, phyB-4, phyB-5, phyD-1, phyA-201 phyB-5, phyA-201 phyD-1, and phyB-5 phyD-1 of Arabidopsis were used. Endogenous phyB, but not phytochrome D (phyD), partly suppressed phytochrome A (phyA)-dependent inhibition of hypocotyl elongation in far-red light (FR). Dichromatic irradiation demonstrated that the negative effect of phyB was largely independent of the photoequilibrium, i.e. far-red light absorbing form of phytochrome formation. Moreover, phyB-4, a mutant impaired in signal transduction, did not show a loss of inhibition of phyA by phyB. Overexpression of phyB, conversely, resulted in an enhanced inhibition of phyA function, even in the absence of supplementary carbohydrates. However, overexpression of a mutated phyB, which cannot incorporate the chromophore, had no detectable effect on phyA action. In addition to seedling growth, accumulation of anthocyanins in FR, another manifestation of the high irradiance response, was strongly influenced by phyB holoprotein. Induction of seed germination by FR, a very low fluence response, was suppressed by both endogenous phyB and phyD. In conclusion, we show that both classical response modes of phyA, high irradiance response, and very low fluence response are subject to an inhibitory action of phyB-like phytochromes. Possible mechanisms of the negative interference are discussed.  相似文献   

6.
Phytochrome A (phyA) is the primary photoreceptor for sensing extremely low amounts of light and for mediating various far-red light-induced responses in higher plants. Translocation from the cytosol to the nucleus is an essential step in phyA signal transduction. EID1 (for EMPFINDLICHER IM DUNKELROTEN LICHT1) is an F-box protein that functions as a negative regulator in far-red light signaling downstream of the phyA in Arabidopsis (Arabidopsis thaliana). To identify factors involved in EID1-dependent light signal transduction, pools of ethylmethylsulfonate-treated eid1-3 seeds were screened for seedlings that suppress the hypersensitive phenotype of the mutant. The phenotype of the suppressor mutant presented here is caused by a missense mutation in the PHYA gene that leads to an amino acid transition in its histidine kinase-related domain. The novel phyA-402 allele alters the spectral sensitivity and the persistence of far-red light-induced high-irradiance responses. The strong eid1-3 suppressor phenotype of phyA-402 contrasts with the moderate phenotype observed when phyA-402 is introgressed into the wild-type background, which indicates that the mutation mainly alters functions in an EID1-dependent signaling cascade. The mutation specifically inhibits nuclear accumulation of the photoreceptor molecule upon red light irradiation, even though it still interacts with FHY1 (for far-red long hypocotyl 1) and FHL (for FHY1-like protein), two factors that are essential for nuclear accumulation of phyA. Degradation of the mutated phyA is unaltered even under light conditions that inhibit its nuclear accumulation, indicating that phyA degradation may occur mostly in the cytoplasm.  相似文献   

7.
The phyB-401 mutant is 10(3) fold more sensitive to red light than its wild-type analogue and shows loss of photoreversibility of hypocotyl growth inhibition. The phyB-401 photoreceptor displays normal spectral properties and shows almost no dark reversion when expressed in yeast cells. To gain insight into the molecular mechanism underlying this complex phenotype, we generated transgenic lines expressing the mutant and wild-type phyB in phyB-9 background. Analysis of these transgenic lines demonstrated that the mutant photoreceptor displays a reduced rate of dark-reversion but normal P(fr) to P(r) photoconversion in vivo and shows an altered pattern of association/dissociation with nuclear bodies compared to wild-type phyB. In addition we show (i) an enhanced responsiveness to far-red light for hypocotyl growth inhibition and CAB2 expression and (ii) that far-red light mediated photoreversibility of red light induced responses, including inhibition of hypocotyl growth, formation of nuclear bodies and induction of CAB2 expression is reduced in these transgenic lines. We hypothesize that the incomplete photoreversibility of signalling is due to the fact that far-red light induced photoconversion of the chromophore is at least partially uncoupled from the P(fr) to P(r) conformation change of the protein. It follows that the phyB-401 photoreceptor retains a P(fr)-like structure (P(r) (*)) for a few hours after the far-red light treatment. The greatly reduced rate of dark reversion and the formation of a biologically active P(r) (*) conformer satisfactorily explain the complex phenotype of the phyB-401 mutant and suggest that amino acid residues surrounding the position 564 G play an important role in fine-tuning phyB signalling.  相似文献   

8.
Functional interaction of cryptochrome 1 and phytochrome D   总被引:4,自引:1,他引:3  
Arabidopsis thaliana wild-type and single, double and triple mutants lacking phytochrome A (phyA-201), phytochrome B (phyB-5), phytochrome D (phyD-1), phytochrome E (phyE-1), cryptochrome 1 (hy4-2.23n) and cryptochrome 2 (fha-1) were used to study the photoreceptor signal-transduction network. The inhibition of hypocotyl elongation was analysed using pulses of red light preceded by a pre-irradiation of white light. The interactions of phyA, phyB and cry1 have been studied in a series of previous papers. Here we focus on the signal transduction initiated by phyD. We observed that phyD can partly substitute for the loss of phyB. Specifically, in the phyB background, red pulses were only effective if both cry1 and phyD were present. The response to red pulses, enabled by the pre-irradiation of white light, was completely reversible by far-red light. Loss of reversibility occurred with an apparent half-life of 2 h, similar to the half-life of 3 h observed for the effect mediated by phyB. Furthermore, we could show that the response to an end-of-day far-red pulse in phyB depends on both phyD and cry1. In contrast to phyD, a functional interaction of phyE and cry1 could not be detected in Arabidopsis seedlings.  相似文献   

9.
10.
Phytochrome C (phyC) is a low-abundance member of the five-membered phytochrome family of photoreceptors in Arabidopsis. Towards developing an understanding of the photosensory and physiological functions of phyC, transgenic Arabidopsis plants were generated that overexpress cDNA-encoded phyC and seedling responses to continuous white, red, or far-red light (Wc, Rc or FRc, respectively) were examined. Transgenic seedlings overexpressing phyC displayed enhanced inhibition of hypocotyl elongation in Rc, but were unchanged in responsiveness to FRc relative to wild-type. These data indicate that phyC has photosensory specificity that is similar to that of phyB and thus distinct from that of phyA. phyC overexpressors with levels only 3 to 4 times the level of endogenous phyC exhibited enhanced primary leaf expansion in Wc. This is in contrast to phyA or phyB overexpressors which respectively have levels that are 500-and 100-fold that of overexpressed phyC but showed no enhancement of primary leaf expansion. Therefore, phyC may have some physiological roles that are different to those of phyA and phyB in the control of seedling responses to light signals.  相似文献   

11.
Apical hook opening and cotyledon unfolding are characteristic responses that occur during deetiolation of dicotyledonous seedlings. Light-stimulated apical hook opening and cotyledon unfolding in etiolated Arabidopsis thaliana seedlings appears to involve the activities of multiple photosensory systems. Red, far-red, and blue light are all effective in stimulating these responses in Arabidopsis. Stimulation of hook opening by red light and low fluence blue light is inductive, far-red reversible, and exhibits reciprocity, as is characteristic of many low fluence-dependent phytochrome-mediated responses. Far-red and high-fluence blue light appear to stimulate hook opening and cotyledon unfolding through high-irradiance-response systems during long-term light treatments. Although a phytochrome high-irradiance-response system presumably mediates the responses in far-red light, the responses to high-fluence blue light may be mediated by a blue light-specific photosensory system.  相似文献   

12.
A. Ritter  E. Wagner  M. G. Holmes 《Planta》1981,153(6):556-560
The spectral control of hypocotyl elongation in light-grown Chenopodium rubrum L. seedlings has been studied. The results showed that although the seedlings responded to changes in the quantity of combined red and far-red radiation, they were also very sensitive to changes in the quantity of blue radiation reaching the plant. Altering the proportion of red: far-red radiation in broad waveband white light caused marked differences in hypocotyl extension. Comparison of the responses of green and chlorophyll-free seedlings indicated no qualitative difference in the response to any of the light sources used, although photosynthetically incompetent plants were more sensitive to all wavelengths. Blue light was found to act primarily of a photoreceptor which is different from phytochrome. It is concluded that hypocotyl extension rate in vegetation shade is photoregulated by the quantity of blue light and the proportion of red: far-red radiation. In neutral shade, such as that caused by stones or overlying soil, hypocotyl extension appears to be regulated primarily by the quantity of light in the blue waveband and secondarily by the quantity of light in the red and far-red wavebands.Abbreviations B blue - FR far-red - k 1, k 2 rate constants for photoconverison of Pr to Pfr and Pfr to Pr, respective - k 1/k 1 +k 2= phytochrome photoequilibrium - k 1 +k 2= phytochrome cycling rate - Pr=R absorbing form of phytochrome - Pfr=FR absorbing form of phytochrome - Ptot Pr+Pfr - PAR photosynthetically active radiation = 400–700 nm - R red - WL white light  相似文献   

13.
Photomorphogenetic responses have been studied in a cucumber (Cucumis sativus L.) mutant (lh), which has long hypocotyls in white light (WL). While etiolated seedlings of this mutant have a similar phytochrome content and control of hypocotyl elongation as wild type, deetiolation is retarded and WL-grown seedlings show reduced phytochrome control. Spectrophotometric measurements exhibit that WL-grown tissues of the lh mutant (flower petals and Norflurazon-bleached leaves) contain 35 to 50% of the phytochrome level in the wild type. We propose that this is a consequence of a lack of light-stable phytochrome, in agreement with our hypothesis proposed on the basis of physiological experiments. The lh mutant lacks an end-of-day far-red light response of hypocotyl elongation. This enables the end-of-day far-red light response, clearly shown by the wild type, to be ascribed to the phytochrome, deficient in the lh mutant. Growth experiments in continuous blue light (BL) and continuous BL + red light (RL) show that when RL is added to BL, hypocotyl growth remains inhibited in the wild type, whereas the lh mutant exhibits significant growth promotion compared to BL alone. It is proposed that the hypocotyls fail to grow long in low fluence rate BL because photosynthesis is insufficient to sustain growth.  相似文献   

14.
In etiolated seedlings of Raphanus sativus L. the inhibition of hypocotyl elongation by continuous light showed a major bimodal peak of action in the red and far-red, and two minor peaks in the blue regions of the spectrum. It is argued that, under conditions of prolonged irradiation, phytochrome is the pigment controlling the inhibition of hypocotyl elongation by red and far-red light, but that its mode of action in far-red is different from that in red. A distinct pigment is postulated for blue light.Abbreviations B blue - FR far red - G green - R red - HIR high irradiance reaction - Pr and Pfr red and far red absorbing forms of phytochrome - R red  相似文献   

15.
Brassinosteroids (BRs) are plant hormones that affect diverse aspects of plant development. Various BR-biosynthetic or BR-signaling mutants contribute to BR functions and signaling events in many plant species. The BR receptor brassinosteroid-Insensitive 1 (BRI1) plays critical roles in BR signaling. We previously identified a weak bri1 mutant allele, bri1-120, that has a mutation site in the extracellular domain of BRI1. Here, genetic suppressor screening revealed that a PHYB gene mutation led to suppression of ethyl methanesulfonate (EMS)-mutagenized bri1-120. The morphology of bri1-120phyB-1 indicated that compact and rounded phenotypes of bri1-120 were suppressed. However, BR sensitivity of the bri1-120phyB-1 was only recovered in hypocotyl elongation, and overexpression of PHYB in bri1-120 did not enhance bri1-120 phenotypes. To further investigate the relationship between BR and light signalings, we examined the seed germination pattern and hypocotyl growth of bri1-120phyB-1 as compared to that of each single mutant under various light conditions. Seed germination in bri1-120phyB-1 was higher than in both the single mutants. Hypocotyl length in bri1-120phyB-1 was intermediate between that of bri1-120 and phyB-1, whereas sensitivity to red light in bri1-120phyB-1 remained the same as in phyB-1. These results suggest that BR and light signalings affect diverse cellular responses both together and independently, depending on the specific cellular processes.  相似文献   

16.
17.
Light regulates plant growth and development through a network of endogenous factors. By screening Arabidopsis activation-tagged lines, we isolated a dominant mutant (light-dependent short hypocotyls 1-D (lsh1-D)) that showed hypersensitive responses to continuous red (cR), far-red (cFR) and blue (cB) light and cloned the corresponding gene, LSH1. LSH1 encodes a nuclear protein of a novel gene family that has homologues in Arabidopsis and rice. The effects of the lsh1-D mutation were tested in a series of photoreceptor mutant backgrounds. The hypersensitivity to cFR and cB light conferred by lsh1-D was abolished in a phyA null background (phyA-201), and the hypersensitivity to cR and cFR light conferred by lsh1-D was much reduced in the phytochrome-chromophore synthetic mutant, hy1-1 (long hypocotyl 1). These results indicate that LSH1 is functionally dependent on phytochrome to mediate light regulation of seedling development.  相似文献   

18.
Several phytochrome-controlled processes have been examined in etiolated and light-grown seedlings of a normal genotype and the elongated internode (ein/ein) mutant of rapid-cycling Brassica rapa. Although etiolated ein seedlings displayed normal sensitivity to prolonged far-red light with respect to inhibition of hypocotyl elongation, expansion of cotyledons, and synthesis of anthocyanin, they displayed reduced sensitivity to prolonged red light for all three of these deetiolation responses. In contrast to normal seedlings, light-grown ein seedlings did not show a growth promotion in response to end-of-day far-red irradiation. Additionally, whereas the first internode of light-grown normal seedlings showed a marked increase in elongation in response to reduced ratio of red to far-red light, ein seedlings showed only a small elongation response. When blots of protein extracts from etiolated and light-treated ein and normal seedlings were probed with monoclonal antibody to phytochrome A, an immunostaining band at about 120 kD was observed for both extracts. The immunostaining intensity of this band was substantially reduced for extracts of light-treated normal and ein seedlings. A mixture of three monoclonal antibodies directed against phytochrome B from Arabidopsis thaliana immunostained a band at about 120 kD for extracts of etiolated and light-treated normal seedlings. This band was undetectable in extracts of ein seedlings. We propose that ein is a photoreceptor mutant that is deficient in a light-stable phytochrome B-like species.  相似文献   

19.
Circadian gating of light signaling limits the timing of maximum responsiveness to light to specific times of day. The fhy3 (for far-red elongated hypocotyl3) mutant of Arabidopsis thaliana is involved in independently gating signaling from a group of photoreceptors to an individual response. fhy3 shows an enhanced response to red light during seedling deetiolation. Analysis of two independent fhy3 alleles links enhanced inhibition of hypocotyl elongation in response to red light with an arrhythmic pattern of hypocotyl elongation. Both alleles also show disrupted rhythmicity of central-clock and clock-output gene expression in constant red light. fhy3 exhibits aberrant phase advances under red light pulses during the subjective day. Release-from-light experiments demonstrate clock disruption in fhy3 during the early part of the subjective day in constant red light, suggesting that FHY3 is important in gating red light signaling for clock resetting. The FHY3 gating function appears crucial in the early part of the day for the maintenance of rhythmicity under these conditions. However, unlike previously described Arabidopsis gating mutants that gate all light signaling, gating of direct red light-induced gene expression in fhy3 is unaffected. FHY3 appears to be a novel gating factor, specifically in gating red light signaling to the clock during daytime.  相似文献   

20.
A genetic screen was performed to isolate mutants showing increased arsenic tolerance using an Arabidopsis thaliana population of activation tagged lines. The most arsenic-resistant mutant shows increased arsenate and arsenite tolerance. Genetic analyses of the mutant indicate that the mutant contains two loci that contribute to arsenic tolerance, designated ars4 and ars5. The ars4ars5 double mutant contains a single T-DNA insertion, ars4, which co-segregates with arsenic tolerance and is inserted in the Phytochrome A (PHYA) gene, strongly reducing the expression of PHYA. When grown under far-red light conditions ars4ars5 shows the same elongated hypocotyl phenotype as the previously described strong phyA-211 allele. Three independent phyA alleles, ars4, phyA-211 and a new T-DNA insertion allele (phyA-t) show increased tolerance to arsenate, although to a lesser degree than the ars4ars5 double mutant. Analyses of the ars5 single mutant show that ars5 exhibits stronger arsenic tolerance than ars4, and that ars5 is not linked to ars4. Arsenic tolerance assays with phyB-9 and phot1/phot2 mutants show that these photoreceptor mutants do not exhibit phyA-like arsenic tolerance. Fluorescence HPLC analyses show that elevated levels of phytochelatins were not detected in ars4, ars5 or ars4ars5, however increases in the thiols cysteine, gamma-glutamylcysteine and glutathione were observed. Compared with wild type, the total thiol levels in ars4, ars5 and ars4ars5 mutants were increased up to 80% with combined buthionine sulfoximine and arsenic treatments, suggesting the enhancement of mechanisms that mediate thiol synthesis in the mutants. The presented findings show that PHYA negatively regulates a pathway conferring arsenic tolerance, and that an enhanced thiol synthesis mechanism contributes to the arsenic tolerance of ars4ars5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号